
Apago PDF Enhancer

Apago PDF Enhancer

JAVA
Programming
Fundamentals

Problem Solving Through Object
Oriented Analysis and Design

CRC_C6547_FM.indd iCRC_C6547_FM.indd i 10/16/2008 4:35:38 PM10/16/2008 4:35:38 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

Premchand S. Nair

JAVA
Programming
Fundamentals

Problem Solving Through Object
Oriented Analysis and Design

CRC_C6547_FM.indd iiiCRC_C6547_FM.indd iii 10/16/2008 4:35:40 PM10/16/2008 4:35:40 PM

Apago PDF Enhancer

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-6547-3 (Softcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Nair, Premchand S., 1956-
Java programming fundamentals : problem solving through object oriented analysis and design / by

Premchand S. Nair.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-1-4200-6547-3
ISBN-10: 1-4200-6547-5
1. Java (Computer program language) 2. Object-oriented programming (Computer science) I. Title.

QA76.73.J38N345 2008
005.1’17--dc22 2008017335

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Apago PDF Enhancer

Dedication

To five people in my life,

M.K. Krishna Pillai
Grandfather

S. Sukumaran Nair
Dad

A. Sarada Devi
Mom

Suseela Nair
Wife

Meera Nair
Daughter

CRC_C6547_FM.indd vCRC_C6547_FM.indd v 10/16/2008 4:35:41 PM10/16/2008 4:35:41 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

vii

Contents

Preface xix

Acknowledgments xxiii

Author xxv

CHAPTER 1 Object Model of Computation 1

INTRODUCTION 1

OBJECT MODEL OF COMPUTATION 2

DATA REPRESENTATION 5

HARDWARE OVERVIEW 5

BRIEF HISTORY OF PROGRAMMING LANGUAGES AND
MODELS OF COMPUTATION 6

CREATING AND EXECUTING JAVA PROGRAM 8

Step 1. Create Java Source File 8
Step 2. Compile Source Code into Bytecode 8
Step 3. Execute Java Program 9
INTRODUCTION TO SOFTWARE ENGINEERING 10

Analysis and Use Case Diagram 12
REVIEW 14

EXERCISES 16

ANSWERS TO SELF-CHECK 17

CHAPTER 2 Class and Java Fundamentals 19

JAVA APPLICATION PROGRAM 20

Identifi er 21

CRC_C6547_FM.indd viiCRC_C6547_FM.indd vii 10/16/2008 4:35:41 PM10/16/2008 4:35:41 PM

Apago PDF Enhancer

viii ■ Contents

Reserved Word 24
Comment Lines 24
JAVA GREETINGS PROGRAM 26

Advanced Topic 2.1: Frequently Used Escape Sequences 27
Advanced Topic 2.2: Details on println Method 29
Concatenation and the length of Strings 29
Positional Value of a Character in String 30
DATA TYPES 31

Primitive Data Types 32
boolean Data Type 33
char Data Type 33
Advanced Topic 2.3: Unicode Character Specifi cation 35
Integer Data Type 35
Advanced Topic 2.4: Various Integer Representations 36
Floating Point Data Type 36
Advanced Topic 2.5: Floating Point Notation 37
OPERATIONS ON NUMERIC DATA TYPES 37

Operator Precedence Rules 40
Rules for Evaluating Mixed Expressions 42
Advanced Topic 2.6: Mixed Expressions Involving String 44
NAMED CONSTANTS AND VARIABLES 46

Changing Data Values of Variable 51
Assignment Statement 51
INPUT STATEMENT 55

PACKAGES AND import STATEMENT 57

Single Character Input 58
INTERACTIVE MODE AND PROMPT LINES 60

EXPLICIT DATA–TYPE CONVERSION 61

Advanced Topic 2.7: Increment and Decrement Operators 63
Advanced Topic 2.8: Compound Assignment Operators 65
REVIEW 66

EXERCISES 67

PROGRAMMING EXERCISES 74

ANSWERS TO SELF-CHECK 75

CRC_C6547_FM.indd viiiCRC_C6547_FM.indd viii 10/16/2008 4:35:41 PM10/16/2008 4:35:41 PM

Apago PDF Enhancer

Contents ■ ix

CHAPTER 3 Class Design 77

CLASS 77

Attributes 78
Operations 80
METHOD INVOCATION 80

METHOD DEFINITION 82

CATEGORIES OF VARIABLES 84

Syntax Template 85
Initialization 85
Scope 85
Existence 86
return STATEMENT 86

JAVADOC CONVENTION 86

ACCESSOR METHOD 86

MUTATOR METHOD 88

toString METHOD 90

APPLICATION-SPECIFIC METHODS 90

CONSTRUCTOR 91

PUTTING ALL PIECES TOGETHER 92

Advanced Topic 3.1: Representing Class in UML 2 94
TESTING 95

Advanced Topic 3.2: Representing Relationship in UML 2 98
Advanced Topic 3.3: Class Design, Implementation,

and Testing 99
Design 99
Decide on Attributes 100
Decide on Methods 100
Implementation 102
Testing 104

REVIEW 106

EXERCISES 108

PROGRAMMING EXERCISES 111

ANSWERS TO SELF-CHECK 112

CRC_C6547_FM.indd ixCRC_C6547_FM.indd ix 10/16/2008 4:35:41 PM10/16/2008 4:35:41 PM

Apago PDF Enhancer

x ■ Contents

CHAPTER 4 Decision Making 115

CONTROL STRUCTURES 115

LOGICAL EXPRESSION AND OPERATORS 118

LOGICAL OPERATORS 120

RELATIONAL OPERATORS 123

RELATIONAL OPERATORS AND NUMERICAL DATA TYPES 124

RELATIONAL OPERATORS AND CHARACTER DATA TYPES 126

Advanced Topic 4.1: Relational Operators and Objects 127
LEXICOGRAPHICAL ORDERING OF STRINGS 127

Advanced Topic 4.2: Equality Operators and String Class 130
PRECEDENCE RULES 132

Advanced Topic 4.3: Syntax Error Explained 137
Advanced Topic 4.4: Short-Circuit Evaluation 137
Advanced Topic 4.5: Additional Logical Operators 138
Advanced Topic 4.6: Positive Logic 140
SELECTION STRUCTURES 142

ONE-WAY SELECTION STRUCTURE 142

BLOCK STATEMENT 148

TWO-WAY SELECTION STRUCTURE 151

PRIMITIVE DATA TYPE boolean 156
NESTED STRUCTURES 157

Advanced Topic 4.7: Better Coding Options 161
Advanced Topic 4.8: Order of Logical Expressions 164
Advanced Topic 4.9: Overriding if ... else Pairing Rule 165
Advanced Topic 4.10: Ternary Operator 166
MULTIWAY STRUCTURE switch 167
Advanced Topic 4.11: Sharing Code in a switch Statement 170
Advanced Topic 4.12: Limitations of a switch Statement 173
Advanced Topic 4.13: Enumerated Types 177
CASE STUDY 4.1: PAYROLL FOR A SMALL BUSINESS 180

Specifi cation 180
Input 181
Output 181
Decide on Classes 181

CRC_C6547_FM.indd xCRC_C6547_FM.indd x 10/16/2008 4:35:42 PM10/16/2008 4:35:42 PM

Apago PDF Enhancer

Contents ■ xi

Decide on Attributes 181
Decide on Methods 182
Implementation 184
Application Program 193
Testing 196
REVIEW 197

EXERCISES 199

PROGRAMMING EXERCISES 204

ANSWERS TO SELF-CHECK 206

CHAPTER 5 The Power of Repetition 209

CONTROL STRUCTURES 210

USING TEXT FILE FOR INPUT 211

Declaring Exceptions 211
USING FILE FOR OUTPUT 213

Method close 213
REPETITION STRUCTURE: while 215
Counter-Controlled while Statement 218
Advanced Topic 5.1: Use of Counter inside Counter-Controlled

while Statement 222
Advanced Topic 5.2: Event-Controlled while Statement 224
Advanced Topic 5.3: Data-Controlled while Statement 227
Data Validation 227
Sentinel Data 227
REPETITION STRUCTURE: for 229
Advanced Topic 5.4: Use of Counter inside for Statement 234
Advanced Topic 5.5: Repetition Statement : do … while 235
Advanced Topic 5.6: Guidelines for Choosing Repetition Structure 238
NESTING OF CONTROL STRUCTURES 239

Advanced Topic 5.7: Statements break and continue 245
Statements break and continue with Optional Label 249
CASE STUDY 5.1: PAYROLL FOR SMALL BUSINESS: REVISITED 252

Specifi cation 252
Input 252
Output 252

CRC_C6547_FM.indd xiCRC_C6547_FM.indd xi 10/16/2008 4:35:42 PM10/16/2008 4:35:42 PM

Apago PDF Enhancer

xii ■ Contents

Application Program 252
Testing 256

REVIEW 256

EXERCISES 257

PROGRAMMING EXERCISES 263

ANSWERS TO SELF-CHECK 266

CHAPTER 6 Methods and Constructors 267

CLASSIFICATION OF METHODS 267

Math Class 270
Character Class 272
String Class 272
METHOD INVOCATION 274

USER-DEFINED METHODS 281

Formal Parameter List 282
Signature of a Method 282
Parameter Passing 284
CONSTRUCTORS 297

Copy Constructor 305
Self-Reference 308
Advanced Topic 6.1: Common Methods 309
copy Method 309
equals Method 313
Advanced Topic 6.2: Finalizer and Garbage Collection 316
Advanced Topic 6.3: Class Variable 318
static Methods 321
Advanced Topic 6.4: Creating and Using Packages 328
Option 1 328

Option 2 329
Step 1 329
Step 2 330
Step 3 330
Step 4 331
Step 5 331

CRC_C6547_FM.indd xiiCRC_C6547_FM.indd xii 10/16/2008 4:35:42 PM10/16/2008 4:35:42 PM

Apago PDF Enhancer

Contents ■ xiii

CASE STUDY 6.1: FRACTION CALCULATOR 331

REVIEW 344

EXERCISES 345

PROGRAMMING EXERCISES 351

ANSWERS TO SELF-CHECK 353

CHAPTER 7 Object-Oriented Software Design 355

OBJECTS 355

Data-Centric View 356
Attribute 356
Operation 356
Client–Server View 357
Soft ware Design View 359

SUBCLASS 359

Inheritance 361
Creating Subclass 363
Invoking Method of Superclass 365
Accessing Private Attribute of Superclass 366
Invoking Constructor of Superclass 366
Subclass Objects as Superclass Instance 376
Polymorphic Behavior 377
Advanced Topic 7.1: instanceof Operator 381
Advanced Topic 7.2: Use of protected Attributes 381
Advanced Topic 7.3: Design Options 386
protected Operations 386
package Access 386
Modifi er final 386

ABSTRACT CLASSES AND METHODS 387

Advanced Topic 7.4: Object Class 403
Advanced Topic 7.5: Composition 403
Accessor and Mutator Methods 404
Constructor 405

Application-Specifi c Services 406

INTERFACE 412

CRC_C6547_FM.indd xiiiCRC_C6547_FM.indd xiii 10/16/2008 4:35:42 PM10/16/2008 4:35:42 PM

Apago PDF Enhancer

xiv ■ Contents

CASE STUDY 7.1: PAYROLL FOR SMALL BUSINESS: REDESIGNED 412

REVIEW 427

EXERCISES 429

PROGRAMMING EXERCISES 432

ANSWERS TO SELF-CHECK 433

CHAPTER 8 GUI Applications, Applets, and Graphics 435

COMMON THEME BEHIND ALL GUI APPLICATION PROGRAMS 436

CREATING APPLICATION WINDOW 437

Creating New Application Class 438
Invoking Constructor of Superclass 440
Defi ne Size of JFrame 440
Make JFrame Visible 441
Provide Graceful Way to Exit Application 441
Get Reference of Content Pane 444
Create and Place GUI Components in Content Pane 445
Component creation 445
Component placement 448
EVENT-DRIVEN PROGRAMMING 450

Event-Driven Model of Computation 451
Implementing Listener interface 452
Registering Listener interface 454
METRIC CONVERSION HELPER 458

Advanced Topic 8.1: Programming Options for Implementing
Event Listeners 466

Option B 467
Option C 470
Option D 471
Advanced Topic 8.2: Applets 472
Creating Applet from GUI Application 473
Advanced Topic 8.3: Applet and GUI Application 483
Advanced Topic 8.4: Graphics 490
Advanced Topic 8.5: Color 494
Advanced Topic 8.6: Font 500

Advanced Topic 8.7: Drawing Services 503

CRC_C6547_FM.indd xivCRC_C6547_FM.indd xiv 10/16/2008 4:35:42 PM10/16/2008 4:35:42 PM

Apago PDF Enhancer

Contents ■ xv

REVIEW 505

EXERCISES 506

PROGRAMMING EXERCISES 508

ANSWERS TO SELF-CHECK 510

CHAPTER 9 Simple Data Structures 513

ONE-DIMENSIONAL ARRAY 514

Declaring Array 514
Instantiating Array 515
Advanced Topic 9.1: Programming Option 518
Advanced Topic 9.2: Alternate Syntax 519
Attribute length 519
PROCESSING ONE-DIMENSIONAL ARRAYS 521

Initialize Array with Certain Specifi c Values 522
Enhanced for Statement 522
Initialize Array Locations with Diff erent Values 524
Initialize Array Using User Input 525
Output Array 525
Perform Various Numeric Computations 526
Search for Item 527

CASE STUDY 9.1: MR. GRACE’S LATEST GRADING POLICY 528

Advanced Topic 9.3: Array Index Out of Bounds Exception 535
Advanced Topic 9.4: Assignment and Relational Operators 536
Advanced Topic 9.5: Role of Inheritance 539
Advanced Topic 9.6: Passing Arrays as Parameters in Methods 543
Advanced Topic 9.7: Returning Arrays in Method Invocation 549
TWO-DIMENSIONAL ARRAY 551

Declaring and Instantiating Array 552
Advanced Topic 9.8: Alternate Syntax 554
Advanced Topic 9.9: Ragged Array 555
Advanced Topic 9.10: Processing Two-Dimensional Arrays 556
Processing Specifi c Row 556
Processing Entire Array Row by Row 558
Processing Specifi c Column 559
Processing Entire Array Column by Column 560

CRC_C6547_FM.indd xvCRC_C6547_FM.indd xv 10/16/2008 4:35:43 PM10/16/2008 4:35:43 PM

Apago PDF Enhancer

xvi ■ Contents

Advanced Topic 9.11: Passing Arrays as Parameter in Methods 561
Advanced Topic 9.12: Returning Arrays in Method Invocation 568
Advanced Topic 9.13: Multidimensional Array 571
Vector AND ArrayList CLASSES 573

Wrapper Classes 574
Advanced Topic 9.14: Abstract Data Types 583
CASE STUDY 9.2: MR. GRACE’S GRADE SHEET 584

REVIEW 588

EXERCISES 589

PROGRAMMING EXERCISES 593

ANSWERS TO SELF-CHECK 595

CHAPTER 10 Search and Sort 597

SEARCH ALGORITHMS 600

Linear Search 600
Binary Search 605
EFFICIENCY OF ALGORITHMS 612

Empirical Approach 612
Analysis Approach 616
Advanced Topic 10.1: Levels of Complexity 617
SORT ALGORITHMS 618

Selection Sort 618
Insertion Sort 623
Bubble Sort 627
CASE STUDY 10.1: MR. GRACE’S SORTED GRADE SHEET 634

REVIEW 641

EXERCISES 642

PROGRAMMING EXERCISES 644

ANSWERS TO SELF-CHECK 644

CHAPTER 11 Defensive Programming 647

INTRODUCTION 647

EXCEPTION AND ERROR 648

Unchecked and Checked Exceptions 648

CRC_C6547_FM.indd xviCRC_C6547_FM.indd xvi 10/16/2008 4:35:43 PM10/16/2008 4:35:43 PM

Apago PDF Enhancer

Contents ■ xvii

THROWING AND CATCHING OF EXCEPTIONS 650

Th rowing Exception 652
Catching Exception 654
Advanced Topic 11.1: Design Options for catch Block 663
Advanced Topic 11.2: User-Defi ned Exception Class 666
Advanced Topic 11.3: Design Options for Exception Handling 668
REVIEW 668

EXERCISES 669

PROGRAMMING EXERCISES 670

ANSWERS TO SELF-CHECK 671

Appendix A: Operator Precedence 673

Appendix B: ASCII Character Set 675

Appendix C: Keywords 677

Appendix D: Coding Conventions 679

Appendix E : JDK and Documentation 681

Appendix F: Solution to Odd-Labeled Exercises 685

Index 711

CRC_C6547_FM.indd xviiCRC_C6547_FM.indd xvii 10/16/2008 4:35:43 PM10/16/2008 4:35:43 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

xix

Preface

Programming is an art. Although traditional art imitates life, programming simulates life.
Every abstract concept in programming, and to a great extent in the fi eld of computer sci-
ence, has its roots in our daily life. For example, humans and possibly all other living forms
were multiprocessing long before the term entered into computer science lingo. Th erefore,
any concept in programming can in fact be illustrated through examples from our day-
to-day life. Such an approach not only enables the student to assimilate and internalize
the concept presented in a programming situation but also provides a solid foundation for
the very process of programming, namely, the simulation of the real world. Unfortunately,
textbooks currently on the market do not exploit this fact through examples or meaning-
ful discussions. Th us, for many students, an abstract concept remains abstract. Th is is
especially true in the case of object-oriented programming. Th e “wow moment” one gets
by seeing programming as a simulation of the real-world situation is never realized.

Th is book on Java programming teaches object-oriented design and programming prin-
ciples in a completely integrated and incremental fashion. Th is book allows the reader to
experience the world we live in as object-oriented. From the very outset the reader will
realize that everything in this world is an object. Every concept of object-oriented design
is fi rst illustrated through real-life analogy. Corresponding Java language constructs are
introduced in an integrated fashion to demonstrate the programming required to simulate
the real-world situation. Instead of compartmentalizing all the object-oriented concepts
into one chapter, this book takes an incremental approach.

Th e pedagogy of this book mirrors the classroom style the author has developed over the
years as a teacher of computer science. In particular, every programming concept is intro-
duced through simple examples followed by short programming examples. Case studies
at the end of each chapter illustrate various design issues as well as the usefulness of many
new concepts encountered in that chapter.

Java has emerged as the primary language for soft ware development. From a soft ware
engineering perspective, object-oriented design has established itself as the industry stan-
dard. Th us, more and more teaching institutions are moving toward a CS1 course that
teaches Java programming and object-oriented design principles. A common approach
followed in many textbooks on the market is to introduce object-oriented concepts from
the very beginning and ignore many traditional programming techniques completely. Th e
objective of this book is to present object-oriented programming and design without com-
promising the training one needs on traditional programming constructs and structures.

CRC_C6547_FM.indd xixCRC_C6547_FM.indd xix 10/16/2008 4:35:43 PM10/16/2008 4:35:43 PM

Apago PDF Enhancer

xx ■ Preface

OUTSTANDING FEATURES
Object fi rst approach and unifi ed modeling language (UML). Th e object-oriented
design principles and UML notation are introduced from the very beginning. Case
studies at the end of each chapter take the reader through a journey that starts at
requirement specifi cation and ends at an object-oriented program.
Incremental approach to topic presentation. Object-oriented concepts are introduced
in an incremental fashion. Th is book does not compartmentalize all object-oriented
principles into one chapter; rather, new concepts are introduced and used throughout
the book.
In-depth treatment of topics. Concepts on object-oriented design and programming
are presented in an in-depth fashion. Th e reader could easily master all concepts by
working through various examples. Topics that can be skipped in an introductory
course are labeled as Advanced Topic and can be omitted.
Numerous examples drawn from everyday life. Th is book contains many fully devel-
oped programming examples. In addition, each concept is illustrated through
simple examples drawn from everyday life. Examples do not depend on mastery in
mathematics.
Notes on common pitfalls and good programming practice. Notes on common pitfalls
and good programming styles appear throughout this book.

PEDAGOGICAL ELEMENTS
Every chapter begins with a list of objectives. Th is list in a way summarizes the theme of
the chapter.

Th is book uses examples at four diff erent levels. First, simple examples are presented. To
follow those examples, the reader need not know anything about programming or material
covered in the book until then. Second, examples are provided to illustrate the proper and
appropriate usage. Th ird, examples illustrate the new concept through a simple program.
Fourth, case study examples are employed to demonstrate the need and eff ectiveness of the
concept in a broader problem-solving context.

Introspection, a unique pedagogical element of this book, is a thought-provoking tech-
nique that will empower the instructor with ample materials to start a discussion on the
major concepts discussed in each section. Th is technique will enable the student to inter-
nalize the concepts in a meaningful way.

Self-check questions are presented at the end of each subsection. It not only checks the
understanding of the subject matter presented in the subsection but also highlights the
major concepts the reader is expected to know from that point on.

Th e quick review presented at the end of each chapter provides a summary of the chap-
ter. Th e aim of the quick review is to highlight major points explained in the chapter. Th us,
quick review works as a checklist for the student as well.

•

•

•

•

•

CRC_C6547_FM.indd xxCRC_C6547_FM.indd xx 10/16/2008 4:35:43 PM10/16/2008 4:35:43 PM

Apago PDF Enhancer

Preface ■ xxi

Each chapter presents major constructs of Java language along with topics that can be
covered depending on the availability of time and the student’s level of comprehension.
Th ose topics are labeled as Advanced Topic for easy identifi cation.

Th e case study at the end of the chapter serves two important purposes. First, it allows
the reader to see the application of the new concepts learned in a practical situation. Second,
we have used two major themes throughout the book. Th e same theme is used at diff erent
levels of complexity to illustrate the application and usefulness of the new concepts.

Solved exercises at the end of each chapter provide enough challenges and further con-
solidate the concepts introduced in the chapter.

SUPPLEMENTS AND COMPANION WEBSITE
Th e companion website www.premnair.net contains many useful links, documents, and
programs. Th e instructor can obtain the instructor’s manual that contains solutions to all
problems presented at the end of the chapter, including the programming exercises. Both
the instructor and the students can access all programs presented in this book as well as
PowerPoint presentations of each of the chapters.

CHAPTER DEPENDENCY
Chapters in this book can be taught in the sequence presented. However, the instructor has
the liberty to tailor the course on the basis of the needs as long as the following dependency
diagram is followed:

Chapters 1 through 6

Chapter 7 Chapter 9

Chapter 10

Chapter 8 Chapter 11

CRC_C6547_FM.indd xxiCRC_C6547_FM.indd xxi 10/16/2008 4:35:43 PM10/16/2008 4:35:43 PM

www.premnair.net

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

xxiii

Acknowledgments

I am extremely thankful to the following reviewers whose valuable suggestions and correc-
tions transformed my manuscript into this book in its present form: Dr. Mark Meysenburg
(Doane College) and Dr. Charles Riedesel (University of Nebraska–Lincoln). I have a won-
derful person, Randi Cohen, as my acquisition editor at Taylor & Francis. She is one of the
most kind-hearted and effi cient persons I have ever known. I am so lucky to work with
her on this project. I would like to thank Amber Donley, the project coordinator, Editorial
Project Development, for the successful and timely completion of this project.

I would like to thank my wife Dr. Suseela Nair, who patiently read the entire manuscript
several times and gave me many valuable suggestions and corrections. I am grateful to my
daughter Meera Nair for all her love. My thanks are also due to my parents, S. Sukumaran
Nair and A. Sarada Devi, and grandfather M.K. Krishna Pillai for all the wonderful things
in my life. Th anks are also due to George and Susan Koshy, who are my best friends. Th ey
have been my cheerleaders and advisors for the past two decades.

I am so grateful to Creighton University, which has supported all my professional eff orts
throughout my career. I would, in particular, like to thank Dr. Robert E. Kennedy, dean
of the College of Arts and Science, one of the most decent, honest, and fair-minded per-
sons this great institution has ever had. It is my privilege and honor to work under his
leadership.

I welcome your comments and suggestions. Please contact me through e-mail at prem@
premnair.net.

Premchand S. Nair

CRC_C6547_FM.indd xxiiiCRC_C6547_FM.indd xxiii 10/16/2008 4:35:44 PM10/16/2008 4:35:44 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

xxv

Author

Dr. Premchand S. Nair is a professor of computer science at Creighton University, Omaha,
Nebraska, where he has been teaching programming for the past 19 years. He has two
PhD degrees: in mathematics and computer science (Concordia University, Montreal,
Canada). Th is is his seventh book and his fi rst undergraduate book as the sole author. He has
published his research work in many areas, including algorithm design, computer vision,
database, graph theory, network security, pattern recognition, social network analysis, and
soft computing.

CRC_C6547_FM.indd xxvCRC_C6547_FM.indd xxv 10/16/2008 4:35:44 PM10/16/2008 4:35:44 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

1

C H A P T E R 1

Object Model of Computation

In this chapter you learn

Object-oriented concepts
Object model of computation and use case analysis

Java concepts
Compiler, interpreter, virtual machine, bytecode, Unicode character set, and fi le
naming conventions

INTRODUCTION
Human history is punctuated by inventions of various useful machines. Machines either
make our day-to-day life more comfortable or enable us to perform some new tasks. Inven-
tion of the air conditioner has greatly improved our comfort level during the hot sum-
mer months, and the invention of the television added a whole new dimension to our
experience.

Along came computer, another human-made machine. Computers revolutionized the
world well beyond human imagination. Computers are becoming smarter and smaller
day-by-day. A computer can be used to perform many diff erent tasks:

 1. To write a poem using your favorite word processor
 2. To send an instant message to your friends
 3. To show your creativity on a web page
 4. To listen to the music

You may be well aware of the fact that each of the above tasks is accomplished with the
help of diff erent soft ware. Soft ware is created using programming languages. Java is one of
the latest programming languages. Since Java is a recently developed language, its design
is guided by wisdom, insights, and experience gained over past half a century of soft ware

•
•

•
•

CRC_C6547_CH001.indd 1CRC_C6547_CH001.indd 1 10/1/2008 4:23:47 PM10/1/2008 4:23:47 PM

Apago PDF Enhancer

2 ■ Java Programming Fundamentals

development. In particular, Java is designed as a programming language that naturally
promotes object- oriented soft ware development. Th is text teaches you Java programming
in an object- oriented way.

Self-Check

 1. Name a popular soft ware for word processing.
 2. Name a programming language other than Java.

OBJECT MODEL OF COMPUTATION
Object-oriented analysis and design is the latest paradigm for soft ware development.
Th erefore, it is imperative that you have a good understanding of some of the fundamental
concepts involved. In this section, we look at the world we live in with a new perspective,
the object-oriented way.

You may be surprised to hear me say that objects are everywhere. In fact, we live in an
object-oriented world! Consider a very simple situation. You are entering your home at
night aft er a long day at the library. Due to the darkness, you may turn on a lamp switch.
In this situation, the lamp in your room is an object. Th e switch on is an operation of the
lamp. Aft er a while, when you are ready to retire for the day, you switch off the lamp. Again,
switch off is another operation of the lamp.

Your lamp is an object. We have identifi ed at least two operations: turn on the switch
and turn off the switch. Th e formal specifi cation or the template of an object is called a class.
Th us, lamp is a class. Your lamp is just an instance of the lamp class.

Example 1.1

Th e DVD player you own is an object or an instance of the DVD player class. Th e
DVD player I own is another instance of the DVD player class. Th e DVD player
owned by Mr. Smith is yet another instance of the DVD player class. Th us, each
individual DVD player is an instance of the DVD player class. Observe that all DVD
players have a set of operations such as play, next, previous, pause, and eject.

Example 1.2

Th e concept of an object is so encompassing even your dog cannot escape from it!
Sorry! Your dog, Mr. Boomer, is an object. Mr. Boomer is an instance of the dog
class. Your apartment is an object and is an instance of the apartment class. Th is
book is an object and it is an instance of the book class. Th e chair you sit on is an
object. Th e notebook you are currently using to take notes is an object. Th us, every-
thing in this world is an object.

Observation 1.1

Objects are everywhere and everything is an object.

All objects of a class have identical behavior. For example, all lamps behave in the same
way. If you turn on the switch, it lights up, and if you turn off the switch, it no longer

CRC_C6547_CH001.indd 2CRC_C6547_CH001.indd 2 10/1/2008 4:23:48 PM10/1/2008 4:23:48 PM

Apago PDF Enhancer

Object Model of Computation ■ 3

 provides any light. In other words, every instance of the lamp class has at least two opera-
tions: switch on and switch off. Th us, every lamp behaves identically and all DVD
players have identical behavior. Th is leads to Observation 1.2.

Observation 1.2

Behavior of all objects of a class is identical.

Note that to use your lamp, you need not know any internal details. No prior knowledge
of electricity, physics, or electrical engineering background is required to use the lamp.
In fact all you need to know is what are the available operations and how will the object
behave under those operations. For example, as long as you understand the behavior of
the lamp object under switch on and switch off operations, you can use your lamp very
effi ciently.

Example 1.3

Consider the following two features of a DVD player.

To use your DVD player,

 • You need not know how it is built, what are its internal components, and what
is the underlying technology.

 • All you need to know is the behavior of the DVD under each of its operations.

Th ese two features are not specifi c to DVD players. Suppose you have a checking
account in Great Friendly Bank. Any time you want to know your current balance,
you can request that service. Your bank will promptly comply with your request. As
far as you are concerned, you need not know how the bank keeps track of data rel-
evant to your account such as account balance, account number, name, address, and
so on. In fact, you do not have to know anything about the internal workings of a
bank to carry out any transaction. However, you need to know the valid operations
that can be performed. In the case of checking account, some of the valid opera-
tions are depositing an amount, withdrawing an amount, and checking the current
balance.

Observation 1.3 (Encapsulation)

An object has data along with a set of valid operations.

Observation 1.4 (Information Hiding)

An object keeps its own data. Th e data maintained by the object is hidden from
the user. To use an object all that the user needs to know is the specifi cation of its
operations.

CRC_C6547_CH001.indd 3CRC_C6547_CH001.indd 3 10/1/2008 4:23:49 PM10/1/2008 4:23:49 PM

Apago PDF Enhancer

4 ■ Java Programming Fundamentals

Example 1.4

Have you ever thought of yourself as an object? You are an object. You are an instance
of the student class. By the same token, I am an object of the professor class.

You being a student, I know, you can perform the following operations:

 • Attend lectures
 • Submit assignments
 • Take examinations
 • Ask probing questions

I can expect you to perform all of the above operations. And I being a professor,
you can expect the following services from me:

 • Deliver lectures during the allocated class time
 • Explain concepts through examples or analogies
 • Create and assign class assignments and examinations
 • Grade your work
 • Answer your questions
 • Assign a letter grade for your work
 • Write recommendation letters

Example 1.5

Mr. Boomer is a member of the Golden Retriever class. One of the operations
of Mr. Boomer is fetch. Mr. Boomer can understand the message fetch. So if you
want Mr. Boomer to fetch an item, you request the fetch service of Mr. Boomer by
 sending the message “fetch” to Mr. Boomer. However, “fl y” is not an operation of
Golden Retriever class. Th erefore, fl y is not an operation of Mr. Boomer. If you send
the message “fl y” to Mr. Boomer, he cannot carry out the service you requested.

In general, objects request the service of other objects through message passing.
Th e receiver of the message can carry out the service so long as there is a corre-
sponding operation in the class it belongs.

Observation 1.5 (Client–Server Paradigm)

Objects communicate through message passing. Th e object that requests a service
from another object is known as the client and the object that provides the service
is called the server.

Th ere are many other important concepts in object-oriented programming. You
will be introduced to those in later chapters.

Self-Check

 3. In the case of a teacher–student relationship, teacher is a and student
is a .

 4. Th e book you are currently reading is an .

CRC_C6547_CH001.indd 4CRC_C6547_CH001.indd 4 10/1/2008 4:23:49 PM10/1/2008 4:23:49 PM

Apago PDF Enhancer

Object Model of Computation ■ 5

DATA REPRESENTATION
Data in a computer is represented through physical quantities. One of the options is to rep-
resent data by means of the electrical potential diff erence across a transistor. Th e presence
of the potential diff erence can be treated as 1 and the absence of the potential diff erence
can be treated as 0. Th e smallest unit of data that can be represented is a binary digit or bit,
which has just two possible values: 0 and 1. Th e term binary means having two values. It
is customary to represent these two values using the symbols 0 and 1. Every data value is
represented as a sequence of these two values.

Table 1.1 summarizes the fi rst 32 binary numbers. First row contains numbers
0 through 7, the second row contains numbers 8 through 15, and so on.

We could perform a similar encoding for characters. Th e American Standard Code for
Information Interchange (ASCII code) is one of the widely used coding schemes for char-
acters. Th e ASCII character set consists of 128 characters numbered 0 through 127. In the
ASCII character set, the fi rst character is at position 0 and is represented using 8 bits (or a
byte) as 00000000. Th e second character is at position 1 and is represented as 00000001.
Th e character A is at position 65 and thus A is represented as 01000001. Th e character B
is at position 66 and thus B is represented as 01000010. Th e character a is at position 97
and the character b is at position 98. Every ASCII character has a character code and this
in turn determines an ordering of characters. For example, character B is smaller than
character C. Similarly, character F is smaller than character f. Th e ordering of characters
in a character set based on their character code is called the collating sequence. A complete
list of ASCII character set can be found in Appendix B.

Unicode is the character set used by Java. Unicode consists of 65,536 characters and
uses 2 bytes to represent a character. Th e fi rst 128 characters of Unicode and ASCII are
 identical. Th us, Unicode is a superset of ASCII. Th is is all you need to know about Unicode
to learn Java programming language. You can get more information on Unicode characters
at www.unicode.org.

Self-Check

 5. Th e binary representation of number 32 is .
 6. Th e character at position 100 in ASCII character set is .

HARDWARE OVERVIEW
Your programs and data reside in secondary storage such as hard disk, compact disk, or
fl ash memory. Th ese are permanent storage devices. Th e data stored in permanent storage
devices will not be lost even if there is no power supply. However, information kept

TABLE 1.1 Binary Representations of Numbers 0 through 31

0 1 10 11 100 101 110 111
1000 1001 1010 1011 1100 1101 1110 1111
10000 10001 10010 10011 10100 10101 10110 10111
11000 11001 11010 11011 11100 11101 11110 11111

CRC_C6547_CH001.indd 5CRC_C6547_CH001.indd 5 10/1/2008 4:23:49 PM10/1/2008 4:23:49 PM

www.unicode.org

Apago PDF Enhancer

6 ■ Java Programming Fundamentals

in memory is lost once the power is turned off . Th e memory is much faster compared
to secondary storage devices. Th erefore, the program as well as the data is fi rst placed
(or loaded) in the memory as a prelude to execution.

Th e central processing unit (CPU) is responsible for carrying out various operations
and it communicates with the memory for instructions and data. Note that all arithmetic
calculations and logical decisions are made by the CPU. In fact, CPU contains a subcom-
ponent called arithmetic and logical unit (ALU) to carry out all arithmetic and logical
operations. To perform an ALU operation, the operands have to be present in the memory.
To carry out an ALU operation, CPU fetches operands from the memory. Once the opera-
tion is performed, the result is stored in the memory.

Th e memory is connected to the CPU through a bus. Th e memory can be visualized as
an ordered sequence of cells, called memory words. Each word has a unique number called
the memory address. Th e CPU uses these addresses to fetch and store data. At this point all
you need to know about memory is that each word can keep only one data at any time. As
soon as CPU stores a new data at a memory word, the old data is lost forever.

Introspection

Each memory cell is like a pigeonhole. At any time only one pigeon can occupy a
pigeonhole.

Self-Check

 7. Th e CPU uses memory address to and data from the
memory.

 8. All arithmetic operations are carried out in the of the computer.

BRIEF HISTORY OF PROGRAMMING LANGUAGES
AND MODELS OF COMPUTATION
Every computer has a machine language. If you want to program in machine language, you
need to write every instruction as a sequence of 0s and 1s. In fact early programmers used
machine language to program their computers. Th us, their model of computation directly
refl ected the machine’s organization itself. However, this approach had many drawbacks.
First, the process of writing those programs was diffi cult. Further, once a program is
 written, it was quite diffi cult and time-consuming to understand or modify the program.
Even though every computer has instructions to perform operations such as addition,
 multiplication, and so on, the system architects of the computer may choose binary codes
of their choice to perform those operations. Th us, machine languages of any two machines
are not identical. Programs written for one machine will not run on another machine. In
other words, you need to rewrite your program for each and every machine.

By mid-1950s symbolic languages came to the rescue of the machine language pro-
grammer. Symbolic languages were developed to make the programmer’s job easier.
Th e model of computation no longer mirrors the machine. Rather, a program is conceived
as a sequence of simple operations such as addition, multiplication, subtraction, division,

CRC_C6547_CH001.indd 6CRC_C6547_CH001.indd 6 10/1/2008 4:23:49 PM10/1/2008 4:23:49 PM

Apago PDF Enhancer

Object Model of Computation ■ 7

comparison, and so on. It is much easier to write instructions in symbolic language.
Above all, it is much easier to maintain a symbolic language program than a machine lan-
guage program. However, a computer can understand its machine language only. Th erefore,
a computer cannot execute symbolic language programs directly. Th e symbolic language
instructions need to be translated into the machine language. A program called assembler
is written to translate a symbolic language program into a machine language program. Th e
symbolic language of a machine is also known as its assembly language.

Assembler. Th e soft ware that translates an assembly language program into equiva-
lent machine language program.

Assembly language. Th e symbolic language of a machine.

Th e advent of assembly language is a major leap in the history of programming
 languages. However, the programmer was forced to know the inner details and working
of the machine, and also to assign memory locations for the data and manipulate them
directly. Th en came the high-level languages such as Basic, FORTRAN, Pascal, C, and C++.
Th e model of computation became that of a series of tasks that had to be carried out one
aft er another. With the arrival of high-level languages came the need for another transla-
tor program that can convert a high-level language program such as one written in C++
to corresponding symbolic language program, and then ultimately translate it into the
machine language program. Such a program is known as a compiler. Th us, each high-level
language required a compiler. However, for the compiler to do translation, your source
code must obey all the grammatical rules of the high-level language. Compiler is a very
strict grammarian and does not allow even a very simple mistake in your program, which
can be as simple as a colon or a period in place of a semicolon. All such grammatical errors
are known as syntax errors. Th us, a compiler checks for correctness of syntax, gives helpful
hints on syntax errors, and translates a syntax error–free high-level language program into
the equivalent machine language program.

Compiler. Th e soft ware that translates a high-level language program into an equiva-
lent machine language program.

An alternate approach was to translate each line of a high-level language program into a
machine language and execute it immediately. In this case, the translator program is called
an interpreter. Th us, the main diff erence between a compiler and an interpreter is that
in the case of a compiler, a high-level program is translated into an equivalent machine
language program only once. Th e machine language program is stored in a fi le and conse-
quently can be executed any number of times without compiling. However, an interpreter
does not keep a machine language equivalent of a source program in a fi le and as such
interpretation takes place each time you execute the program. Th e programming language
LISP used an interpreter.

A program written in a high-level language is known as a source program or source
code. Th e fi le containing a source program is called a source fi le. A source fi le is a plain
text fi le and can be created using any text editor that can create a plain text fi le. With
the introduction of compilers and interpreters, a source program no longer needs to be

CRC_C6547_CH001.indd 7CRC_C6547_CH001.indd 7 10/1/2008 4:23:49 PM10/1/2008 4:23:49 PM

Apago PDF Enhancer

8 ■ Java Programming Fundamentals

 written for a specifi c machine. For example, once you write a certain program in C++, all
that is required to execute it in diff erent machines is to compile the source program on the
machine of your choice. Th is seemed like a perfect solution.

Once Internet became popular, it was necessary to execute the same program on diff er-
ent machines without compiling on each one of those machines. Th is need resulted in the
introduction of the concept of a virtual machine. Designers of Java introduced a common
symbolic language called bytecode. Th e virtual machine that can understand the byte-
code is termed as Java virtual machine (JVM). Th us, it became possible to compile a Java
source program into bytecode and execute it on any machine that has JVM without com-
piling again. JVM performs the enormous task of interpreting the bytecode into equivalent
machine language instruction. Th us, Java language introduced the concept of platform
independence to the world of computing.

Self-Check

 9. Th e Java program you write is an example of code.
 10. A Java compiler translates a source program into its equivalent .

CREATING AND EXECUTING JAVA PROGRAM
Th ere are two types of Java programs: applications and applets. In this book you will be intro-
duced to application programs fi rst. We shall introduce applets in Chapter 8. In this section,
we outline the steps involved in creating and executing a Java application or an applet.

Step 1. Create Java Source File

Every Java program, whether it is an application or an applet, is a Java class that needs to
be created. You will see your fi rst Java class in Chapter 2. You can use any text editor to
type in a Java program. However, do not use any word processor. Once you have typed in
your program, you must save your fi le as a .java fi le. Th at is, the extension of the fi le must
be .java. Further, the name of the fi le should be the same as the name of the class you
have created. For example, a fi le containing a Java class named HiThere must be saved as
HiThere.java.

Common Programming Error 1.1

Giving a fi le name diff erent from the class name is a common error.

Common Programming Error 1.2

Saving a fi le with extension other than .java is a common error.

Step 2. Compile Source Code into Bytecode

In this step you translate your source code program into equivalent bytecode. Th e Java com-
piler supplied by the Sun Microsystems is known as javac (see Step 3 for more details).
You may have to go back to Step 1 and correct errors before you can successfully complete
this step. It is quite common to have syntax errors in your program. All you need is some
patience. If no error is found, the compiler will produce the equivalent bytecode program

CRC_C6547_CH001.indd 8CRC_C6547_CH001.indd 8 10/1/2008 4:23:49 PM10/1/2008 4:23:49 PM

Apago PDF Enhancer

Object Model of Computation ■ 9

and save it in a fi le with the same name but with an extension .class. For instance, the
compiler will create the bytecode for HiThere.java in a new fi le HiThere.class.

Step 3. Execute Java Program

To execute a Java application, fi rst, the corresponding .class fi le needs to be placed
in main memory. However, to execute a Java applet one must use a web browser or an
appletviewer. An appletviewer is a simpler version of a web browser capable of
executing applets. More details on executing an applet are presented in Chapter 8.

Th e soft ware supplied by Sun Microsystems to execute the Java application is known
as java. In fact, the soft ware you used in Step 2 to compile your Java language program
also contains many programs that are useful in creating a Java program. Th erefore, the
soft ware is quite oft en known as a soft ware development kit (SDK). In the case of Java, Sun
Microsystems calls it Java development kit (JDK). Th e Sun Microsystems provides three
versions of JDK: enterprise edition, standard edition, and microedition. Th e one you need
is the standard edition. Th e latest version, JDK 6u10 (Java development kit 6 update 10),
can be obtained free at java.sun.com/javase/downloads/index.jsp. Keep in mind that web-
site addresses change quite frequently. If the above address does not work, you can search
for the correct page starting with Java home page java.sun.com. Some of the freely avail-
able integrated development environments (IDEs) for Java are Eclipse (www.eclipse.org),
NetBeans (www.netbeans.org), and Jdeveloper (www.oracle.com/technology/products/
jdev/index.html). IDEs provide an environment for editing, compiling, debugging, execut-
ing, documenting, and so on through a user-friendly graphical interface.

Many Java programs may need various mathematical functions. Similarly, almost all
Java programs you write need to communicate to the user by receiving input and produc-
ing output. Th us, to reduce the burden of a typical programmer, Java provides many pre-
compiled programs organized as various libraries also known as packages. Your program
may be using many of those programs from various packages. A system soft ware called
linker links or connects the bytecode program you created in Step 2 with necessary pre-
compiled programs from the packages.

Linker. A system soft ware that links a user’s bytecode program with necessary other
precompiled programs to create a complete executable bytecode program.

Once a complete executable bytecode program is created, a system soft ware called
loader loads the bytecode program into memory and starts the execution of the fi rst byte-
code instruction.

Loader. A system soft ware that loads a linked bytecode program into main memory
and starts the execution of the fi rst bytecode instruction.

Once the program is executed, you can observe the result produced. If the behavior of
the program is diff erent from what you expected, there are logical errors. For example, if
you add 2 and 3 you expect 5 as answer. Anything other than 5 is an error. Th is type of
error is due to some logical error on the part of the programmer. Programmers call it a
bug in the program and the process of fi nding and eliminating bugs from the program is

CRC_C6547_CH001.indd 9CRC_C6547_CH001.indd 9 10/1/2008 4:23:50 PM10/1/2008 4:23:50 PM

www.eclipse.org
www.netbeans.org
www.oracle.com/technology/products/jdev/index.html
www.oracle.com/technology/products/jdev/index.html

Apago PDF Enhancer

10 ■ Java Programming Fundamentals

known as debugging. If the program has a logical error, you need to go back to Step 1 and
make corrections to your program using the editor.

As a programmer, the process of linking and loading is more or less hidden from you.
Th erefore, the above discussion can be summarized as follows.

Th ere are three steps in creating a Java application:

Step 1. Create a Java fi le with .java extension using a text editor.
Step 2. Compile Java program created in Step 1 using the Java compiler javac to create

the corresponding .class fi le. If there are any syntax errors, .class fi le would
not be created and you need to go back to Step 1 and make corrections. Th us, steps
1 and 2 need to be repeated until there is no syntax error.

Step 3. Execute the class fi le created in Step 2 using java. If there are any logical errors,
you need to go back to Step 1 and correct your program. Steps 1 through 3 need to be
repeated until there are no logical errors.

Figure 1.1 illustrates the editing, compiling, and executing of a Java application program.

Self-Check

 11. To create a Java class FirstTrial, the fi le must be named .
 12. Th e error detected during compilation is known as error.

INTRODUCTION TO SOFTWARE ENGINEERING
Soft ware development is an engineering activity and as such has lot in common to build-
ing a house. Suppose you want to construct a house. You approach the local building con-
struction fi rm with your ideas and dreams. You may start out exploring the requirements
and the feasibility of the project. How much money you have and what type of house you
would like to build are to be discussed with an architect of the fi rm. Let us call this the
analysis phase. Your architect will prepare a blueprint of the house. Note that it is quite
easy to make any changes on the blueprint without tearing down any wall. Once you and
the architect fi nalize the blueprint, as a customer, you have very little to do with the actual
building of the house.

Th e construction company makes a detailed design of your house for framers, plumb-
ers, electricians, and so on. We call this the design phase. Next, the implementation phase
results in the construction of the house. During the construction many tests are done to
verify the correct functioning of various systems. Once the house is handed over to you, it
enters the maintenance phase.

Th e soft ware development process mirrors the above fi ve phases:

 1. Analysis
 2. Design
 3. Implementation
 4. Testing
 5. Maintenance

CRC_C6547_CH001.indd 10CRC_C6547_CH001.indd 10 10/1/2008 4:23:50 PM10/1/2008 4:23:50 PM

Apago PDF Enhancer

Object Model of Computation ■ 11

Phases 2 through 4 involve understanding of many concepts and as such cannot be fully
explained at this point. However, phase 1 can be introduced with remarkable clarity even
at this point. Further, the main focus of this book is on phases 2 through 4. Th erefore, it
makes perfect sense to discuss phase 1 now and focus on phases 2 through 4 in the rest of

Text editor

/**
A Greeting Program

*/
public class HiThere
{

public static void main(String[] args)
{

System.out.println("Hello! How are you?");
}

}

User creates a.java file (the
source program) using a text editor.

User compiles .java file using
the java compiler. The .class

bytecode file created

javac

0110000101001100101001010001010101010101000010001110
1100100100011010101010101011110010010010100010100001
0110000101001100101010101111010010010001101010101011
0101001010001010101010101000010001110111110001111111
0000110001110010010010100000111101010101000101010001
0010001000111100010100101000100101000101001010100010
0000100100010001001111110010011110001001001111100011
1110111001111111111000101010101010010001001001001000

User executes .class file.
The JVM interprets the

bytecode into the machine
language java

Executable program for the current platform is created
and executed.

Correct all syntax errors

no

Syntax
error ?

yes

Logical
error ?

Correct all logical errors

yes

no

Done!

FIGURE 1.1 Editing, compiling, and executing HiThere.java.

CRC_C6547_CH001.indd 11CRC_C6547_CH001.indd 11 10/1/2008 4:23:50 PM10/1/2008 4:23:50 PM

Apago PDF Enhancer

12 ■ Java Programming Fundamentals

this book. Th erefore, we shall concentrate on the analysis phase in the rest of this chapter.
Phases 2 through 4 will be explained in Chapter 3.

Analysis and Use Case Diagram

A use case diagram specifi es the functional requirements of the system to be developed.
Th us, a use case diagram clearly identifi es the boundary of the system to be developed.
Graphically, we show the boundary by drawing a rectangle. Everything inside the rect-
angle is a functional requirement and as such needs to be developed. However, anything
shown outside the rectangle is not part of the system. As the name suggests, use case dia-
grams contain use cases. Each use case, denoted by an oval symbol, stands for a functional
requirement of the system to be developed. Users of the system as well as other external
systems with which the system needs to interact are called actors. Actors are shown using
stick fi gures. Note that each actor stands for a group of users or external systems with iden-
tical behavior. An actor and a use case are connected by arrows starting from the initiator
of the action.

We will now illustrate these concepts through a series of simple examples.

Example 1.6
Problem statement. Write a program to create a digital dice.

We are all familiar with a dice. A dice is a cube with numbers 1–6 on its six faces.
You may roll the dice at any time. Each time you roll the dice, it is supposed to show
one of the six faces.

Observe that all users belong to one category, say user. Th us, our soft ware has
only one actor. Th e user can always roll the dice. Th us, the dice has a use case roll.
In fact roll the dice is the only functionality of a dice. Th e digital dice has exactly
one use case and one actor. In other words, digital dice is a class with one service:
roll (see Figure 1.2).

Digital dice

Roll
User

FIGURE 1.2 Use case diagram for a digital dice.

CRC_C6547_CH001.indd 12CRC_C6547_CH001.indd 12 10/1/2008 4:23:50 PM10/1/2008 4:23:50 PM

Apago PDF Enhancer

Object Model of Computation ■ 13

Example 1.7

Problem statement. Write a program to create a digital clock.
Every clock must have, at a minimum, the ability to set current time and display

current time. Once again, all users of the clock fall under one category. Th us, we
have the use case diagram shown in Figure 1.3. Observe that both arrows start from
the actor to indicate the fact that it is the actor who initiates the function.

Example 1.8

Problem statement. Write a program to simulate an ATM machine.
An ATM machine should be capable of the following services:

 • Deposit cash or check by a customer
 • Withdraw cash by a customer
 • Check balance by a customer
 • Print receipt by a customer
 • Display messages by the ATM
 • Dispense cash by the ATM
 • Maintenance by a service employee

Each of these services can be modeled as a use case. Having decided on the use
cases, let us examine the possible actors. Clearly, customer is an actor. Unlike the
dice or clock illustrated in the previous examples, an ATM machine cannot func-
tion by itself. It is part of a network and it must communicate to the network for
verifying customer information as well as for updating the customer account bal-
ance whenever a deposit or withdrawal takes place. A bank’s authorized employee
is required to carry out various maintenance operations of the ATM. Th e use case
diagram is shown in Figure 1.4.

Digital clock

Display time
User

Set time

FIGURE 1.3 Use case diagram for a digital clock.

CRC_C6547_CH001.indd 13CRC_C6547_CH001.indd 13 10/1/2008 4:23:50 PM10/1/2008 4:23:50 PM

Apago PDF Enhancer

14 ■ Java Programming Fundamentals

Self-Check

 13. If the proposed soft ware uses an external database, in the use case diagram the
database is represented as a/an .

 14. Consider the digital clock in Example 1.7. How will you accommodate the addi-
tional functional requirement that the user must be capable of setting the alarm?

REVIEW
 1. Soft ware is created using programming languages. Java is one of the latest program-

ming languages.
 2. Th e formal specifi cation or the template of an object is called a class.
 3. All objects of a class have identical behavior.

ATM

Withdraw cash

Customer

Deposit amount

Check balance

Print receipt

Display message

Dispense cash

Network

Maintenance

Employee

FIGURE 1.4 Use case diagram for an ATM.

CRC_C6547_CH001.indd 14CRC_C6547_CH001.indd 14 10/1/2008 4:23:51 PM10/1/2008 4:23:51 PM

Apago PDF Enhancer

Object Model of Computation ■ 15

 4. An object has data along with a set of valid operations.
 5. Th e data maintained by the object is hidden from the user.
 6. To use an object all that the user needs to know is the specifi cation of its operations.
 7. Objects communicate through message passing.
 8. Th e object that requests a service from another object is known as the client and the

object that provides the service is called the server.
 9. Th e smallest unit of data that can be represented is a binary digit or bit, which has just

two possible values: 0 and 1. A sequence of 8 bits is known as a byte.
 10. Unicode is the character set used by Java. Unicode consists of 65,536 characters and

uses 2 bytes to represent a character.
 11. Th e program as well as the data is fi rst placed (or loaded) in the memory as a prelude

to execution.
 12. Th e central processing unit (CPU) is responsible for carrying out various operations

and it communicates with memory for instructions and data.
 13. Th e memory can be visualized as an ordered sequence of cells, called words.
 14. Every computer has a machine language.
 15. Th e symbolic language of a machine is also known as its assembly language.
 16. An assembler translates a symbolic language program into a machine language

program.
 17. A compiler translates a high-level language program into a machine language

program.
 18. Th e virtual machine that can understand the bytecode is termed as Java virtual

machine (JVM).
 19. Java provides many precompiled programs organized as various libraries also known

as packages.
 20. Th e system soft ware linker links a user’s bytecode program with other necessary pre-

compiled programs to create a complete executable bytecode program.
 21. Th e system soft ware loader loads a linked bytecode program into main memory and

starts the execution.
 22. A use case diagram specifi es the functional requirements of the system to be developed.

Th us, a use case diagram clearly identifi es the boundary of the system to be developed.
 23. Graphically, we show the boundary by drawing a rectangle.
 24. Each use case, denoted by an oval symbol, stands for a functional requirement of the

system to be developed.
 25. Users of the system as well as other external systems with which the system needs to

interact are called actors. Actors are shown using stick fi gures.
 26. An actor and a use case are connected by arrows starting from the initiator of the

action.

CRC_C6547_CH001.indd 15CRC_C6547_CH001.indd 15 10/1/2008 4:23:51 PM10/1/2008 4:23:51 PM

Apago PDF Enhancer

16 ■ Java Programming Fundamentals

EXERCISES
 1. Indicate true or false.
 a. Corresponding to a class there can be only one instance.
 b. An object can have any number of operations.
 c. When you request your friend, “could you please pass the book,” you are passing

a message.
 d. Assembly language is the language of 0s and 1s.
 e. Th e grammatical error in a program is known as syntax error.
 f. ALU is part of memory.
 g. Th e value of 17 in binary number system is 100001.
 h. In ASCII system, character A is 65.
 i. ASCII stands for American Standard Character Interchange for Information.
 j. Every high-level language needs a compiler.
 k. Each memory word has a unique memory address.
 l. It is possible to have a use case diagram with 0 use cases.
 2. For each of the following objects, list at least two operations:
 a. Microwave oven
 b. Oven
 c. Th ermostat
 d. Savings account
 e. Telephone
 3. Explain the following terms:
 a. Class
 b. Instance
 c. Encapsulation
 d. Information hiding
 e. Client
 f. Server
 g. Interpreter
 h. Compiler
 i. Linker
 j. Loader
 4. Fill in the blanks.

 a. Th e binary representation of number 41 is .
 b. Th e binary representation of number 45 is .

CRC_C6547_CH001.indd 16CRC_C6547_CH001.indd 16 10/1/2008 4:23:51 PM10/1/2008 4:23:51 PM

Apago PDF Enhancer

Object Model of Computation ■ 17

 c. Th e decimal value of the binary number 100100 is .
 d. Th e decimal value of the binary number 100111 is .
 e. Th e collating sequence value of character D in ASCII set is .
 f. Th e collating sequence value of character e in ASCII set is .
 g. Th e largest integer you can represent using 6 bits is .
 h. Th e largest integer you can represent using 8 bits is .
 i. You save a fi le containing Java class HelloThere as .

 j. When you compile a fi le containing Java class HelloThere, a new fi le
is created if there are no syntax errors.

 k. Having a comma in place of a semicolon is an example of a .
 l. is the name of a CPU in the market.
 5. Why do you need memory? Why cannot CPU use secondary storage instead of

memory?
 6. Name two system soft ware you may use in connection with your program execution.
 7. How did designers of Java achieve platform independence?
 8. What are the advantages of using a high-level programming language over assembly

language?
 9. List one functional requirement and one nonfunctional requirement for each of the

objects listed in Exercise 2.
 10. Draw a use case diagram for a proposed soft ware development project for course

enrollment. Students, faculties, and administrators need to access the system. Stu-
dents can enroll or drop a course, and can also view their grades. Faculties can view
their course assignments as well as assign grades to students in their course. Admin-
istrator can add a new course or remove a new course. All the relevant information is
kept in a database external to the system.

 11. Draw a use case diagram for a proposed soft ware development project for online
shopping. Th ere are two types of users of the system: customers and administrator.
A customer can order an item or search for an item. Th ey can also rate an item and
post comments. Th e administrator is responsible for maintaining the system. All the
relevant information is kept in a database external to the system.

 12. Draw a use case diagram for a proposed soft ware development project for library
checkout system. Th ere are two types of users for the system: patrons and staff . All
the relevant information is kept in a database external to the system.

ANSWERS TO SELF-CHECK
 1. Microsoft (MS) Word
 2. C++
 3. server, client

CRC_C6547_CH001.indd 17CRC_C6547_CH001.indd 17 10/1/2008 4:23:51 PM10/1/2008 4:23:51 PM

Apago PDF Enhancer

18 ■ Java Programming Fundamentals

 4. object
 5. 100000
 6. d
 7. store, fetch
 8. ALU
 9. source
 10. bytecode

 11. FirstTrial.java
 12. syntax
 13. actor
 14. Include a use case “set alarm” and draw an arrow from the user to it.

CRC_C6547_CH001.indd 18CRC_C6547_CH001.indd 18 10/1/2008 4:23:51 PM10/1/2008 4:23:51 PM

Apago PDF Enhancer

19

C H A P T E R 2

Class and Java Fundamentals

In this chapter you learn

Object-oriented concepts
Class, object, instance, attribute, operation, method

Java concepts
Named constants, variables, primitive data types, and operators, String class,
 reference variables, literals, assignment statements, String operators, operator
 precedence, evaluation of mixed expressions, input/output statements

Programming skills
Create, compile, execute, and test an application program

Today you went to your bank and deposited $1000.00 to your savings account. Your
 savings account is an object that keeps track of many closely related data items such as
your account number, name, address, phone number, e-mail address, current balance,
and so on. If I have a savings account in your bank, my savings account is another object
that will keep track of many closely related data items such as my account number, name,
address, phone number, e-mail address, current balance, and so on. In fact, anyone who
has a savings account with your bank will have a similar savings account object. Recall
that the formal specifi cation or the template of an object is called a class. Th us savings
account is a class. Your savings account is just an instance of the savings account class.
Instances are called objects and two objects are identical except for the values.

Th e behavior of all objects of a class is identical. Depositing $1000.00 will result in
 adding $1000.00 to the current balance. Withdrawing $200.00 in turn results in subtracting
$200.00 from the current balance. Th us, a class is a collection of objects having identical
behavior.

Th e object-oriented analysis and design is the latest methodology for soft ware
 development. To understand what is meant by object-oriented, you need to understand many
concepts. In this chapter you have been introduced to the following four concepts: class,

•
•

•
•

•
•

CRC_C6547_CH002.indd 19CRC_C6547_CH002.indd 19 10/1/2008 4:30:51 PM10/1/2008 4:30:51 PM

Apago PDF Enhancer

20 ■ Java Programming Fundamentals

object, instance, and behavior. Examples 2.1 through 2.3 will further illustrate concepts
introduced so far and introduce two new concepts: operation and attribute.

Example 2.1

All DVD players have certain identical behaviors. Th ey all have a play button, a
pause button, and a stop button. In fact, you expect every DVD player to have at
least these three buttons. Th us, DVD players form a class. Play, pause, and stop are
operations of the class DVD player. Th e DVD player you have is an object of the
DVD player class. If Mr. Jones has a DVD player, then that specifi c DVD player is
another object or instance of the DVD player class.

Example 2.2

What are the common behaviors of clocks? You expect every clock to “display the
current time.” Th ere has to be an operation to “set the current time.” Th us, clock is a
class with at least two operations: display the current time and set the current time.
Th e Big Ben tower in London, the watch you wear every day, the clock that is part of
your DVD player or your car, and the system clock of your computer are all various
instances or objects of the clock class.

Example 2.3

Every clock needs to keep the current time. Th e current time is in turn made up
of hours, minutes, and seconds. Th us, a clock needs three attributes: hours, min-
utes, and seconds. In a mechanical clock such as Big Ben, these data values are kept
through mechanical components. However, in a digital clock similar to the one in
your car, these values are kept in three memory locations.

Self-Check

 1. Consider the class student. Suggest three attributes and at least one operation
for this class.

 2. Consider the class rectangle. Suggest at least two attributes and two operations
for this class.

 3. Consider the class circle. Suggest attribute(s) and operation(s) for this class.
 4. Consider the class rocket. Suggest at least two attribute(s) and two operation(s)

for this class.

JAVA APPLICATION PROGRAM
Every programming language before Java was designed to create stand-alone programs.
Java, however, has two categories of programs. Apart from the traditional stand-alone pro-
grams, Java introduced applets. Applets are small applications intended to run on a web
browser. In this book, application programs are introduced fi rst. All the Java language
fundamentals, good programming skills, and soft ware engineering principles are taught
through application programs. Java applets are discussed in Chapter 8.

CRC_C6547_CH002.indd 20CRC_C6547_CH002.indd 20 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 21

A Java program is a collection of one or more classes. So a very simple application
 program must have at least one class. Th e basic syntax of class can be shown using a syntax
template as follows:

[accessModifiers] class className [classModifiers]
{
 [members]
}

An item inside a pair of square brackets in a syntax template is optional. In the syntax tem-
plate, className is a name you would like to give to the class. Th e optional members
consist of attributes and operations of the class. Th e optional accessModifiers deter-
mines, among other things, the accessibility of the class to other classes and Java virtual
machine (JVM). For example, the access modifi er public makes a class accessible to JVM.
Because JVM needs access to your program, every application must have one class with
public or package access. We will have more to say about this topic later. Both public
and class are reserved words or keywords. A reserved word is a word with special mean-
ing. For example, the reserved word class indicates the beginning of a class defi nition.

In a syntax template, all reserved words are shown in bold. Th e optional classModi-
fiers are not used in the fi rst six chapters of this book and it will be explained in
Chapter 7. Following the reserved word class, you must supply a name for the class. Note
that the name identifi es a class. Similarly, you need to provide a name to attributes and
operations of a class. All such names are collectively known as identifi ers.

Self-Check

 5. In a syntax template, how is an optional item shown?
 6. In a syntax template is shown in bold.

Identifi er

A Java identifi er can be of any length. However, it must obey the following three rules:

 1. Every character in an identifi er is a letter (A to Z, a to z), or a digit (0 to 9), or the
underscore character (_), or the dollar sign ($).

 2. Th e fi rst character of an identifi er must be a letter or the underscore character or the
dollar sign.

 3. An identifi er cannot be a reserved word.

Common Programming Error 2.1

Using a space or blank character as part of an identifi er is an error.

Common Programming Error 2.2

Using a hyphen as part of an identifi er is an error.

CRC_C6547_CH002.indd 21CRC_C6547_CH002.indd 21 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

22 ■ Java Programming Fundamentals

Note 2.1 Java is a case-sensitive language. In other words, uppercase letter A
is not the same as lowercase letter a. Th us, Welcome, welcome, WelCome, and
WELCOME are four diff erent identifi ers.

Good Programming Practice 2.1

Create meaningful identifi ers. An identifi er must be self-explanatory.

Good Programming Practice 2.2

Java system has many predefi ned identifi ers. Most frequently encountered identi-
fi ers are System, print, println, main, and next. Even though predefi ned
identifi ers can be redefi ned, it is wise to refrain from it.

Example 2.4

Th e following identifi ers are legal:

Carrot

Tiger

bonusSalary

number_of_lines_per_page

_0 //legal but bad choice

$1 //legal but bad choice

Even though identifi ers _0 and $1 are legal, they do not convey the purpose or the
meaning of the identifi er and as such should be avoided.

Example 2.5

Table 2.1 provides a list of fi ve illegal identifi ers.
It is a well-accepted convention to keep an identifi er used to name a class

in all letters and the fi rst letter of each word in uppercase. Th us HiThere,
 FirstJavaProgram, and DigitalClock obey the convention followed by
class names.

TABLE 2.1 Illegal Identifi ers

Identifi er Explanation

Yearly bonus Th e space character cannot appear in an identifi er
British#Sterling Th e pound sign cannot appear in an identifi er
Jim&Mary Th e symbol & cannot be used in an identifi er
9thValue A digit cannot be the fi rst character of an identifi er
public Reserved word cannot be used as an identifi er

CRC_C6547_CH002.indd 22CRC_C6547_CH002.indd 22 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 23

Note that a class need not have any members. Th erefore, you can create a class
named HiThere as follows:

public class HiThere

{

}

Note 2.2 You must always keep the opening and closing pair of braces ({ and })
in the class defi nition.
Note 2.3 As a matter of style, we always align a pair of braces vertically and any
Java statements appearing inside a pair of braces will be indented.

Once you have created this class, you must save it in a fi le HiThere.java. If
you compile this class, Java will create a new fi le HiThere.class without any
error messages. However, if you try to execute HiThere.class, Java will give you
an error message similar to the following one:

Exception in thread "main" java.lang.NoSuchMethodError: main

In other words, to execute an application, there needs to be a method named main.
Th e term method stands for Java code that implements an operation of the class.

Th e basic syntax of the method main is

public static void main(String[] args)

{

 [statements]

}

You need not be concerned about the details of the syntax at this point. Instead, note
that statements are optional. Th e simplest method main one could write is

public static void main(String[] args)

{

}

We have the following simple application program:

public class HiThere

{

 public static void main(String[] args)

 {

 }

}

CRC_C6547_CH002.indd 23CRC_C6547_CH002.indd 23 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

24 ■ Java Programming Fundamentals

You may compile and execute this program without any error. However, this program
produces no output at all. All application programs in this chapter will be created out of
the above template.

So far you have encountered identifi ers, reserved words, methods, classes, and a pair of
opening and closing braces. You have also mastered the rules for forming identifi ers. Let
us now have a closer look at reserved words.

Self-Check

 7. List four distinct identifi ers that spell the word “fi ne.”
 8. Why using the identifi er abc123 a bad choice?

Reserved Word

You have already seen the reserved words public, static, void, and class. In Java,
all reserved words are made up of lowercase letters. Each reserved word is treated as a
single symbol and must be typed exactly as shown. For example, there are two reserved
words throw and throws. Both have diff erent intended usage and the reserved word
throw is not the plural of the reserved word throws. A complete list of reserved words
can be found in Appendix C. Recall, from the rules of identifi ers, that you cannot
create an identifi er that matches a reserved word. Reserved words are also known as
keywords.

Note 2.4 In this book, all reserved words appearing in the code are highlighted in bold.
Many Java program editor soft ware display the keywords in a diff erent color. Th is feature
is known as syntax coloring.

Self-Check

 9. Is Class a reserved word in Java?
 10. True or false: In Java, all reserved words are made up of lowercase letters.

Comment Lines

One of the most important qualities of a good program is its readability. Program-
mers are notorious for creating programs that are very diffi cult to understand not only
by others, but also by themselves aft er a short period of time. Since soft ware main-
tenance is quite costly, importance of documentation in soft ware creation cannot be
overemphasized.

As a programmer, you can place comment lines in your programs to fully explain
the purpose as well as the logic of each of the important steps. Java provides two types
of comment lines: single line format and multiple lines format. A Single line comment
starts with // and can begin at any place in a line. Th e compiler ignores everything
that appears aft er two consecutive / characters. A Multiple line comment starts with
/* and ends with */. Everything that appears between /* and */ is ignored by the
compiler.

CRC_C6547_CH002.indd 24CRC_C6547_CH002.indd 24 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 25

Example 2.6

In this example, we illustrate both single line and multiple line comments:

// This is a single line comment

and is equivalent to the following:

/* This is a single line comment */

Similarly, six lines of comment

// This is a comment. Next five lines are also comments

// Line 1

// Line 2

// Line 3

// Line 4

// Line 5

is equivalent to the following:

 /* This is a comment. Next five lines are also comments

 Line 1

 Line 2

 Line 3

 Line 4

 Line 5

 */

Note 2.5 Every Java program is a collection of one or more classes and every
class has one or more methods. Since you have not seen many classes or methods,
the material covered in this note may not be completely clear. From a pedagogi-
cal perspective, it is better to develop the habit of including comments in every
program. In Java, there is a standard for documenting classes and methods. If you
follow these guidelines, you can use a Java utility called javadoc to generate docu-
mentation in HTML format from the comments in the source code. Th e documen-
tation comment is placed before the class or method defi nition and it starts with
/** and ends with */. Th e javadoc utility copies the fi rst line of each comment into
a table. Th erefore, compose your fi rst lines in each comment with some care. Here
is a sample comment you may place before a class:

/**

 A student class tracks gpa, major and advisor

*/

Th e additional conventions you need to follow in the case of methods will be dis-
cussed in Chapter 3. Comments in this book will follow conventions consistent
with javadoc.

CRC_C6547_CH002.indd 25CRC_C6547_CH002.indd 25 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

26 ■ Java Programming Fundamentals

Self-Check

 11. True or false: In Java, every comment starts with /*.
 12. True or false: Including comments in a program is optional.

JAVA GREETINGS PROGRAM
In this section, you will learn how to display a welcome message on the monitor. Suppose
you want to display a message such as

Hello! How are you?

All we need to do is add the following statement inside the method main:

System.out.println(("Hello! How are you?");

Th us, we have the following Java application program:

/**

 A Greeting Program

*/

public class HiThere

{

 public static void main(String[] args)

 {

 System.out.println("Hello! How are you?");

 }

}

Since the program has changed, you must fi rst save and compile the fi le HiThere.java.
If you execute this program, it will display the following line on the monitor:

Hello! How are you?

Note that double quote characters appearing before the character H and aft er the char-
acter ? are not displayed on the monitor. In Java, a sequence of zero or more characters
enclosed within a pair of double quotes is a String literal or String for short;
and the println operation will display it on the monitor. A String containing zero
characters is called an empty. Th us, "" is an empty String. Th e empty String is dif-
ferent from a null String. Th e null is a keyword in Java and it signifi es the absence
of the object. Th us in the case of a String, the null signifi es the absence of a String
object.

CRC_C6547_CH002.indd 26CRC_C6547_CH002.indd 26 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 27

Example 2.7
String Literal

String Explanation

null Absence of a String object
"" Empty String or a String of length 0
" " A String containing a single space character
"P" A String containing single character P
"Peter" A String containing 5 characters
"Peter, Paul and Mary" A String containing 20 characters

Example 2.8
Consider the Java statement:

System.out.println("Hello! How are you?");

Th e above statement can be replaced by the following two statements:

System.out.print("Hello! ");

System.out.println("How are you?");

Further, the following fi ve statements will also produce the same output:

System.out.print("Hello! ");

System.out.print("How ");

System.out.print("are");

System.out.print(" you?");

System.out.println();

Observe that the statement

System.out.println(); // statement 1

is used to position the cursor at the beginning of the next line.

Common Programming Error 2.3

Omitting the pair of parentheses in statement 1 above is a syntax error.

You can include extra characters known as escape sequences in a String to control the
output and to print special characters. An escape sequence in Java consists of two charac-
ters and starts with the backslash character. For example, the escape sequence \n can be
included in the String to move the cursor to the beginning of the next line.

Self-Check

 13. True or false: A String in Java is enclosed within a pair of single quotes.
 14. Write the Java statement that outputs the message All is well in the

eastern border!

Advanced Topic 2.1: Frequently Used Escape Sequences

Table 2.2 summarizes some of the most frequently used escape sequences.

CRC_C6547_CH002.indd 27CRC_C6547_CH002.indd 27 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

28 ■ Java Programming Fundamentals

TABLE 2.2 Frequently Used Escape Sequences

Purpose Escape Sequence Name

Move cursor to the beginning of
the current line

\r Return

Move cursor to the beginning of
the next line

\n Newline

Move cursor to the beginning of
the next line of next page

\f Form feed

Move cursor to the next tab stop \t Tab
Move cursor one space to the left \b Backspace
Print backslash character \\ Backslash
Print single quotation character \' Single quotation
Print double quotation character \" Double quotation

Example 2.9

Consider the following Java application to illustrate various escape sequences intro-
duced in this section:

/**

 Demonstration of Escape Sequences

*/

public class EscapeSequence

{

 public static void main(String[] args)

 {

 System.out.println("A return\r<- character");

 System.out.println("A newline\n<- character");

 System.out.println("A tab stop\t<- character");

 System.out.println("A backspace\b<- character");

 System.out.println("A backslash\\<- character");

 System.out.println("A single quotation\'<- character");

 System.out.println("A double quotation\"<- character");

 }

}

Output

<- character

A newline

<- character

A tab stop <- character

A backspac <- character

A backslash\<- character

A single quotation'<- character

A double quotation"<- character

CRC_C6547_CH002.indd 28CRC_C6547_CH002.indd 28 10/1/2008 4:30:53 PM10/1/2008 4:30:53 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 29

Observe that the two character sequence <- (less than followed by a negative sign)
is used to indicate the position of the cursor aft er the escape sequence. Note that
the return character placed the cursor at the beginning of the current line, and
 consequently, all we can observe is a space followed by the word character. Com-
pare the eff ect of return character with the newline character. In particular, in the
case of the newline character, the cursor moved to the next line. Clearly the tab
stop character inserted extra space. Notice that due to the backspace character,
the letter e at the end of the word backspace is replaced by the next character
in the String.

Advanced Topic 2.2: Details on println Method

Consider the Java statement:

System.out.println("Hello! How are you?");

Th e System class has an attribute out that in turn is an instance of the PrintStream
class. Th e PrintStream class has an operation println that takes String as an
 argument or parameter. Th e println operation of the PrintStream class is used to
print the argument and to move the cursor to the beginning of the next line.

Th erefore, the Java statement

System.out.println("Hello! How are you?");

prints the String "Hello! How are you?" and moves the cursor to the beginning of
the next line. If you do not want to move the cursor to the beginning of the next line, you
could use the operation print of the PrintStream class.

Concatenation and the length of Strings

Th e concatenation is a binary operation that appends the second String aft er the fi rst
one. Java uses + as the concatenation operator.

Example 2.10

Th e following Java application illustrates the concatenation operator. Note that
the space between a String and the operator + has no impact on the String
produced. However, space between a String and the operator + improves the
readability.

/**

 Demonstration of String concatenation

*/

CRC_C6547_CH002.indd 29CRC_C6547_CH002.indd 29 10/1/2008 4:30:54 PM10/1/2008 4:30:54 PM

Apago PDF Enhancer

30 ■ Java Programming Fundamentals

public class ConcatOperator

{

 public static void main(String[] args)

 {

 System.out.println("\n\n\tHello");

 System.out.println("This line concatenates"+" two

Strings");

 System.out.println("This " + "line " + "concatenates"

 + " 4 Strings");

 System.out.println("\n\n\n\tBye Now");

 }

}

Output

 Hello

This line concatenates two Strings

This line concatenates 4 Strings

 Bye Now

Good Programming Practice 2.3

Always leave space before and aft er an operator such as + for better readability.

Th e concatenation operator + can also be used to join a String and a numeric value or
a character. In that case, Java fi rst converts the numerical value or character to a String
and then uses the concatenation operator +. We will discuss this topic in detail, aft er intro-
ducing other data types, in Advanced Topic 2.6.

Self-Check

 15. Concatenating "North" and "America" will produce the String .
 16. Concatenating " South" and "Africa" will produce the String .

Positional Value of a Character in String
In a String, every character has a positional value. Th e positional value of the fi rst char-
acter in a String is 0. Th e positional value of the second character is 1, and so on. Th e
number of characters in a String is called the length of the String. A String of
length 10 has 10 characters and they are at positions 0 through 9.

For example, consider the String

"God bless America"

CRC_C6547_CH002.indd 30CRC_C6547_CH002.indd 30 10/1/2008 4:30:54 PM10/1/2008 4:30:54 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 31

Th e characters and their positional values in the String can be summarized as follows.
In Java, a character literal is enclosed within a pair of single quotations.

'G' at 0 'o' at 1 'd' at 2 ' ' at 3 'b' at 4
'l' at 5 'e' at 6 's' at 7 's' at 8 ' ' at 9
'A' at 10 'm' at 11 'e' at 12 'r' at 13 'i' at 14
'c' at 15 'a' at 16

Th e String is of length 17. It is worth noticing that in determining the length of a
String, spaces are included. In fact, within a String the space character is treated just
like any other character.

Note 2.6 In Java, "A" and 'A' are diff erent. While "A" is a String of length 1, 'A' is
a character.

Self-Check

 17. Consider the String “Sea to shinning sea!” What is the positional value of the
character !

 18. What is the length of the String. “Sea to shinning sea!”

DATA TYPES
A computer has to process various types of data. One such data type is a sequence of char-
acters called a String, which you have already encountered. Another data type you have
encountered is character. You may use a String to manipulate names, addresses, book
titles, and so on. But a computer, as its name suggests, is a computing or calculating machine
as well. Today computers are used in a wide variety of applications. Th erefore, the data it
needs to process also varies widely. Observe that the set of possible values associated with
a person’s name is not the same as the set of values associated with a person’s salary. Fur-
ther, there is no need to multiply or divide names or addresses. However, various numeric
calculations are required to determine the tax to be withheld. In other words, the set of
operations that can be performed on a String is not the same as the set of operations that
can be performed on a number. Based on these facts, high-level programming languages
classify data into diff erent sets called data types. Th e designers of Java incorporated the
above feature as well. In fact, Java is a strictly typed language. In other words, if you try to
multiply two Strings or multiply a String by a number and so forth, the built-in error
checking mechanisms will alert the user during the compilation time.

Data type is a set of values along with a set of meaningful basic operations on those
data values.

Introspection

Can you use apples in place of oranges or vice versa? How about using oranges to
bake an apple pie?

CRC_C6547_CH002.indd 31CRC_C6547_CH002.indd 31 10/1/2008 4:30:54 PM10/1/2008 4:30:54 PM

Apago PDF Enhancer

32 ■ Java Programming Fundamentals

Th e data type determines how the data is represented in the computer. Data
types in Java can broadly be classifi ed into two categories: primitive data types and
 reference types.

Self-Check

 19. Th e name of a company is of the type .
 20. Th e legal operations that can be performed are determined by their .

Primitive Data Types

Many types of data are used quite frequently by almost all Java programs. Th erefore, Java
provides them as built-in data types. Java has eight built-in data types that are implemented
not as objects. We call them primitive data types. Th ey are boolean, char, byte, short,
int, long, float, and double (Figure 2.1).

Th e eight primitive data types of Java fall under three disjoint categories:

 1. Boolean type. Th ere is only one primitive data type that falls under this category,
boolean. Th is data type deals with true or false values.

 2. Integral or integer type. Th ere are fi ve primitive data types under this category: byte,
char, short, int, and long. Th is data type deals with integers or whole numbers.

 3. Floating point type. Th ere are two primitive data types under this category: float
and double. Th is data type deals with values that are not necessarily whole num-
bers. In other words, numbers can have decimal part.

Th ere are fi ve integral data types and two fl oating point data types. Java has its roots in
C++. Th e programming language C++ in fact is an enhancement of the programming
language C. Th us, Java came to support many data types that are most commonly used
in C and C++. Th e programming language C was designed to replace assembly language

Data types

Primitive Reference

IntegralBoolean Floating point

byte char short int long float double

FIGURE 2.1 Java data types.

CRC_C6547_CH002.indd 32CRC_C6547_CH002.indd 32 10/1/2008 4:30:54 PM10/1/2008 4:30:54 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 33

programming and as such provided mechanisms for effi cient storage and manipulation of
data. Th us, Java also comes with the capability to write memory-effi cient programs. For
example, the byte data type can be used for any value between −128 and 127. However,
the int data type can be used to represent any value between –2147483648 and 2147483647,
and long data type is used to represent integers between −922337203684547758808
and 922337203684547758807. If optimization of memory usage is not an issue, you can
choose int to represent integers. Similarly, data type float can be used to represent
any real number between −3.4E+38 and 3.4E+38, and data type double can be used to
represent any real number between −1.7E+308 and 1.7E+308. Once again if optimization
of memory usage is not an issue, you can choose double to represent real numbers.

Range of Values and Memory Requirements of Data Types

Data Types Values Bytes Required

Boolean type
boolean False and true (1 bit)
Integer type
char 0 to 65535 2 (16 bits)
byte −128 to 127 1 (8 bits)
short −32768 to 32767 2 (16 bits)
int −2147483648 to 2147483647 4 (32 bits)
long −922337203684547758808 to 922337203684547758807 8 (64 bits)
Floating point type
float −3.4E+38 to 3.4E+38, 6 or 7 signifi cant digits 4 (32 bits)
double −1.7E+308 and 1.7E+308, 15 signifi cant digits 8 (64 bits)

boolean Data Type
An expression that is either false or true is called a logical expression or boolean expres-
sion. Computers make decisions on the basis of logical expressions. Th us, computer pro-
grams have to evaluate many logical (Boolean) expressions. Logical (Boolean) expressions
will be formally introduced and explained in detail in Chapter 4.

Th e data type boolean has two values: false and true. In Java, boolean, false,
and true are reserved words. Th e memory allocated for the boolean data type is 1 bit.

Note 2.7 Th e boolean value false is not equal to integer 0 and boolean value true
is not equal to 1. Th erefore, boolean value cannot be part of any arithmetic expression.

char Data Type
Th e char data type represents single characters. A single character can be any of the
 letters (a to z, A to Z), digits (0 to 9), and special characters (!, @, #, $, &, *, {, }, [,], and so
on). In particular, the char data type can be used to represent any character you see on
the keyboard. A char literal is represented using a pair of single quotations.

Examples of char literals are

'J', 'a', 'v', '@', '-', '_', '%','7','0'.

It may be noted that a blank space is char literal and is written as ' ', with a space
between a pair of the single quotations. Note that ‘Java’ is not a char literal.

CRC_C6547_CH002.indd 33CRC_C6547_CH002.indd 33 10/1/2008 4:30:54 PM10/1/2008 4:30:54 PM

Apago PDF Enhancer

34 ■ Java Programming Fundamentals

Note 2.8 Java uses certain character combinations as special symbols. Some of the spe-
cial symbols and their intended meanings are shown in Table 2.3.

Just as an identifi er or a keyword is treated as one token, Java treats special symbols also
as one token. Similarly, an identifi er such as HiThere or a keyword such as class or a
special symbol such as <= is not a char literal.

Java uses the Unicode character set containing 65536 characters. Th erefore, char data
type needs 2 bytes or 16 bits. Th e 65536 characters are represented using values 0 to 65535.
In other words, the fi rst character has integral value 0 and the second character has an
integral value 1 and the last character has an integral value 65535. As mentioned in Chap-
ter 1, the fi rst 128 characters of Unicode are the same as the American Standard Code for
Information Interchange (ASCII) character set and thus Unicode is a superset of ASCII
character set (see Appendix B).

As mentioned in Chapter 1, an important consequence of each character having an asso-
ciated integral value is that of an implicit ordering of all characters. Th is implicit ordering of
characters is called the collating sequence. Based on the collating sequence, any two charac-
ters can be compared. For instance, character 'a' has value 97 and character 'A' has value
65. Th us 'A' is less than 'a' in the collating sequence. In fact all uppercase letters are less
than 'a' or any lowercase letter in the collating sequence. Further, it is possible to compute
the diff erence between any two characters, as shown in the following example.

Example 2.11

Th e following Java application illustrates collating sequence:

/**

 Illustration of collating sequence

*/

public class CollatingSequence

{

 public static void main(String[] args)

 {

 System.out.println('a' - 'A');

 System.out.println('A' - 'a');

 System.out.println('q' - 'Q');

 System.out.println('Q' - 'q');

 }

}

TABLE 2.3 Some of the Special Symbols

Special Symbol Meaning

<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

CRC_C6547_CH002.indd 34CRC_C6547_CH002.indd 34 10/1/2008 4:30:55 PM10/1/2008 4:30:55 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 35

Output

32

-32

32

-32

Note that the diff erence between a lowercase letter and the corresponding uppercase
letter is always 32.

Note 2.9 Th e escape sequences characters '\r', '\n', '\f', '\t', and '\b' you
have encountered in Advanced Topic 2.1 are treated as a single character.

Good Programming Practice 2.4

Use char for characters.

Advanced Topic 2.3: Unicode Character Specifi cation

You can specify any character using the format '\uXXXX', where each X can be any hexa-
decimal digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Here A stands for 10,
B stands for 11, and so on. Further, in this context, you can use lowercase or uppercase
letters. Th us A or a will represent 10. For example, '\uFa1B' stands for the character
15 × (16)3 + 10 × (16)2 + 1 × (16) + 11 = 64027. As another example, '\u0046' is
4 × 16 + 6 = 70. Th e 0th character is known as the null character. Th e null character is
represented as '\0' (backslash followed by zero) and is the same as '\u0000'.

Integer Data Type
Integers are whole numbers. In Java, integers are a sequence of digits starting with a non-
zero digit preceded by a negative sign or an optional positive sign. In other words, in the
case of positive integers, you need not include the sign. Further, both positive and negative
 integers must begin with a nonzero digit and must not contain any commas.

Example 2.12
 Examples of Legal and Illegal Integers

Integer Explanation

-34552 All integers are legal
34
0
+79
12,340 Comma not allowed
-34489.0 Decimal part not allowed
0989 A decimal integer cannot have a leading 0

Note 2.10 An integer literal is always treated as type int and as such Java will store
it using 4 bytes. To force a literal to be long, you must add either letter L or letter l

CRC_C6547_CH002.indd 35CRC_C6547_CH002.indd 35 10/1/2008 4:30:55 PM10/1/2008 4:30:55 PM

Apago PDF Enhancer

36 ■ Java Programming Fundamentals

 immediately following the last digit. Since letter l can easily be confused with digit 1, we
will use only L in this book.

Good Programming Practice 2.5

Use int for integers. In the rare event where you need to deal with larger numbers,
use long.

Good Programming Practice 2.6

Always use uppercase letter L in the context of long literal.

Advanced Topic 2.4: Various Integer Representations

Integer literals may be written in decimal (default), octal, or hexadecimal notation. A
 leading 0 indicates that the integer is in octal format. Similarly, a leading 0x or 0X indicates
that the integer is in hexadecimal format.

Examples of Legal Integers

Integer Explanation Equivalent Decimal Value

071 Octal number = 7 × (8) + 1 = 57
71 Decimal number = 7 × (10) + 1 = 71
0X71 Hexadecimal number = 7 × (16) + 1 = 113

Good Programming Practice 2.7

Use decimal system for better readability.

Floating Point Data Type
Floating point types are used to deal with real numbers. Floating point numbers have an
integer part and a fractional part separated by a decimal point. Either the integer part or
the fractional part can be omitted. However, decimal point along with either the integer
part or the decimal part must be present. Here is a list of fl oating point numbers:

123.456

123.0

123.

0.456

.456

Good Programming Practice 2.8

Avoid using float data type. Use double data type. If you use float to
 manipulate fl oating point numbers in a program, you may encounter a warning
message such as “truncation from double to fl oat” or “possible loss of data.” You will
understand the reason for these error messages later in this chapter.

CRC_C6547_CH002.indd 36CRC_C6547_CH002.indd 36 10/1/2008 4:30:55 PM10/1/2008 4:30:55 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 37

Note 2.11 In Java, the compiler takes a fl oating point literal as double by default. You
can specify a fl oating point literal as float by adding an f or F at the end of the fl oating
point number. Th us, 123.456 is a double and 123.456F is a float.

Self-Check

 21. Area of a property is of the type .
 22. Th e number of completed years of service is of the type .

Advanced Topic 2.5: Floating Point Notation

Th e leading 0 in a fl oating point number such as 0.456 will not make it an octal number. A
fl oating point number is always in decimal format.

In Java, you could also use either the scientifi c notation or the fl oating point notation.
Table 2.4 illustrates the use of scientifi c notation by Java in printing real numbers. In
 fl oating point notation, the letter E stands for the exponent.

As mentioned before, Java has two data types to represent real numbers:

 1. Th e data type float can be used to represent any real number between −3.4E+38
and 3.4E+38. Further, the maximum number of signifi cant digits or the number of
 decimal places for float values is 6 or 7. Th e memory required for the float data
type is 4 bytes.

 2. Th e data type double (meaning double precision compared to float) can be used
to represent any real number between −1.7E+308 and 1.7E+308. Th e maximum
number of signifi cant digits for double values is 15. Th e memory required for the
double data type is 8 bytes.

OPERATIONS ON NUMERIC DATA TYPES
Th ere are fi ve operations on numeric data types. Th ey are

 1. Addition (symbol used is +)
 2. Subtraction (symbol used is −)
 3. Multiplication (symbol used is *)
 4. Division (symbol used is /)
 5. Modulus (symbol used is %)

TABLE 2.4 Real Numbers Printed in Java Floating Point Notation

Real Number Scientifi c Notation Floating Point Notation of Java

123.456 1.23456×(10)2 1.234560E2
.456 4.56×(10)−1 4.560000E–1
0.00000456 4.56×(10)−6 4.560000E–6
-1.234 –1.23×(10)0 –1.234000E0
1230000. 1.23×(10)6 1.230000E6

CRC_C6547_CH002.indd 37CRC_C6547_CH002.indd 37 10/1/2008 4:30:55 PM10/1/2008 4:30:55 PM

Apago PDF Enhancer

38 ■ Java Programming Fundamentals

Th e following example illustrates addition, subtraction, multiplication, division, and
 modulus operations on integer data types.

Example 2.13

Operations on Integer Data

Expression Result Explanation

–12 + 51 39

–51 – 12 –63

3 * 8 24

19 / 5 3 Dividing 19 by 5 yields 3 as quotient. Th us 19/5 is 3
20 / 5 4 Dividing 20 by 5 yields 4 as quotient. Th us 20/5 is 4
19 % 5 4 Dividing 19 by 5 yields 3 as quotient and 4 as remainder. In the

case of modulus, remainder is the result. Th us 19 % 5 is 4
–19 % 5 –4 Dividing –19 by 5 yields –3 as quotient and –4 as remainder. In the

case of modulus, remainder is the result. Th us –19 % 5 is –4
19 % –5 4 Dividing 19 by –5 yields –3 as quotient and 4 as remainder. In the

case of modulus, remainder is the result. Th us 19 % –5 is 4
–19 % –5 –4 Dividing –19 by –5 yields 3 as quotient and –4 as remainder. In the

case of modulus, remainder is the result. Th us –19 % –5 is –4
5 % 19 5 Dividing 5 by 19 yields 0 as quotient and 5 as remainder. In the

case of modulus, remainder is the result. Th us 5 % 19 is 5

Th e following program illustrates all fi ve integer operators:

/**

 Demonstration of numeric operations in integer mode

*/

public class IntegerOperator

{

 public static void main(String[] args)

 {

 System.out.println(" 12 + 51 = "+ (12 + 51));

 System.out.println("-12 + 51 = "+ (-12 + 51));

 System.out.println(" 51 - 12 = "+ (51 - 12));

 System.out.println("-51 - 12 = "+ (-51 - 12));

 System.out.println(" 3 * 8 = "+ (3 * 8));

 System.out.println(" 19 / 5 = "+ (19 / 5));

 System.out.println(" 20 / 5 = "+ (20 / 5));

 System.out.println(" 19 % 5 = "+ (19 % 5));

 System.out.println("-19 % 5 = "+ (-19 % 5));

 System.out.println(" 19 % -5 = "+ (19 % -5));

 System.out.println("-19 % -5 = "+ (-19 % -5));

 System.out.println(" 5 % 19 = "+ (5 % 19));

 }

}

CRC_C6547_CH002.indd 38CRC_C6547_CH002.indd 38 10/1/2008 4:30:55 PM10/1/2008 4:30:55 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 39

Output
 12 + 51 = 63

–12 + 51 = 39

 51 – 12 = 39

–51 – 12 = –63

 3 * 8 = 24

 19 / 5 = 3

 20 / 5 = 4

 19 % 5 = 4

–19 % 5 = –4

 19 % –5 = 4

–19 % –5 = –4

 5 % 19 = 5

All fi ve operations can be used on two integers or two fl oating point numbers or one
integer and one fl oating point number.

Example 2.14 illustrates four operations on fl oating point numbers. Modulus operator is
rarely used in connection with fl oating point operands and hence omitted.

Example 2.14

Th e following program computes all the expressions given in Table 2.5:

/**

 Demonstration of numeric operations in floating point mode

*/

public class FloatingPointOperator

{

 public static void main(String[] args)

 {

 System.out.println(" (12.0 + 49.2) = "+ (12.0 + 49.2));

 System.out.println(" (12.3 + 49.2) = "+ (12.3 + 49.2));

 System.out.println(" (12.3 - 49.2) = "+ (12.3 - 49.2));

 System.out.println(" (12.3 * 49.2) = "+ (12.3 * 49.2));

 System.out.println(" (12.3 / 49.2) = "+ (12.3 / 49.2));

 }

}

Output
(12.0 + 49.2) = 61.2

(12.3 + 49.2) = 61.5

(12.3 - 49.2) = -36.900000000000006

(12.3 * 49.2) = 605.1600000000001

(12.3 / 49.2) = 0.25

CRC_C6547_CH002.indd 39CRC_C6547_CH002.indd 39 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

40 ■ Java Programming Fundamentals

Note that (12.3 – 49.2) is not –36.9, as you might have expected; rather, the value
computed by the above program is –36.900000000000006. Again note that multi-
plication also produced a result diff erent from what you might have expected. In
other words, fl oating point arithmetic is not exact.

So far, we have used all operators with two operands. If an operator has two operands, it
is called a binary operator. Th us addition, subtraction, multiplication, division, and modulo.
are binary operations. In other words, +, –, *, and % are binary operators. However, we also
use symbols + and – as unary operators or operators with one operand. For example, in
the expressions +12.5 and –51.5, the operators + and – are unary operators. Note further
that in the expression +12.5, the symbol + does not stand for addition. Similarly, in the
 expression –51.5, the symbol – does not stand for subtraction.

Self-Check

 23. What is the value of 17/18?
 24. What is the value of 17 % 18?

Operator Precedence Rules

Consider the following arithmetic expression:

7 + 3 * 2

If you add 7 and 3 fi rst and then multiply by 2 the expression is equal to 20 and if you fi rst
multiply 3 and 2 and then add 7, it is equal to 13. Which is the correct answer? From your
high school mathematics, you know that multiplication needs to be done before addition.
Th erefore, in this case, the correct answer is 13 and not 20. In other words, the operator *
is of higher precedence than the operator +.

Whenever more than one operator appears in an expression, there needs to be a rule
to determine the order in which these operators are evaluated. Every programming lan-
guage provides such rules and Java is no exception. Th ese rules are called operator prece-
dence rules. Th e operator precedence rules for arithmetic operators can be summarized as
follows:

Unary operators + and – have the same precedence, and they are evaluated from
right to left .

•

TABLE 2.5 Operations on Floating Point Data

Expression Mathematical Result

12.0 + 49.2 61.2
12.3 + 49.2 61.5
12.3 - 49.2 -36.9
12.3 * 49.2 605.16
12.3 / 49.2 0.25

CRC_C6547_CH002.indd 40CRC_C6547_CH002.indd 40 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 41

Binary operators *, /, and % have the same precedence, and they are evaluated from
left to right. Further, Unary operators + and – have higher precedence than the
 operators *, /, and %.
Binary operators + and – have the same precedence, and they are evaluated from left
to right. Th e operators *, /, and % have higher precedence than the binary operators
+ and –.

Th e property that an operator is evaluated from left to right or from right to left is
called the associativity of that operator. Th us, note that the associativity of unary arith-
metic operators is from right to left and that of binary arithmetic operators is from left
to right.

Introspection

What is 13 – 7 – 2? Is it (13 – 7) – 2 = 4 or 13 – (7 – 2) = 8?

It is customary to state these rules in the form of a table similar to Table 2.6. Observe
that operators in the same row have the same precedence and an operator in a “higher row”
has a higher precedence over an operator in a “lower row.”

In an arithmetic expression, parentheses can be used to modify the order of execution.
Parentheses can also be used for better readability.

Example 2.15

Consider the following expression:

-4 * 2 + 8 - 9 / 3 * 5 + 7

Th e order of evaluation based on precedence rules is as follows:

= (-4) * 2 + 8 - 9 / 3 * 5 + 7 (unary minus is evaluated)

= ((-4) * 2) + 8 - 9 / 3 * 5 + 7 (leftmost mul./div. is

evaluated)

= (-8) + 8 – (9 / 3) * 5 + 7 (leftmost mul./div. is

evaluated)

= (-8) + 8 – (3 * 5) + 7 (leftmost mul./div. is

 evaluated)

= ((-8) + 8) – 15 + 7 (leftmost add /sub. is

evaluated)

•

•

TABLE 2.6 Operator Precedence

Operator Operand Types Operation Associativity

+, − Number unary plus, unary minus Right to left
*, /, % Number Multiplication, division, modulus Left to right
+, − Number addition, subtraction Left to right

CRC_C6547_CH002.indd 41CRC_C6547_CH002.indd 41 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

42 ■ Java Programming Fundamentals

= (0 – 15) + 7 (leftmost add /sub. is

evaluated)

= (– 15 + 7) (leftmost add /sub. is

evaluated)

= -8

Example 2.16

In the expression

6 + 3 / 3

the division operator / is evaluated fi rst. Th us, the above expression is equivalent to
6 + (3 / 3) = 7. However, parentheses can be used to modify the order of execution
as follows:

(6 + 3) / 3 = 3.

Good Programming Practice 2.9

Th e intended use of the char data type is to manipulate characters. However, since
char is an integral data type, it is legal to perform arithmetic operations on char
data type. Use integral types other than char for computational purposes.

Note 2.12 From Appendix B, it can be seen that character '6' has collating sequence
value 54. Th us, '6'+'6' evaluates to 108.

Self-Check

 25. What is 27 − 8 / 11 + 4?
 26. What is (27 − 8) / 11 + 4?

Rules for Evaluating Mixed Expressions

An expression that has operands of more than one numerical data types is called a mixed
expression. Th us, a mixed expression may contain int and long values or int and
 double values, and so on.

Example 2.17

Consider Table 2.7.

TABLE 2.7 Mixed Expressions

Mixed Expression Explanation

31L / 2 long and int values
32 + 12.5 int and double values
18.723F * 234L float and long values
353.35 – 0.001F double and float values

CRC_C6547_CH002.indd 42CRC_C6547_CH002.indd 42 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 43

Th e rules for evaluating mixed expressions can be stated as follows:

Step 1. Determine the next operation based on operator precedence rules.
Step 2. Consider the operands involved. If both of them are of the same data type

there is nothing to be done at this step. If they are of diff erent type, Java con-
verts the data type of lesser range to the other data type for the purpose of
this expression evaluation. Th at is, data values are converted as follows:

byte → short → int → long → float → double

 or any combination of these in the same direction.
Step 3. Evaluate the expression.

Th us, evaluation of a mixed expression is done on one operator at a time using the rules
of precedence. If the operator to be evaluated has mixed operands, Java cannot evaluate as
such. Th erefore, the operand with lesser range of values is promoted (or implicitly converted
or coerced) to the data type of the other operand before the evaluation. For example, if
one operand is int and the other is double, the int data value is promoted to double
value. In this case, the fl oating point operation takes place and the result is of type double.
Similarly, if one operand is int and the other is long, the int data value is promoted to
long value and the result is of type long. Th us an operator with integer operands will
yield an integer result and if one of the operands is a fl oating point, the result is a fl oating
point. Th e following example illustrates the evaluation of mixed expressions.

Example 2.18

Evaluation of Mixed Expressions

Mixed
Expression

Step 1
(Operator) Step 2 (Operands) Evaluation

17 / 5 +
34.0

/ 17 and 5 (no change) = 3 + 34.0 (17 / 5 = 3; integer
division)

+ 3.0 and 34.0 (int 3 is
promoted to double 3.0)

= 3.0 + 34.0 = 37.0

12 / 5.0 +
10

/ 12.0 and 5.0 (int 12 is
promoted to double 12.0)

= 2.4 + 10 (12.0 /5.0 = 2.4;
fl oating point division)

+ 2.4 and 10.0 (int 10 is
promoted to double 10.0)

2.4 + 10.0 = 12.4

9 % 5 + 6 *
7 – 3.19 % 9 and 5 (no change) = 4 + 6 * 7 – 3.19 (9 % 5 = 4)

* 6 and 7 (no change) = 4 + 42 – 3.19 (6 * 7 = 42)
+ 4 and 42 (no change) = 46 – 3.19 (4 + 42 = 46)
- 46.0 and 3.19 (int 46 is

promoted to double 46.0)
= 42.81

Self-Check

 27. What is 27 / 11 + 4.0?
 28. What is 27 / 11.0 + 4?

CRC_C6547_CH002.indd 43CRC_C6547_CH002.indd 43 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

44 ■ Java Programming Fundamentals

Advanced Topic 2.6: Mixed Expressions Involving String

As noted before, concatenation operator + can also be used to join a String and a numeric
value or a character. In that case, Java fi rst converts the numerical value or character to a
String and then uses the concatenation operator +. Th e following example illustrates the
use of concatenation operator.
Strings play a very important role in Java. So we will address issues involving

Strings in a later chapter. However, at this point you need to know the behavior of the
concatenation operator when other data types are involved.

Example 2.19

Th e following Java application illustrates the concatenation operator on Strings
and numbers, and Strings and characters:

/**

 Demonstration of concatenation operation in mixed mode

*/

public class ConcatOperatorNumber

{

 public static void main(String[] args)

 {

 System.out.print

 ("(1)\t 1600 + \" Pensylvania Avenue\" is ");

 System.out.println(1600 + " Pensylvania Avenue");

 System.out.print

 ("(2)\t \"Pensylvania Avenue \" + 1600 is ");

 System.out.println("Pensylvania Avenue " + 1600);

 System.out.print("(3)\t 563 + 34 is ");

 System.out.println(563 + 34);

 System.out.print

 ("(4)\t \"Victoria, NE \" + 563 + 34 is ");

 System.out.println("Victoria, NE " + 563 + 34);

 System.out.print

 ("(5)\t 563 + 34 + \" Victoria, NE \" is ");

 System.out.println(563 + 34 + " Victoria, NE ");

 System.out.print

 ("(6)\t \"Victoria, NE \" + (563 + 34) is ");

 System.out.println("Victoria, NE " + (563 + 34));

 System.out.print

 ("(7)\t \"Victoria, \" + \'N\' + \'E\' + \' \' + 56334 is ");

 System.out.println

 ("Victoria, " + 'N' + 'E' + ' ' + 56334);

 System.out.print("(8)\t 563 * 34 is ");

CRC_C6547_CH002.indd 44CRC_C6547_CH002.indd 44 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 45

 System.out.println(563 * 34);

 System.out.print

 ("(9)\t \"Victoria, NE \" + 563 * 34 is ");

 System.out.println("Victoria, NE " + 563 * 34);

 System.out.print

 ("(10)\t 563 * 34 + \" Victoria, NE \" is ");

 System.out.println(563 * 34 + " Victoria, NE ");

 System.out.print

 ("(11)\t \"Victoria, NE \" + (563 * 34) is ");

 System.out.println("Victoria, NE " + (563 * 34));

 }

}

Output

 (1) 1600 + " Pensylvania Avenue" is 1600 Pensylvania Avenue

 (2) "Pensylvania Avenue " + 1600 is Pensylvania Avenue 1600

 (3) 563 + 34 is 597

 (4) "Victoria, NE " + 563 + 34 is Victoria, NE 56334

 (5) 563 + 34 + " Victoria, NE " is 597 Victoria, NE

 (6) "Victoria, NE " + (563 + 34) is Victoria, NE 597

 (7) "Victoria, " + 'N' + 'E' + ' ' + 56334 is Victoria, NE 56334

 (8) 563 * 34 is 19142

 (9) "Victoria, NE " + 563 * 34 is Victoria, NE 19142

(10) 563 * 34 + " Victoria, NE " is 19142 Victoria, NE

(11) "Victoria, NE " + (563 * 34) is Victoria, NE 19142

Explanation

(1) and (2) (A String and a number case): Th e number 1600 is converted to the
String "1600". Th en the concatenation takes place and thus produces the
String "1600 Pennsylvania Avenue" and "Pennsylvania Avenue
1600", respectively. (3) (Numbers only case): In this case, all numerical computa-
tions will be done fi rst. Th us, 563 and 34 are added together to produce the num-
ber 597. (4) (Numbers aft er String case) : Java converts the int value 563 to the
String “563” and appends at the end of the String "Victoria, NE". Th is
produces a String "Victoria, NE 563". Now int value 34 is converted to
the String "34" and concatenated to "Victoria, NE 563", thus producing
"Victoria, NE 56334". (5) (Numbers before String case): In this case, the
fi rst + symbol is an addition symbol. Both 563 and 34 are numbers. Th erefore,
+ is not considered as a concatenation operator. In other words, for + to work
as a concatenation symbol, at least one of the two operands must be a String.
 Th erefore, 597 is computed fi rst. Now, 597 is a number and "Victoria, NE"

CRC_C6547_CH002.indd 45CRC_C6547_CH002.indd 45 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

46 ■ Java Programming Fundamentals

is a String, and therefore the String "Victoria, NE" gets appended to the
String "597". (6) (Use of parenthesis): Due to parenthesis, Java adds 563 and
34 fi rst. Consequently, the number 597 is converted to the String "597" and
appended to "Victoria, NE" as in cases (1) and (2). Th e output line (7) shows
how characters can also be appended to a String using the concatenation opera-
tor. Note that each character gets appended to the existing String. (9), (10), and
(11) (Arithmetic operator with a higher precedence): Since multiplication has higher
precedence, it is done before the concatenation operation.

NAMED CONSTANTS AND VARIABLES
Th e data required for your program is kept in memory during the execution of the pro-
gram. Th e memory is a collection of cells with individual addresses. You have seen that
each primitive data type has its own storage requirements. For example, an int data type
is always stored using 4 bytes. Similarly, a double is always stored in 8 bytes. To store a
value in memory, it is important to know the data type for two reasons: First, data type
determines the size of memory that needs to be allocated. Second, data type determines
the set of legal operations that can be applied on the stored data. All high-level languages
allow the programmer to assign an identifi er to a memory location so that the programmer
need not directly deal with memory addresses. Th e programmer uses the identifi er to store
and retrieve data from memory.

Th ere are certain values in your program that need not be modifi ed during the program
execution. For example, we all pay 7.5% of our salary as Social Security Tax. Similarly, to
work, one must be at least 16 years old. A conversion formula that converts pounds into
kilogram must make use of the fact that 1lb is 0.454 kg. During the program execution,
these data values need to be guarded against accidental changes. Java allows you to allocate
memory using a named constant and store a data value. Th e value of a named constant
remains fi xed during the program execution.

In Java, you can declare a named constant in two diff erent contexts: at the class level and
at the method level. Th e Java syntax to declare a named constant at the class level is

[public][static] final dataType IDENTIFIER = literal;

and that at the method level is

final dataType IDENTIFIER = literal;

Note that both static and final are reserved words. Th e word static specifi es that
only one memory location will be allocated to all instances of a class and such a memory
location will be available even if there is no object belonging to the class. Observe that the
word static is optional. However, from a programming point of view, there is no need to
have multiple copies of a constant value. Th e reserved word final indicates that the literal
stored in the IDENTIFIER is fi nal, or cannot be changed.

CRC_C6547_CH002.indd 46CRC_C6547_CH002.indd 46 10/1/2008 4:30:56 PM10/1/2008 4:30:56 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 47

Introspection

Date of birth is a named constant of our life. It never changes.

Good Programming Practice 2.10

 Any literal value that must remain constant throughout the execution of the
 program is to be declared as a named constant.

Good Programming Practice 2.11

 Use uppercase letters and underscore in a named constant identifi er. Use under-
score character at the beginning of each new word.

Example 2.20

Consider the following Java declarations.
Class level:

public static final char PERCENTAGE = '%';

public static final int MAXIMUM_ALLOWED_WEIGHT = 4000;

Method level:

final float ERROR_ALLOWED = 0.01F;

final double POUND_TO_KILOGRAM = 0.454;

Th e fi rst statement instructs the compiler to allocate 2 bytes in memory and store
the character ‘%’. Further, the memory location will be known as PERCENTAGE
at the class level. Th erefore, inside the class you can access the constant using its
name

PERCENTAGE

and outside the class you can access the constant as

className.PERCENTAGE

respectively. Th e data kept in the memory location PERCENTAGE cannot be modi-
fi ed and its data type is char. Similarly, the second statement instructs the compiler
to allocate 4 bytes in memory and to store the integer 4000. Th e memory location
will be known as MAXIMUM_ALLOWED_WEIGHT at the class level. It cannot be
modifi ed and its data type is int.

Th e meaning of the remaining two statements is similar except that they are
available only at the method level. Th erefore, you can access the constant ERROR_
ALLOWED only inside the method it is declared.

CRC_C6547_CH002.indd 47CRC_C6547_CH002.indd 47 10/1/2008 4:30:57 PM10/1/2008 4:30:57 PM

Apago PDF Enhancer

48 ■ Java Programming Fundamentals

Th e eff ect of the four statements given in Example 2.20 is illustrated in Figure 2.2.

Note 2.13 Using a named constant in place of a literal has many advantages. First,
if the value needs to be changed, you need to modify only one line of code. Second, a
 typographical error in a literal cannot be detected by a compiler. However, a typographical
error in a named constant will be detected during the compilation process.

During the execution of a program, new values are computed. Th ese values also need
to be stored in memory. For example, in a program for computing the maximum and
minimum temperatures of a day, aft er each new temperature reading either the minimum
temperature or the maximum temperature may change. Similarly, consider a program that
tracks the inventory of a convenience shop. Observe that aft er each sale the number of
items in the inventory changes. Th us, there is a need for memory cells whose contents
can be modifi ed during program execution. In all programming languages, memory cells
whose contents can be modifi ed during the execution of a program are called variables.

In Java, there are four categories of variables. Th ey are instance variables and static variables
declared at class level and parameter variables and local variables declared at block level. A
block is a sequence of statements enclosed within a pair of braces { and }. Every main method
in this chapter has exactly one block. You will see many block statements, including a block
statement inside another one, in Chapter 4. Th e syntax to declare instance variables is

[accessModifier] dataType identifierOne[[=LOne], ...,identifierN

[=LN]];

Th e syntax to declare class variables (also known as static variables) is
[accessModifier] static dataType identifierOne[[=LOne], ...,

identifierN[=LN]];

%

PERCENTAGE

4000

MAXIMUM_ALLOWED_WEIGHT

0.01

ERROR_ALLOWED

0.454

POUND_TO_KILOGRAM

(2 bytes allocated)

(8 bytes allocated)

(4 bytes allocated)

(4 bytes allocated)

FIGURE 2.2 Named constants.

CRC_C6547_CH002.indd 48CRC_C6547_CH002.indd 48 10/1/2008 4:30:57 PM10/1/2008 4:30:57 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 49

Th e syntax to declare parameter variables is

dataType identifierOne[,..., dataType identifierN]

Th e syntax to declare local variables is

dataType identifierOne[[=LOne], identifierTwo[=LTwo],...,

identifierN[=LN]];

Recall that an item inside a pair of square brackets in a syntax template is optional.

Good Programming Practice 2.12

Use letters only as identifi ers for variables and start the variable in lowercase. Use
uppercase letters only at the beginning of each new word.

Declaring local variables is covered here. Instance variables and parameter variables are
covered in Chapter 3 and the static variables in Chapter 6.

Consider the following variable declarations:

char nextCharacter;

int totalGamesPlayed;

double stateTaxRate = 6.85;

String nextLine = "Have a close look at me!";

Th e fi rst statement instructs the compiler to allocate 2 bytes of memory and no value is
stored. Further, the memory location will be known as nextCharacter in the program and
can be modifi ed so long as the modifi ed value is of type char. Similarly, the second state-
ment instructs the compiler to allocate 4 bytes of memory. Th e memory location will be
known as totalGamesPlayed in the program and can be modifi ed as long as the modi-
fi ed value is of data type int. Th e third statement allocates 8 bytes and stores 6.85 as the
initial value. Th e memory allocated will be known in the program as StateTaxRate.

Th e behavior of the fourth statement is quite diff erent from the other three statements.
Th is is due to the fact that String is a class in Java and not a primitive data type. In the
case of classes, the only variables you can declare are reference variables. Now a reference
variable is one that can keep the reference of an object. Th us in the case of the fourth state-
ment, a memory location is allocated and labeled as nextLine. However, memory location
nextLine does not contain the String "Have a close look at me!". Instead, the
String is stored somewhere else in memory and the reference of the String is kept in the
reference variable nextLine. For the sake of visualization, assume that the compiler uses
memory address as reference. (Recall that in an object-oriented environment, the informa-
tion is hidden from the user. Th us, we do not know how the compiler maintains the refer-
ence.) Assume that the compiler stored the String "Have a close look at me!" at
memory location 12084. Th en the variable nextLine will contain 12084. We shall use ? in
our drawings to indicate that no value has been stored in a memory location (Figure 2.3).

CRC_C6547_CH002.indd 49CRC_C6547_CH002.indd 49 10/1/2008 4:30:57 PM10/1/2008 4:30:57 PM

Apago PDF Enhancer

50 ■ Java Programming Fundamentals

Th e above discussion can be summarized as follows:

1. In the case of a primitive data type, as you declare a variable, the compiler allocates
necessary memory depending on the data type and labels the memory location
using the variable name. If you specify an initial value for the variable, then the
compiler will store that initial value at the variable location.

2. In the case of reference variables, as you declare a variable, the compiler allocates
necessary memory for storing a memory address and labels the memory location
using the variable name. If an initial object is specifi ed, the compiler will allocate
a new memory location and store the object. Further, the address of the object is
placed in the reference variable.

In the case of primitive data types, the value is kept at the variable location; however, in
the case of objects, the reference variable does not keep the object, it keeps the reference of
the object.

Fortunately, as a programmer, you need not deal with memory locations. All you need
to know is the existence of this subtle diff erence between variables of primitive data types
and reference variables.

Note 2.14 In Java, all named constants and variables must be declared before using them.
Using a named constant or a variable without declaring is a syntax error, and as such Java
compiler will generate an error message. In the case of primitive data types, you must also
initialize the variables before using them.

?

nextCharacter

?

totalGamesPlayed

6.85

stateTaxRate

12084

nextLine

(2 bytes allocated)

(machine dependent)

(4 bytes allocated)

(8 bytes allocated)

Have a close look at me!

Memory location 12084

FIGURE 2.3 Variables.

CRC_C6547_CH002.indd 50CRC_C6547_CH002.indd 50 10/1/2008 4:30:57 PM10/1/2008 4:30:57 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 51

Self-Check

 29. Declare a variable to store product description.
 30. Declare a variable to store number of dependents of an employee.

Changing Data Values of Variable

In Java, you can change the value of a variable either through an assignment statement or
through increment or decrement operators.

Assignment Statement
Th e assignment statement has three parts: a variable, followed by the equal sign (known
as the assignment operator), and then an expression. Th us, the syntax of an assignment
statement is

variable = expression;

Example 2.21

Consider the following:

char grade;

double currentScore, totalScore = 0.0;

grade = 'A'; // (1)

currentScore = 30.0 ;

totalScore = 95.7;

Th e statement 1 changes the value stored at grade to 'A'. Once the statement 1 is
executed, any value previously kept in grade will be lost forever.

In mathematics, if you say y = 5, you are indicating the fact that the value of the vari-
able y is 5. For example, you may start with an equation such as 3y − 15 = 0 and then
arrive at the conclusion that y = 5. Th e semantics of an assignment statement is quite
diff erent. For example, statement 1 specifi es that the character ‘A’ is stored at memory
location grade.

In an assignment statement, the expression on the right side is evaluated and then the
value computed is stored at the variable on the left side. Th erefore, in an assignment state-
ment, the value of the expression on the right-hand side and the variable on the left -
hand side should match in data type. Just as in the evaluation of mixed expressions, if the
variable on the left -hand side is a data type of wider range than the data type at right-hand
side, the right-hand side value will be promoted to match the left -hand side data type. If
the variable on the left -hand side is a data type of narrower range than the right-hand data
type, then the compiler will issue an error message similar to the following:

possible loss of precision

found : right_hand_side_data_type

required: left_hand_side_data_type

CRC_C6547_CH002.indd 51CRC_C6547_CH002.indd 51 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

52 ■ Java Programming Fundamentals

A statement that places a value in a variable for the fi rst time is called an
 initialization statement.

Example 2.22
 Assignment Operator

Expression on the
Right–Hand Side Left -Hand Variable Type is int Left -Hand Variable Type is double

37 37 is assigned. (data
types match)

37.0 is assigned. (37 is
promoted to 37.0 double)

12.5F Error:possible loss of
precision (int is
narrower than float)

12.5 is assigned. (12.5
is promoted to double)

56.8 Error:possible loss of
precision (int is
narrower than double)

56.8 is assigned. (data
types match)

Example 2.23

Consider the following program:

/**

 Demonstration of assignment operator

*/

public class Assignments

{

 public static void main(String[] args)

 {

 int numberOfStudents;

 float toalPoints;

 String heading;

 boolean smartStudents;

 numberOfStudents = 25.0;

 toalPoints = 2000;

 heading = 2004;

 smartStudents = "All students";

 }

}

If you compile the above program, the following error messages will be generated:

C:\dirName\Assignments.java:11: possible loss of precision

found : double

required: int

 numberOfStudents = 25.0;

 ^

CRC_C6547_CH002.indd 52CRC_C6547_CH002.indd 52 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 53

C:\dirName\Assignments.java:13: incompatible types

found : int

required: java.lang.String

 heading = 2004;

 ^

C:\dirName\Assignments.java:14: incompatible types

found : java.lang.String

required: boolean

 smartStudents = "All students";

 ^

3 errors

Th e fi rst error message is generated due to line 11 of the fi le C:\dirName\
Assignments.java. Th e error is then summarized as follows:

possible loss of precision

found : double

required: int

In other words, the right-hand side of the assignment statement is found to be of data
type double, whereas variable on the left -hand side is of the data type int. Note
that in this case, the error is “possible loss of precision.” Interpretation of second and
third error messages is similar. However, the error is stated as “incompatible types.”
Th us, if you mismatch the data types within numerical data types, system generates
a “possible loss of precision” error message. If you assign a String or boolean to a
number (or assign a String or number to boolean; or assign a number or bool-
ean to a String) the error message produced will be “incompatible types.”

Th e “possible loss of precision” can be avoided through the use of the cast opera-
tor. Th e cast operator is explained later in this chapter.

Example 2.24

Th e following Java statements illustrate the assignment statements for diff erent data
types:

int hoursWorked;

double hourlyRate, weeklySalary;

char status;

String fullName;

hoursWorked = 5 * 8 - 3;

hourlyRate = 16.75;

weeklySalary = hourlyRate * hoursWorked;

status = 'S';

fullName = "James F. Kirk";

CRC_C6547_CH002.indd 53CRC_C6547_CH002.indd 53 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

54 ■ Java Programming Fundamentals

Consider the assignment statement:

hoursWorked = 5 * 8 - 3;

Th e computer fi rst evaluates the expression on the right to an int data type of
value 37. Now the variable on the left -hand side is of type int. Th erefore, int
value 37 is stored at memory location hoursWorked.

Semantics of other assignment statements are similar.
A Java statement such as

k = k + 1;

means take the current value of variable k, add 1 to it, and assign the new value
to the memory location k. In the case of an assignment statement, the expres-
sion on the right side is evaluated fi rst irrespective of the variable on the left -
hand side. Once the right-hand side value is computed, the result is stored in the
memory location specifi ed by the variable on the left side. Th us, if value of k was
10 before the execution of the statement, k becomes 11 aft er the execution of the
statement.

 Semantics of Assignment Operator

Statement i j k p q

int i; 0
int j = 10; 10
int k = j +2; 12
double p; 0.0
double q = 1.234; 1.234
i = j * i + k; 12
k = j % i; 10
p = i / (k + 2) + q; 2.234
k = i / (k + 2) + q; error

Suppose that a, b, c, and d are variables of the same data type. Th e following
statement is legal in Java:

a = b = c = d;

In this statement, fi rst the value of d is assigned to c. Since = is an operator, c = d
produces (or returns) a value and the value retuned is equal to that of c. Th erefore, this
statement is equivalent to the following two statements:

c = d;

a = b = c;

By the same argument, the statement a = b = c; is equivalent to the following
two statements:

b = c;

a = b;

CRC_C6547_CH002.indd 54CRC_C6547_CH002.indd 54 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 55

Th us, the statement a = b = c = d; is equivalent to the following three
statements:

c = d;

b = c;

a = b;

Note 2.15 Th e associativity of the assignment operator is from right to left . Th ere-
fore, the assignment operator, =, is evaluated from right to left .

Self-Check

 31. Assume that x and y are two variables of type int and let x be 10 and y be 20.
Aft er executing the statement x = y, the value of x is and the value of
y is .

 32. Write the assignment statement that will change the value of x to two times the
current value of x plus three times the current value of y.

INPUT STATEMENT
You have learned how to output. You have learned how to use variables to store and manip-
ulate data. In this section, you will learn how to get data from the standard input device
and place it in variables using Java’s input operations and related classes. Note that the
standard input device is the keyboard and the standard output device is the monitor. You
have already used System.out object, which for all practical purposes can be thought
of as the standard output device. Similarly, System.in can be thought of as the standard
input device.

With System.in, we can input either a single byte or a sequence of bytes. However to
be useful to us, we want to break the input into meaningful units of data called tokens. For
example, the following input

123-45-6789 James Watts 56 5432.78

contains fi ve tokens. Th ey are

6789-6789-6789 String (social security number)

James String (first name)

Watts String (last name)

56 int (age)

5432.78 double (monthly salary)

Java provides a Scanner class with necessary operations to get individual tokens.

First, we need to create an object belonging to the Scanner class. Th is is achieved by the
following Java statement:

Scanner scannedInfo = new Scanner(System.in);

CRC_C6547_CH002.indd 55CRC_C6547_CH002.indd 55 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

56 ■ Java Programming Fundamentals

You may observe that this statement is in fact a declaration and initialization statement
very similar to the following:

int k = 10;

In the case of declaration and initialization of a primitive data type such as int, three
actions take place in sequence. Th ey are as follows:

 1. Reserve enough space in memory (in this case int is of size 4 bytes)
 2. Label the memory location with variable name (in this case variable name is k)
 3. Place data in the memory location (in this case data is 10)

However, the eff ect of the following statement

Scanner scannedInfo = new Scanner(System.in);

can be summarized as follows:

 1. A reference variable scannedInfo of type Scanner is created. Since a reference
variable can hold a memory address, so in this case, scannedInfo can hold the
address of an object belonging to the Scanner class.

 2. A scanner object is created in memory using System.in as argument. Note that
new operator creates a new object of the class Scanner and returns its memory
address.

 3. Th e assignment operator places the address of the scanner object in the reference
variable scannedInfo.

Now, Scanner class has operations such as nextInt() that can get the next token and
convert it as int, nextDouble() that can get the next token and convert it as double,
and next() that can get the next token and convert it as a String. Th e nextLine()
method can be used to read the entire line delimited by the current setting of the delimiter
characters. By default, the delimiter characters are whitespace characters. In Java, there are
fi ve whitespace characters. Th ey are the space character, the horizontal tab, the form feed,
the carriage return, and the linefeed. Th erefore, if the input is

123-45-6789 James Watts 56 5432.78

you need to fi rst observe that there are fi ve tokens. Of those fi ve tokens, the fi rst three are
Strings. Th e next token needs to be treated as an int data and fi nally, the last token is
to be interpreted as double. Th erefore, you need to use operation next() three times to
handle the fi rst three Strings. Th en use the operation nextInt() once to handle the
integer data. Finally, you need to use operation nextDouble() to process the last token
as double. Further, to store these data items, there must be three String variables, one
int variable, and one double variable. Th us, the Java statements required to process the

CRC_C6547_CH002.indd 56CRC_C6547_CH002.indd 56 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 57

above input data are as follows:
String socialSecNum, firstName, lastName;

int age;

double monthlySalary;

Scanner scannedInfo = new Scanner(System.in);

socialSecNum = scannedInfo.next();

firstName = scannedInfo.next();

lastName = scannedInfo.next();

age = scannedInfo.nextInt();

monthlySalary = scannedInfo.nextDouble();

Self-Check

 33. NextInt is a method of the class.
 34. List three whitespaces in Java.

PACKAGES AND import STATEMENT
In Java, classes are grouped into packages. Most commonly used classes are in the package
java.lang and this package is available to all programs. Th e Scanner class is in the
package java.util. To use the Scanner class, you need to import either the Scanner
class or the package java.util. Th is is accomplished by placing an import statement in
the beginning of the source program:

import java.util.*; // imports java.util package

or

import java.util.Scanner; // imports Scanner class

Th e documentation on all Java classes can be found at http://java.sun.com/
javase/6/docs/api/. Th e reader is strongly encouraged to explore various Java
classes.

In Chapter 6, you will learn how to create your own packages and use them in your
programs.

Example 2.25

Th e following Java program illustrates the input and output of various data types:

import java.util.Scanner;

/**

 Demonstration of input statements

*/

public class ScannerOne

{

 public static void main(String[] args)

CRC_C6547_CH002.indd 57CRC_C6547_CH002.indd 57 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

58 ■ Java Programming Fundamentals

 {

 String socialSecNum;

 String firstName;

 String lastName;

 int age;

 double monthlySalary;

 Scanner scannedInfo = new Scanner(System.in);

 socialSecNum = scannedInfo.next();

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 age = scannedInfo.nextInt();

 monthlySalary = scannedInfo.nextDouble();

 System.out.println(socialSecNum);

 System.out.println(firstName);

 System.out.println(lastName);

 System.out.println(age);

 System.out.println(monthlySalary);

 }

}

Output

123-45-6789

James

Watts

56

5432.78

Self-Check

35. In Java, classes are grouped into .
36. Scanner class belongs to the .

Single Character Input

To read a single character, you can use the operation next of the Scanner class. Th is
in fact produces a String of length 1. For almost all applications, you could use a
String of length 1 rather than a char data type. However, if you are really interested
in keeping the character as a char data type, you could do that as well. Recall that the
characters of a String are numbered 0, 1, 2, and so on. Th erefore, from a String of
length 1, to get the fi rst character, you can use the charAt operation of the String
class with argument 0.

CRC_C6547_CH002.indd 58CRC_C6547_CH002.indd 58 10/1/2008 4:30:58 PM10/1/2008 4:30:58 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 59

Th us, to process an input such as

123-45-6789 James T Watts 56 5432.78

you need to introduce two more variables:

String middle;

char middleInitial;

to fi rst store T as a String and then T as a char. You can now use next and charAt as

middle = scannedInfo.next();

middleInitial = middle.charAt(0);

to store the single character T in the char variable middleInitial. It is possible to
combine the above two lines into one as follows:

middleInitial = scannedInfo.next().charAt(0);

In this case, there is no need for the String variable middleInitial. Th us, the modi-
fi ed program is as follows:

import java.util.Scanner;

/**

 Demonstration of input statements

 Modified version

*/

public class ScannerTwo

{

 public static void main(String[] args)

 {

 String socialSecNum, firstName, lastName;

 char middleInitial;

 int age;

 double monthlySalary;

 Scanner scannedInfo = new Scanner(System.in);

 socialSecNum = scannedInfo.next();

 firstName = scannedInfo.next();

 middleInitial = scannedInfo.next().charAt(0);

 lastName = scannedInfo.next();

 age = scannedInfo.nextInt();

 monthlySalary = scannedInfo.nextDouble();

CRC_C6547_CH002.indd 59CRC_C6547_CH002.indd 59 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

60 ■ Java Programming Fundamentals

 System.out.println(socialSecNum);

 System.out.println(firstName);

 System.out.println(middleInitial);

 System.out.println(lastName);

 System.out.println(age);

 System.out.println(monthlySalary);

 }

}

Note 2.16 It is totally irrelevant how many lines are used to input the data. You may type
in all data items on one line or you may type in your data in many lines including blank
lines. All that is important is that data must match the type and a token must be kept as
one.

For example,

 123-45-6789 James T Watts 56 5432.78

where all six tokens are in one line or in 10 lines as shown below are acceptable. Here ↵
stands for position where return is entered.

 123-45-6789↵ (line 1)
 ↵ (line 2)
 James T ↵ (line 3)
 ↵ (line 4)
 ↵ (line 5)
 ↵ (line 6)
 Watts↵ (line 7)
 ↵ (line 8)
 56↵ (line 9)
 5432.78 ↵ (line 10)

Self-Check

 37. charAt is a method of .
 38. charAt returns a .

INTERACTIVE MODE AND PROMPT LINES
A computer program that waits for some input during the execution is said to be in inter-
active mode. In this section, it may be quite clear to you that the order in which you enter
data is quite important. Th erefore, it is important for the user to know the type of data
the program is expecting during the execution, especially if the program is interactive.
You could use operations print and println for providing helpful messages on the
monitor. For example, if the application is expecting last name, you could use a statement

CRC_C6547_CH002.indd 60CRC_C6547_CH002.indd 60 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 61

similar to the one that follows:
System.out.print("Enter last name: ");

You may think that the above message in fact will appear on the monitor. Unfortunately,
that may not happen. Th e reason being, all the output generated by the operation print is
kept in a memory location called output buff er. Once output buff er is full, the entire output
in the buff er is sent to the monitor. Recall that the attribute out of the System class is an
object of the PrintStream class. Th e PrintStream class has an operation, flush,
to empty the buff er. Note that flush operation empties the buff er and sends information
to the monitor. Th e flush operation does not change the cursor position. You need the
following two statements:

System.out.print("Enter last name: ");

System.out.flush();

to prompt the user for the last name. In this case, the prompt line will appear as follows
with the cursor at the position shown:

Enter last name: |

Self-Check

 39. Th e attribute out of the System class is an object of class.
 40. A computer program that waits for some input during execution is said to be

in mode.

EXPLICIT DATA–TYPE CONVERSION
Consider the following statements:

double totalArea = 2586.24;

int minimumRoomArea = 120;

int numberOfRoomsPossible;

numberOfRoomsPossible = totalArea / minimumRoomArea;

From our discussion on mixed expressions, you know that the result of dividing a double
value by an int value is a double value. Th erefore, the expression on the right hand of
the last assignment statement above is of type double. However, the variable on the left -
hand side is of data type int. Th erefore, the last assignment statement will cause an error
during the compilation.

To avoid such compiler errors, Java provides for explicit data–type conversion using the
cast operator. Th e syntax of the cast operator is as follows:

(NewDataTypeName) expression

Th e semantics of the cast operator can be explained as follows. First, the expression is
evaluated as explained in the section on mixed expressions. Th e value is converted to new

CRC_C6547_CH002.indd 61CRC_C6547_CH002.indd 61 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

62 ■ Java Programming Fundamentals

data type as specifi ed by NewDataTypeName. Note that converting a fl oating point num-
ber to an integer using the cast operator results in loosing the decimal part of the fl oating
point number. In particular, observe that the fl oating point number is truncated and not
rounded. For example, casting both numbers 12.0001 and 12.9999 to an integer type will
produce 12. Th e following examples further illustrate how cast operators work.

Example 2.26
 Cast Operator and Literals

Expression Value Explanation

(int)(1000.9999) 1000 Decimal part is dropped
(int)(1000.0000) 1000 Decimal part is dropped
(double)(267) 267.0 Decimal part is added
(double)(150-84) 66.0 = (double)(66)

= 66.0
(double)(151) % 2 1.0 (double)(151) = 151.0/2

= 1.0
(double)(151 % 2) 1.0 (151 % 2) = 1

= (double)(1) = 1.0
(double)(151)/2 75.5 (double)(151) = 151.0

= 151.0/2.0
= 75.5

(double)(151/2) 75.0 (151/2)=75
= (double)(75)
75.0

(int)(2.5 *
(double)(1)/2)

12 = (int)(2.5 * 0.5)
= (int)(12.5)
= 12

(int)(2.5 *
(double)(1/2))

0 = (int)(2.5 * 0.0)
= (int)(0)
= 0

Example 2.27

For this example, consider the following statements:

int a = 7, b = 10;

double c = 4.25, d = 5.80;

 Cast Operator and Expressions

Expression Value Explanation

(double)(b/a) 1.0 (10/7) = 1. So (double)(1) = 1.0
(int)(c) + (int)(d) 9 4 + 5 = 9
(int)(c + d) 10 (4.25 + 5.80) = 10.05

(int)(10.05) = 10
(double)(a/b) + c 4.25 (7/10) = 0. 0 + 4.25 = 4.25
(double)(a)/b
+ d

6.50 7.0/10 = 0.7
0.7 + 5.80 = 6.50

CRC_C6547_CH002.indd 62CRC_C6547_CH002.indd 62 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 63

You can also use cast operators to explicitly convert between char and int data val-
ues. For example, in the Unicode character set, (int)('J') is 74 and (int)('0')
is 48. Th erefore, (int)('J') + (int)('0') = 74 + 48 = 122. Note that
(int)('J') + (int)('0') = 'J' + '0'. In this case, the cast operators can be
omitted. However, you need to use the cast operator to convert from int to char.
Th us, (char)(74) is 'J' and (char)(48) is '0'.

Self-Check

 41. What is (char)(65)?
 42. True or false: Cast operation can convert “123” to 123.

Advanced Topic 2.7: Increment and Decrement Operators

Suppose numberOfItems is an integer variable used to keep track of the number of
items found so far. Every time a new item is encountered, numberOfItems has to be
incremented by one. Th e Java statement to accomplish this can be written as follows:

numberOfItems = numberOfItems + 1;

Recall from our discussion on assignment statements, to execute the above statement, the
expression on the right-hand side is evaluated fi rst and the result is assigned to the variable.
Th erefore, if the current value of numberOfItems is 25, the right-hand side evaluates to
26, and thus the variable numberOfItems becomes 26. Similarly, if the variable item-
sOnStock is used to keep track of items currently on stock, as soon as an item is sold, the
value has to be decremented by 1. Th e Java statement to accomplish this can be written as
follows:

itemsOnStock = itemsOnStock - 1;

If the current value of itemsOnStock is 157, the right-hand side evaluates to 156, and
thus the variable itemsOnStock becomes 156.

Th us, statements that increment a variable by 1 and statements that decrement a vari-
able by 1 occur quite oft en in a program. Recognizing this fact, Java (C, C++, C#) provides
the increment operator, ++, which increments the value of a variable by 1, and the decre-
ment operator, --, which decrements the value of a variable by 1. Increment and decrement
operators each come in two forms: pre (before the variable) and post (aft er the variable).
Th us, we have the following:

 Increment and Decrement Operators

Operator Name Operator Example Equivalent Statement

Preincrement ++ ++items items = item + 1
Postincrement ++ items++ items = item + 1
Predecrement -- --items items = item – 1
Postdecrement -- items-- items = item – 1

CRC_C6547_CH002.indd 63CRC_C6547_CH002.indd 63 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

64 ■ Java Programming Fundamentals

As a stand-alone statement, there is no diff erence between the pre- and postincrement
operators. Similarly, as a stand-alone statement, there is no diff erence between the pre- and
postdecrement operators. However, they are diff erent if used as part of another expression
or an assignment statement.

Suppose that item is an integer-type variable. If ++item is used in an expression or
an assignment statement, item is incremented by 1, and then the new value of item is
used to evaluate the expression or the right-hand side value of an assignment statement.
However, if item++ is used in an expression or right-hand side value of an assignment
statement, or current value of item is used in the expression or right-hand side value of an
assignment statement, then the item value gets incremented by 1.

Example 2.28

Consider the following Java statement:

int i = 137;

int j = 65;

Increment and Decrement Operators and Assignment

Statement i j Equivalent Statements

i = ++j; 66 66 j = j + 1;
i = j;

i = j++; 65 66 i = j;
j = j + 1;

i = --j; 64 64 j = j – 1;
i = j;

i = j--; 65 64 i = j;
j = j – 1;

Example 2.29

Consider the following Java statement:

int i = 137;

int j = 65;

int k = 10;

Increment and Decrement Operators in an Expression

Statement i j Equivalent Statements

i = (++j) * k; 660 66 j = j + 1;
i = j * k;

i = (j++) * k; 650 66 i = j * k;
j = j + 1;

i = (--j) * k; 640 64 j = j - 1;
i = j * k;

i = (j--) * k; 650 64 i = j * k;
j = j - 1;

CRC_C6547_CH002.indd 64CRC_C6547_CH002.indd 64 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 65

Good Programming Practice 2.13

Use the increment and decrement operators exclusively in stand-alone statements.
Avoid using increment or decrement operator as part of any expression or assign-
ment statement.

Advanced Topic 2.8: Compound Assignment Operators

Th e compound assignment operators are of the form ⊗=, where ⊗ is any one of the
binary operators. Th e syntax of an assignment statement involving compound assignment
operator is

variable ⊗= (expression);

and the above statement is equivalent to the following assignment statement:

variable = variable ⊗ (expression);

Example 2.30

Th is example illustrates the use of compound statements.

Compound Assignment Operator

Compound Assignment Statement Equivalent Simple Assignment Statements

1 total += 10; total = total + 10;
2 total += newValue; total = total + newValue;
3 available -= sold; available = available - sold;
4 salary *= 1 + raise; salary = salary *(1 + raise);
5 Cost/= 100.0; cost = cost/100.0;
6 String s1 = "Hello "; String s1 = "Hello ";

String s2 = "there"; String s2 = "there";
s1 += s2; s1 = s1 + s2;

Good Programming Practice 2.14

Use the compound operators += and −= only. Use compound operators to incre-
ment or decrement a variable by a constant value or by another variable as in the
entries 1–3 of table in Example 2.30.

Note 2.17 Java statements fall under two categories: declaration statements and
 executable statements. Declaration statements are employed to declare attributes in
a class and to declare variables within an operation. Executable statements include
all assignment statements and output statements.

CRC_C6547_CH002.indd 65CRC_C6547_CH002.indd 65 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

66 ■ Java Programming Fundamentals

REVIEW
 1. A class is a collection of items with identical behavior.
 2. Attributes keep necessary information for the class.
 3. A comment is ignored by the compiler.
 4. Every Java program is a collection of one or more classes.
 5. A Java application program must have a main method.
 6. Every character in an identifi er is a letter (A to Z, a to z), or a digit (0 to 9), or the

underscore character (_), or the dollar sign ($). Th e fi rst character of an identifi er
cannot be a digit.

 7. A reserved word cannot be used as an identifi er.
 8. Java is a case-sensitive language. Th erefore, identifi ers Cat and cat are not the same.
 9. Th e concatenation operator + can also be used to join a String and a numeric value

or a character.
 10. Every reserved word in Java has lowercase alphabets only.
 11. Data type is a set of values along with a set of meaningful basic operations on those

data values.
 12. Java has eight primitive data types: boolean, byte, char, short, int, long, fl oat, and

double.
 13. Just as an identifi er or a keyword is treated as one token, Java treats special symbols

also as one token.
 14. Java uses the Unicode character set containing 65536 characters.
 15. Th ere are fi ve operations on numeric data types: addition (symbol used is +),

 subtraction (symbol used is −), multiplication (symbol used is *), division (symbol
used is /), and modulus (symbol used is %).

 16. Th e operator precedence rule determines the order in which each of the operators in
an expression is being evaluated.

 17. Java converts the data type of lesser range to the other data type for the purpose of
this expression evaluation. Th at is, data values are converted as follows: byte �
short � int � long � float � double or any combination of these in the
same direction.

 18. Java allows you to allocate memory using a named constant and store a data value.
Th e value stored remains fi xed during the program execution.

 19. A named constant is declared and initialized at the same time.
 20. In the case of primitive data types, the value is kept at the variable location and in the

case of objects, the reference variable do not keep the object, rather reference variable
keeps the reference of the object.

 21. In an assignment statement, the expression on the right side is evaluated and then the
value computed is stored at the variable on the left side.

CRC_C6547_CH002.indd 66CRC_C6547_CH002.indd 66 10/1/2008 4:30:59 PM10/1/2008 4:30:59 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 67

 22. An assignment statement changes the value of the variable on the left -hand side.
 23. Using a variable in an expression does not change its contents.
 24. If a program receives some input from a human during its execution, then the pro-

gram is said to be executing in interactive mode.
 25. Java provides for explicit data–type conversion using a cast operator.
 26. Java statements fall under two categories: declaration statements and executable

statements.
 27. Declaration statements are employed to declare attributes in a class and to declare

variables within a method.
 28. Executable statements include all assignment statements and output statements.
 29. A class has attributes and operations.
 30. A method is the implementation of an operation.
 31. A Java statement ends with a semicolon.

EXERCISES
 1. Mark the following statements as true or false:
 a. Dog is a class.
 b. My dog Mr. Boomer is an instance of the Dog class.
 c. An object is an instance of a class.
 d. Two objects of a class have identical behavior.
 e. In Java, identifi ers Cat and cat are the same.
 f. In Java, a class name must start with an uppercase letter.
 g. An identifi er can start with a $ character.
 h. In Java, there is no diff erence between literals "a" and 'a'.
 i. Th e operands of + operator must be numbers.
 j. Th e operands of % can be any two numbers.
 k. In Java, char data type variable takes 8 bits of memory.
 l. If one of the operands of the modulus operator is a double value, the computa-

tion produces a double value.
 m. Th e number 75. is a literal of type float.
 n. Each primitive data type has its own set of operations.
 o. Let first and second be two double variables with values 3.5 and 10.7,

respectively. Th en aft er the statement first = second executes, value of sec-
ond changes to 3.5.

 p. Statement m = k + 1 + j; is equivalent to m = ++k + j;
 q. Statement k = k + 1 + j; is equivalent to k += j + 1;

CRC_C6547_CH002.indd 67CRC_C6547_CH002.indd 67 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

68 ■ Java Programming Fundamentals

 r. An expression is evaluated using one operator at a time.
 s. Every Java application program must have exactly one method main.
 t. A Java application program can have any number of classes.
 u. Let x and y be 3 and 5, respectively. Aft er the statements z = x; x = y;

y = z are executed, value of y is 3.
 2. Mark the identifi er as valid or invalid. If invalid, explain why it is invalid.
 a. James Bond
 b. wireLess
 c. Why?
 d. mail.com
 e. 10DowningSt
 f. throw
 g. Println
 h. Tiger'sPaw
 i. %profit
 j. Int
 k. _ output

 l. Byte
 m. AAA
 n. L235
 o. -23
 p. ON-OFF
 q. Yes/No
 r. _ $ _ $ _ $
 s. out
 t. Public
 3. Select the best answer.
 a. Th e value of 27/2 is

(i) 13 (ii) 13.5 (iii) 13.4999 (iv) none of these
 b. Th e value of 27/3 is

(i) 9.0 (ii) 9 (iii) 8.9999 (iv) none of these
 c. Th e value of 27 % 10 is

(i) 2 (ii) 3 (iii) 7 (iv) none of these
 d. Th e value of 10 % 27 is

(i) 0 (ii) 10 (iii) 2 (iv) none of these

CRC_C6547_CH002.indd 68CRC_C6547_CH002.indd 68 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 69

 e. Th e value of 27./2 is
 (i) 13 (ii) 13.5 (iii) 13.0 (iv) none of these

 f. Th e value of 27.0 % 10 is
 (i) 2.0 (ii) 3.0 (iii) 7.0 (iv) none of these
 g. Th e value of 27 - 1/2 is
 (i) 27 (ii) 13 (iii) 13.0 (iv) none of these
 h. Th e value of - 27 * 2 + 4.0 * 8/3 is
 (i) –43.3333 (ii) -46.0 (iii) -100.0 (iv) none of these
 4. Given

int a, b, c;

double x, y;

Determine the value assigned by each of the following assignment statements. If an
assignment statement is not valid, state the reason.

 a. b = 5 ; a = 7 ; c = 9 ;
 b. c = 2 + a = 2 + b = 5 ;
 c. x = y = 10.7 ;
 d. (a + b) = c ;
 e. a = 2 ; b = 5 * a ; x = 7 * b ;
 f. x = y = a = b = c = 7;
 g. x = 2.5; b = x ;
 h. c = 7; x = 5.0 / 7;
 i. b = 9; y = b % 7; x = 7 % b;
 j. x * y = 5.7;
 k. x = 7.0; y = x + 1; x = y + 3;
 l. b = 25; c = 35; a = b; b = c; c = a;
 m. a = 0; b = 10; c = b % a;
 n. x = 17 % 3;
 o. y = 17.0 % 3;
 p. x = 10; y = x % 3;
 q. b = 10; c = 20; b = b + c; c = b – c; b = b – c;
 5. Which of the following variable declarations are correct? If a variable declaration is

not correct, provide the correct variable declaration.
 a. short J,I,j = 12;
 b. double x = y = z = 5;
 c. int a, b = 5; c;

CRC_C6547_CH002.indd 69CRC_C6547_CH002.indd 69 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

70 ■ Java Programming Fundamentals

 d. boolean ready, okay = 1;
 e. char space = " ";
 f. String welcome = "Hello!"
 6. Which of the following are valid assignment statements? Assume that b, c, d are

variables of type double and j, k, t are variables of type int, respectively. Further
assume that all these variables are already initialized with nonzero values.

 a. j = j + k / t;
 b. d + b = c;
 c. j = (k < t) ? 10 : 5;
 d. b = ++c – j
 e. c = k % t;
 f. t = d % 5;
 g. k *= k;
 h. d = b = c;
 7. Write Java statements that accomplish the following tasks:
 a. Declare two variables a and b of type double.
 b. Declare and initialize a logical variable fine to true.
 c. Modify the value of a double variable x by subtracting 17.5.
 d. Initialize a double variable d with three times the sum of two double variables

b and c.
 e. Increment an int variable k.
 f. Initialize a double variable d through an input statement.
 g. Initialize a variable k of type int through an input statement.
 h. Output statement for variable c of type double;
 i. Output statement to print the String “How are you”.
 j. Output statement to print the String “\n is the newline character”.
 8. Suppose b, c, d, and e are variables of type double. What are their values aft er

the execution of the last statement?
 b = 17.7;

 c = 13;

 d = c - b;

 e = c + b;

 b = d + e + 2 * b – c / 4;

 c = b – 3 * e + d;

 e = b / c;

d = -e + 27 / 2;

CRC_C6547_CH002.indd 70CRC_C6547_CH002.indd 70 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 71

 9. Suppose b, c, d, and e are variables of type int. What are their values aft er the
execution of the last statement?
b = 17;

c = 13;

d = c – 2 * b / 3;

e = c + b * d % 4;

b = d / e + 2 * b – c / 4;

c = b % 3 / e * d + 1;

e = b / c + e * 5;

d = -e + 7 / 10 ;

 10. Suppose b, c are variables of type int and d, e are variables of type double,
respectively. What are their values aft er the execution of the last statement?
b = 17;

d = 13.3;

c = 10 – 2 * b / 3;

e = c + d * d / 4;

b = b – c / 3 + 5;

c = b % 3 – 8;

e = b / c - e * 5 - 2;

d = 6 - e + 7 / 2 + 5;

 11. Suppose b, c are variables of type int such that b = 7 and c = 9. What is the
output produced? If any one of the output statement has an error, explain the exact
nature of the error.

 a. System.out.println("b = " + b + ", c = " + c");
 b. System.out.println("b + c = " + b + c);
 c. System.out.println("b - c = " + b - c);
 d. System.out.println("b * c = " + b * c);
 e. System.out.println("b / c = " + b / c);
 f. System.out.println("b % c = " + b % c);
 g. System.out.println(b + c + " = b + c");
 h. System.out.println((b + c) + " = (b + c)");

 12. Repeat Exercise 11. However, assume that b and c are of data type double. Also
assume that b and c are 7.0 and 9.0, respectively.

 13. Write the output statement necessary for the following:
 a. Good Morning America!
 b. Good

CRC_C6547_CH002.indd 71CRC_C6547_CH002.indd 71 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

72 ■ Java Programming Fundamentals

 Morning

 America

 c. "Good Morning America"
 d. \Good Morning America\
 e. /Good Morning America\
 14. Correct the syntax errors.

 a.
public void class SyntaxErrOne

{

final ratio = 1.8;

static public main(String args())

 {

 int b = c = 10;

 d = c + 5;

 c = C - 10;

 b = d / c;

 ratio = b / d;

 system.out.println("b = + ", b);
 System.out.println("c = ", b);
 System.out.println("Ratio = " + b / d);
 }

}

 b.
public class syntaxErrorTwo{

 static final char new = \7777\;

 static final int TEN;

 public void main(String[] param){

 int a, b, c;

 TEN = a + 5;

 b = a + new;

 c = a + 5 * TEN;

 (b + c) = b;

 System.out.print("a = " + a);
 System.out.print("new = " + new);
 System.out.print("TEN = " + TEN);
 }

}

CRC_C6547_CH002.indd 72CRC_C6547_CH002.indd 72 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 73

 c.
void public class SyntaxErrorThree

{

 final int OFFSET 32;

 void public main(String args())

 {

 int b; c = 7 ; d;

 d = c + 5;

 c = d - b;

 b = d / c;

 c = b % OFFSET++;

 c++ = d + b;

 system.out.println("B = + ", b);
 System.out.println("C = ", c);
 System.out.println("D " + d);
 }

}

 d.
public class syntaxErrorFour{

 static final char new = "A";

 static final int SIXTY_SIX = "B";

 public void main(String args){

 int a, b, c,

 10 = a;

 b = a + new;

 c = a + 5 * SIXTY_SEVEN;

 a = ++(b + c);

 System.out.print("a : " + a);
 System.out.print("b : " + b);
 System.out.print("(a+b) : " + (a+b));
 }

}

 15. Write an equivalent compound statement. If no such statement is possible, write “No
such statement.” Assume that u, v, w are variables of data type int.

 a. u--;
 b. u = v – w + u;
 c. u = v – w * u
 d. u = 3*(v + w) + u;
 e. u = u % v;

CRC_C6547_CH002.indd 73CRC_C6547_CH002.indd 73 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

74 ■ Java Programming Fundamentals

 16. Write an equivalent simple statement. If no such statement is possible, write “No such
statement.” Assume that u, v, w are variables of data type int.

 a. u -= (v + w);
 b. u -= w % v - v;
 c. v *= u++;
 d. u /= --u;
 e. u += v % w;
 17. For each of the objects listed below, identify the class. Suggest possible attributes

(if any) and operations (if any) for the class.
 a. Th is text book.
 b. Your car.
 c. Th e house at 1256 Farnam Circle.
 d. Your cellular phone.
 e. Th e Zoo in Great Inland.
 18. For each of the sentences below, identify the objects and their classes.
 a. Let me throw a ball at you.
 b. Jill was reading “A passage to South America” by R.G. Wells.
 c. Jack took his neighbor Mark’s dog for a walk.
 d. Switch on the TV to watch “Th is day is history.”
 e. Joy just bought a new bike from “Cycle sport.”

PROGRAMMING EXERCISES
 1. Write a program that prompts the user to input temperature in Centigrade. Th e

 program should then output the temperature in Fahrenheit.
 2. Write a program that prompts the user to input length, width, and height of a box.

Th e program then outputs the surface area and volume.
 3. Write a program that prompts the user to input days, hours, minutes, and seconds it

took a mail to reach a destination. Th e output is total time in seconds for the mail to
reach its destination.

 4. Given delay time in seconds, determine the number of days, hours, minutes, and
seconds it took a mail to reach its destination.

 5. Write a program to evaluate the expression ax2 + bx + c. User will be prompted to
enter a, b, c, and x.

 6. Write a program to solve the linear equation ax + b = 0.
 7. According to the grading policy, fi nal grade is determined by the average of four test

scores. Create a program to read student’s fi rst name, last name, and four test scores.
Th e program outputs the student’s last name, four test scores, and the average.

CRC_C6547_CH002.indd 74CRC_C6547_CH002.indd 74 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

Class and Java Fundamentals ■ 75

 8. Given the monthly salary of an employee, compute the bonus. Th e bonus is $1000
plus 2% of the amount above $7000 of the employee’s annual salary. Assume that
every employee has annual salary above $7000.

 9. Find the average character code value of a fi ve character word. Print the word, each
of its characters along with their codes, and the average.

 10. Given an amount between 1 and 100 in cents, determine the number of quarters,
dimes, nickels, and cents to be returned. Also print out the total number of coins to
be returned.

 11. Write a program to compute the average temperature of the day from fi ve readings in
Fahrenheit. Program outputs the average temperature in Centigrade.

 12. Write a program to estimate the cost of an upcoming vacation. Th ere are four types of
expenses: Gas , food, boarding, and entertainments. Gas expense is computed on the
basis of cost per mile and estimated miles of travel. Food, boarding, and entertain-
ments are based on cost per day and estimated days for each one of them.

 13. From fi rst name, middle initial, last name, and social security number, create a pass-
word as in the following example. Example: Meera S. Nair 123-45-6789 will have
password M6S4N1.

 14. From fi rst name, middle initial, last name, and social security number, create a pass-
word as in the following example. Example: Meera S. Nair 123-45-6789 will have
password m6s4n1.

 15. Write a program to create a tip table similar to the one shown below.

 Th e Tip Table

Amount 15% 20%

10 1.5 2.0
20 3.0 4.0
40 6.0 8.0
60 9.0 12.0
100 15.0 20.0

ANSWERS TO SELF-CHECK
 1. Th ree attributes: First Name, Last Name, Phone Number; one operation: compute

grade point average
 2. Two attributes: length, width; two operations: compute area, compute perimeter
 3. Attribute: radius; operations: compute area, compute perimeter
 4. Two attributes: velocity, acceleration; two operations: change velocity, lift off
 5. Within a pair of square brackets
 6. keyword
 7. Fine, FiNe, fiNE, fINE

CRC_C6547_CH002.indd 75CRC_C6547_CH002.indd 75 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

76 ■ Java Programming Fundamentals

 8. Conveys no purpose or meaning
 9. no. class is a reserved word
 10. True
 11. False
 12. True
 13. False
 14. System.out.println("All is \"well\" in the eastern border!");

 15. "NorthAmerica"
 16. "South Africa"
 17. 19
 18. 20
 19. String
 20. data type
 21. double
 22. int
 23. 0
 24. 17
 25. 31
 26. 5
 27. 6.0
 28. 6.454545454545455
 29. String productDescription;
 30. int numOfDependents;
 31. 20, 20
 32. x = 2*x + 3*y;
 33. Scanner
 34. space, horizontal tab, form feed
 35. packages
 36. java.util
 37. String class
 38. char
 39. PrintStream
 40. interactive
 41. char
 42. False

CRC_C6547_CH002.indd 76CRC_C6547_CH002.indd 76 10/1/2008 4:31:00 PM10/1/2008 4:31:00 PM

Apago PDF Enhancer

77

C H A P T E R 3

Class Design

In this chapter you learn

Object-oriented concepts
Encapsulation, information hiding, interface, service, and message passing

Java concepts
Class, object, parameter passing, method invocation, method creation, categories
of variables, and default constructor

Programming skills
Design, implement, and test a simple Java program in a purely object-oriented way

In Chapter 2, you have learned how to create a simple application program. Every program
in Chapter 2 has exactly one class and one method, the main, and every variable and
executable statement is placed inside the method main. In this chapter, you will learn to
create new classes. Recall that a class encapsulates both data and operations. You will also
learn to create objects or instances of a class. Th us, in this chapter you learn to design a
program in a purely object-oriented way.

In keeping with the pedagogical principle of introducing diffi cult concepts in an
incremental fashion, this chapter is intentionally made short and simple. Although vari-
ous aspects of object-oriented design are introduced in this chapter, many ideas will be
explored in more detail in later chapters. For instance, the method invocation and the
method creation discussed in this chapter are limited to methods with at most one formal
parameter. Methods having more than one formal parameter are introduced in Chapter 6.
Similarly, we introduce the concept of a constructor through default constructor. Th e gen-
eral case is discussed in Chapter 6.

CLASS
Recall that keeping data along with operations is known as encapsulation and is one of
the fundamental principles of object-oriented design. Another, diff erent but closely related
principle of object-oriented design is that of information hiding and it refers to the fact that

•
•

•
•

•
•

CRC_C6547_CH003.indd 77CRC_C6547_CH003.indd 77 8/27/2008 6:41:47 PM8/27/2008 6:41:47 PM

Apago PDF Enhancer

78 ■ Java Programming Fundamentals

the user need not and should not have access to the internal parts. Th e user is provided
with a set of operations and all that a user needs to know is the specifi cations of each of
those operations.

Attributes store the data and operations access and manipulate attributes. As you have
already seen in Chapter 2, the basic syntax for a class defi nition is

[accessModifier] class ClassName

{

 [members]

}

where ClassName is an identifi er you wish to give to the class and members consists of
attributes and operations of the class. As a general rule, we keep classes public. Th us, we
use the following simplifi ed syntax template for user-defi ned classes:

public class ClassName

{

 [members]

}

Self-Check

 1. Consider your television. To use the television, you need not know about its
internal parts is an example of .

 2. In Java, class is a .

Attributes

Attributes of a class are used to store data and they can be classifi ed into two categories:
instance variables and class variables. Certain attributes are such that each object or instance
has its own variable and hence the name instance variable. However, certain attributes are
shared by all objects or instances of a class. Th ese attributes are known as class variables
and will be introduced in Chapter 7.

Th e syntax template of an instance variable is

[accessModifier] dataType identifierOne[[=LOne], ...,

 identifierN[=LN]];

Have you ever thought how unwise it is to keep data as public? If you have access to
your bank’s data, you can change your account balance to any value. By the same token, if
you are running a business, if you allow your customers complete access to their account,
they can modify their account balance as they please. In short, we have complete chaos!
Th erefore, adhering to the principle of information hiding, unless there is a very compelling

CRC_C6547_CH003.indd 78CRC_C6547_CH003.indd 78 8/27/2008 6:41:48 PM8/27/2008 6:41:48 PM

Apago PDF Enhancer

Class Design ■ 79

reason, we keep all instance variables as private. Being private means, only the object
alone has access to its instance variables.

Th us, the simplifi ed syntax template for instance variable is

private dataType variableName;

Example 3.1

In this example, we begin the creation of a new class Stock to store information
about a stock. Assume that you want to keep information about the number of stocks
owned, stock symbol, and dividend per year. Th e number of stocks currently owned
by a person is an integer value. Th e stock symbol is a string. Th e dividend per year is a
real number. Th e instance variables of the Stock class can be declared as follows:

/**

 Keep s ticker symbol, number of shares and dividend

*/

class Stock

{

 private int numberOfShares;

 private String tickerSymbol;

 private double dividend;

 // add code to implement operations

}

 It is useful to visualize a Stock class as a unit of three slots, each slot having its
own label (Figure 3.1).

numberOfShares

tickerSymbol

dividend

Stock

FIGURE 3.1 Visual representation of Stock class.

CRC_C6547_CH003.indd 79CRC_C6547_CH003.indd 79 8/27/2008 6:41:49 PM8/27/2008 6:41:49 PM

Apago PDF Enhancer

80 ■ Java Programming Fundamentals

Self-Check

 3. Declare an instance variable to keep track of the number of students enrolled in
a course.

 4. Declare an instance variable to keep track of the maximum grade point average
among students enrolled in a course.

Operations

Data being kept as private, it is not directly accessible to other objects. Th e operations are
public and operations provide the necessary interface to

Initialize or modify an instance variable
Retrieve the current value of an instance variable
Compute a new value based on current value of an instance variable

Recall that the implementation of an operation is called a method. Before we indulge
in creating methods, let us look into the usage or invocation of a method to get some
insight.

Introspection

displayTime is an operation of all clocks. Can the displayTime method of an
electronic clock be the same as the displayTime method of a mechanical clock?

Eat can be an operation of all mammals. Do humans and dogs eat the same way?

Self-Check

 5. As a general rule, keep operations .
 6. List an operation of your television other than switch on and switch off .

METHOD INVOCATION
A Java program is a collection of collaborating objects. By the term collaborating we mean
whenever an object needs some task to be done, it invokes a method of a class that could
provide the service. In fact, we have done this many times already! In all the programs you
have encountered so far, whenever you need to output, you had invoked methods print
or println of the PrintStream class. Similarly, in the section on input in Chapter 2,
you have invoked methods such as next, nextInt, and nextDouble of the Scanner
class.

Assume that scannedInfo is a reference variable of the type Scanner, and age is a
variable of the type int. Th e following Java statement

age = scannedInfo.nextInt();

•
•
•

CRC_C6547_CH003.indd 80CRC_C6547_CH003.indd 80 8/27/2008 6:41:49 PM8/27/2008 6:41:49 PM

Apago PDF Enhancer

Class Design ■ 81

invokes the method nextInt of the Scanner class. Th e syntax template for invoking a
method using a reference variable is

referenceVariableName.methodName([explicitParameters]);

Th e reference variable referenceVariableName is known as the implicit parameter.
Th e method nextInt returns an int value. Th erefore, we have declared an int variable
age in our program and used the assignment operator = to store the value returned by
nextInt in the variable age. If we do not use an assignment statement, the return value
will be lost forever. Since method nextInt returns a value, we call nextInt a value
returning method. Further, since nextInt returns a value of type int, we say method
nextInt is of the type int. A value returning method can be used in any expression
where we may use a value. To be specifi c, the nextInt method can be used in any expres-
sion where we may use an int.

A value returning method can be invoked in three diff erent ways:

 1. Invoke it on the right-hand side of an assignment statement. In this case, the value
returned by the method is stored in the variable on the left -hand side of the assign-
ment statement. Using this technique, the value returned by the method can be used
in other expressions or output statements.

 2. Invoke it as part of an expression. In this case, value returned by the method is used
only once. Since the value is not stored in a variable, it cannot be used in any other
calculations or any other output statements.

 3. Invoke it as part of an output statement. Th e value is not stored in a variable,
and therefore it cannot be used in any other calculations or any other output
statements.

Not all methods return values. For example, println method of the PrintStream
class does not return any value. Since method println does not return any value, we
say println is of type void or a void method. You cannot use void methods as
part of an expression. A value returning method is invoked as part of an expression
or stand-alone statement, whereas a void method can only be invoked as a stand-alone
Java statement.

Example 3.2

Th is example illustrates various ways of method invocations (Table 3.1).

Self-Check

 7. What is the type of the method charAt?
 8. What is the type of the method nextDouble?

CRC_C6547_CH003.indd 81CRC_C6547_CH003.indd 81 8/27/2008 6:41:49 PM8/27/2008 6:41:49 PM

Apago PDF Enhancer

82 ■ Java Programming Fundamentals

METHOD DEFINITION
You are already familiar with the syntax template of the method main as shown below:

public static void main (String[] args)

{

 [statements]

}

Observe that the method consists of two parts: the header

public static void main (String[] args)

and the body

{

 [statements]

}

TABLE 3.1 Illustration of Method Invocation

Method Invocation Remark

System.out.println("Hello"); Th is is a valid invocation. Th e method
println is a void method.

String word; Invalid. Th e method println is a
void method and cannot appear in an
assignment statement.

word = System.out.println("Hello");

String word = "Try me!"; Invalid. Th e method charAt is a value
returning method. Th e returned value
'r' is lost.

word.charAt(1);

String word = "Try me!"; Invalid. Th e method charAt returns a
char value. Th e returned value 'r'
must be assigned to variable of type
char.

boolean letter;
letter = word.charAt(1);

String word = "Try me!"; Valid. Th e variable letter contains
the character 'r'.char letter;

letter = word.charAt(1);

Scanner scannedInfo = Invalid. Th e value returned by the
method nextInt is lost. new Scanner(System.in);

scannedInfo.nextInt();

Scanner scannedInfo = Invalid. Th e value returned by the
method is of type double and hence
assigning to an int will result in a
syntax error.

 new Scanner(System.in);
int salary;
salary = scannedInfo.nextDouble();

Scanner scannedInfo = Valid. Th e variable salary contains
the double value returned by
nextDouble method.

 new Scanner(System.in);
double salary;
salary = scannedInfo.nextDouble();

CRC_C6547_CH003.indd 82CRC_C6547_CH003.indd 82 8/27/2008 6:41:49 PM8/27/2008 6:41:49 PM

Apago PDF Enhancer

Class Design ■ 83

Th e header starts with the keyword public that makes the method accessible to
other objects. If you use the keyword private, the method cannot be invoked by other
objects.

Th e keyword static refers to the fact that method main is shared by all objects
belonging to the class. Th is topic requires further explanation and therefore it is
described in more detail in Chapter 7. For the present, note that we defi ne all the meth-
ods other than the main as nonstatic methods and as such the keyword static will
be omitted.

Th e next keyword is the return type of the method. Th e method main is a void method.
In a method, the correct return type needs to be specifi ed.

Aft er the return type, you must provide an identifi er as the name of the method. Th e
naming convention for methods is identical to that of an instance variable.

Th e header ends with a list of formal parameters (or arguments) that are enclosed within
a pair of parentheses. Th e formal parameter list in this case is String[] args. You need
to know arrays for a full explanation. Th e list of formal parameters in a method header
can be empty. However, the pair of parentheses enclosing the formal parameter cannot be
omitted.

Th e syntax template of a method is as follows:

[accessModifier] [abstract|final] [static] returnType

 name(paramList)

{

 [statements]

}

Th e access modifi er of all the methods in this chapter is public. Th e optional keywords
abstract, final, and static will be explained in later chapters. Th e vertical bar
between abstract and final indicates that both of them cannot appear simultaneously.
All the methods you create in this chapter will have an empty parameter list or one formal
parameter. Th us, the syntax template of all the methods you create in this chapter other
than the method main can be given as follows:

public returnType methodName()

{

 [statements]

}

or

public returnType methodName(dataType variable)

{

 [statements]

}

CRC_C6547_CH003.indd 83CRC_C6547_CH003.indd 83 8/27/2008 6:41:50 PM8/27/2008 6:41:50 PM

Apago PDF Enhancer

84 ■ Java Programming Fundamentals

All methods of a class have access to its instance variables. In the case of methods with
one formal parameter, the formal parameter modifi es the behavior of the method. For
example, consider the following Java statements:

char seventhChar = eighthChar = ' ';

String currentLine = "It is quite sunny today."

seventhChar = currentLine.charAt(6); // (1)

eighthChar = currentLine.charAt(7); // (2)

It may be noted that in Statement 1 charAt returns 'q' and in Statement 2 the same
method returns the character 'u'. Th us, the actual parameter values such as 6 and 7 are
crucial in determining the value returned.

In the case of void methods, arguments play an important role as well. For instance,
consider the following two println statements:

System.out.println("Happy Birthday to you");

outputs Happy Birthday to you, and

System.out.println("Good Night; Sweet Dreams!");

outputs Good Night; Sweet Dreams!. Th us, arguments provide the additional infor-
mation necessary to carry out the service specifi ed by a method.

Th e syntax for declaring a formal parameter is

dataType parameterName

where dataType is the data type of the formal parameter parameterName. When a
method is invoked, the actual parameter value is copied into the formal parameter.

Inside the method, you can declare additional variables and they are known as local
variables. A local variable is not accessible outside the block it is declared. Th erefore, no
access modifi er is required for a local variable. Local variables are discussed in Chapter 2.

Self-Check

 9. What is the type of the formal parameter of charAt?
 10. True or false: A method may not have any formal parameter.

CATEGORIES OF VARIABLES
So far, you have seen three kinds of variables: instance variable, local variable, and for-
mal parameter. Th e following discussion summarizes the similarities and dissimilarities
among them. Th ere is one more type of variables in Java called, class variables (also known
as static variables). Th ey are introduced in Chapter 7.

CRC_C6547_CH003.indd 84CRC_C6547_CH003.indd 84 8/27/2008 6:41:50 PM8/27/2008 6:41:50 PM

Apago PDF Enhancer

Class Design ■ 85

Syntax Template

Instance variable

 [accessModifier] dataType identifierOne[[=LOne], ...,

 identifierN[=LN]];

Local variable

dataType identifierOne[[=LOne], identifierTwo[=LTwo], ...,

 identifierN[=LN]];

Formal parameter

dataType identifierOne[, ..., dataType identifierN]

Self-Check

 11. A local variable is declared inside a .
 12. True or false: A local variable has no access modifi er.

Initialization

An instance variable can be initialized through a constructor as well. Th e concept of a
constructor is explained later in this chapter. Th erefore, quite oft en an instance variable is
not initialized during declaration.

It is the programmers’ responsibility to initialize a local variable before using it. Th ere-
fore, programmers quite oft en initialize a local variable during declaration.

A formal parameter is initialized during the method invocation and the actual param-
eter value is copied to the formal parameter before the execution of the very fi rst executable
statement of the method.

Self-Check

 13. Declare and initialize a local variable to store age.
 14. Declare and initialize an instance variable to store interest rate.

Scope

An instance variable is available only within the object (if it is declared private).

A local variable is available only within the block from its point of declaration. Recall that a
block is a sequence of statements enclosed within a pair of braces {and}. You will see block
statements in Chapter 4.

A formal parameter is available within the method.

Self-Check

 15. True or false: Scope of a local variable is less than that of a formal parameter.
 16. True or false: All local variables have the same scope.

CRC_C6547_CH003.indd 85CRC_C6547_CH003.indd 85 8/27/2008 6:41:50 PM8/27/2008 6:41:50 PM

Apago PDF Enhancer

86 ■ Java Programming Fundamentals

Existence

An instance variable exists as long as the associated object exists.
A local variable is created every time declaration statement is executed during the method

execution and the variable ceases to exist upon the completion of the block it is declared.
A formal parameter is created at the beginning of the method invocation and it ceases

to exist upon the completion of the method.

Self-Check

 17. True or false: A local variable exists throughout the method.
 18. True or false: A formal parameter exists throughout the method.

return STATEMENT
Th e last statement of all value returning methods in this chapter will have the following
syntax:

return [returnValue];

where returnValue is a literal value or a variable or an expression that matches the
return type of the method. Th is statement returns the returnValue and makes it
 available where the method was invoked. Further, the control goes back to the Java state-
ment that invoked the method.

In the case of a void method, no return statement is necessary. However, you can
have return statement in a void method so long as returnValue is omitted.

Th e word return is a keyword in Java.

Self-Check

 19. True or false: Every value returning method must return a value.
 20. True or false: A void method need not have any return statement.

JAVADOC CONVENTION
Th e comments for a method to be processed by the javadoc utility is placed immediately
above the method between /** and */ similar to the comments for a class. Th e fi rst line must
describe the functionality of the method. Subsequent lines start with @param and provide
brief description of each formal parameter of the method. In the case of a value returning
method, the last line starts with @return. We will follow these conventions for all methods
presented in this book.

ACCESSOR METHOD
A method that does not modify any instance variable of an object is called an accessor
method. All other methods are known as mutator methods.

CRC_C6547_CH003.indd 86CRC_C6547_CH003.indd 86 8/27/2008 6:41:50 PM8/27/2008 6:41:50 PM

Apago PDF Enhancer

Class Design ■ 87

Let dataMember be an instance variable of a class of the type dataType. Since a
dataMember is declared as private, it cannot be accessed outside the object. Th ere-
fore, if the value of dataMember is required outside the class, you must provide a method.
An accessor method that returns the value of an instance variable needs no additional
information. Th us, no formal parameter is required. Th erefore, we start with the syntax
template for a method with no formal parameters. Th at is,

public returnType methodName()

{

 [statements]

}

The method returns a value of data type dataType, the method is of type
dataType. By convention, quite oft en followed by Java programmers, the name of the
method is of the form getDataMember. In other words, the name of the method is cre-
ated by concatenating the word get and the name of the instance variable with the fi rst
letter of the instance variable’s name changed to uppercase. Finally, the only statement
required in the body is a return statement to return the dataMember. Th e syntax
template of an accessor method that returns the value of dataMember is

public dataType getDataMember()

{

 return dataMember;

}

Example 3.3

In this example, we provide the accessor methods that return the value of an instance
variable of the Stock class introduced in Example 3.1.

/**

 Accessor method for the number of shares

 @return the number of shares

*/

public int getNumberOfShares()

{

 return numberOfShares;

}

/**

 Accessor method for the ticker symbol

 @return the ticker symbol

*/

CRC_C6547_CH003.indd 87CRC_C6547_CH003.indd 87 8/27/2008 6:41:50 PM8/27/2008 6:41:50 PM

Apago PDF Enhancer

88 ■ Java Programming Fundamentals

public String getTickerSymbol()

{

 return tickerSymbol;

}

/**

 Accessor method for the dividend

 @return the dividend

*/

public double getDividend()

{

 return dividend;

}

Self-Check

 21. True or false: An accessor method may modify some instance variables.
 22. True or false: An accessor method returns a value.

MUTATOR METHOD
Accessor methods do not change the value of any instance variable. A method that changes
the value of one or more instance variables is called a mutator method.

Let dataMember be an instance variable of the type dataType of a class. Th en due
to the principle of information hiding, dataMember can only be modifi ed by the object.
Th erefore, a mutator method to modify the dataMember is oft en essential and such a
mutator method requires one formal parameter of the type dataType. Th erefore, we
start with the syntax template for a method with one formal parameter. Th at is,

public returnType methodName(dataType variable)

{

 [statements]

}

A mutator method that modifi es an instance variable has nothing to return and thus is
a void method. Once again, by convention oft en followed by Java programmers, a mutator
method that modifi es dataMember has the name setDataMember. In other words, the
name of the method is created by concatenating the word set and the name of an instance
variable with the fi rst letter of the instance variable name changed to uppercase. As observed
above, such a mutator method requires one argument of the type dataType. Th ere is no
convention for naming formal parameters. Th roughout this book we name the single argu-
ment appearing in a mutator method by concatenating the word in and the name of an
instance variable with the fi rst letter of the instance variable name changed to uppercase. Th e
syntax template of all mutator methods that modify an instance variable of the class is

CRC_C6547_CH003.indd 88CRC_C6547_CH003.indd 88 8/27/2008 6:41:50 PM8/27/2008 6:41:50 PM

Apago PDF Enhancer

Class Design ■ 89

public void setDataMember (dataType inDataMember)

{

 dataMember = inDataMember;

}

Note that the only statement required in the body is an assignment statement, which
assigns the incoming value to the instance variable.

Example 3.4

In this example, we develop the mutator methods of the Stock class introduced in
Example 3.1.

/**

 Mutator method to set the number of shares

 @param inNumberOfShares new value for the number of

 shares

*/

public void setNumberOfShares(int inNumberOfShares)

{

 numberOfShares = inNumberOfShares;

}

/**

 Mutator method to set the ticker symbol

 @param inTickerSymbol new value for the ticker symbol

*/

public void setTickerSymbol(String inTickerSymbol)

{

 tickerSymbol = inTickerSymbol;

}

/**

 Mutator method to set the dividend

 @param inDividend new value for the dividend

*/

public void setDividend(double inDividend)

{

 dividend = inDividend;

}

Self-Check

 23. True or false: A method can be both an accessor and a mutator.
 24. True or false: A mutator method may not have a return statement.

CRC_C6547_CH003.indd 89CRC_C6547_CH003.indd 89 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

90 ■ Java Programming Fundamentals

toString METHOD
It is a good programming practice to provide a toString method. Th e toString
method returns a String that contains essential information. Observe that toString
is an accessor method that returns a String. Th us, a toString method has the fol-
lowing form:

public String toString()

{

 String str;

 // create the String str to be returned.

 return str;

}

Example 3.5

In this example, we develop the toString method for the Stock class. For a
stock, the most essential information is the number of shares currently owned and
the stock symbol. Th us, we have the following toString method for the Stock
class:

/**

 The toString method

 @return number of shares and ticker symbol

*/

public String toString()

{

 String str;

 str = numberOfShares + " " + tickerSymbol;

 return str;

}

Self-Check

 25. Th e toString is a method.
 26. True or false: Every class must have a toString method.

APPLICATION-SPECIFIC METHODS
In general, every class needs accessor methods and mutator methods for every instance
variable. In addition, it is a good idea to include the accessor method toString. Apart
from these, you may need additional methods. Quite oft en, these additional methods

CRC_C6547_CH003.indd 90CRC_C6547_CH003.indd 90 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

Class Design ■ 91

are application specifi c. In this section, we illustrate application specifi c methods for the
Stock class.

Example 3.6

A method that returns the total dividend for a stock may be a useful method. Th e
return type of the method is double and the method is best named yearlyDiv-
idend. Th us, we have the following accessor method:

/**

 Computes and returns yearly dividend

 @return the yearly dividend

*/

public double yearlyDividend()

{

 double totalDividend;

 totalDividend = numberOfShares * dividend;

 return totalDividend;

}

CONSTRUCTOR
As mentioned before, a constructor is used to initialize instance variables. Th e syntax tem-
plate of a constructor can be thought of as a mutator method with no return type and name
the same as the name of the class. Th us, a constructor for the Stock class can be written
as follows:

/**

 Constructs a Stock with zero shares

*/

public Stock()

{

 numberOfShares = 0;

 tickerSymbol = "[NA]";

 dividend = 0.0;

}

Constructors are covered in detail in Chapter 6.

Self-Check

 27. True or false: A constructor is a method.
 28. True or false: One of the purposes of a constructor is to initialize instance

variables.

CRC_C6547_CH003.indd 91CRC_C6547_CH003.indd 91 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

92 ■ Java Programming Fundamentals

PUTTING ALL PIECES TOGETHER
We are now ready to put all the pieces of a class together. Th ere is no specifi c order for
methods or instance variables. However, throughout this book the following order is
maintained:

 1. Instance variables
 2. Constructors
 3. Application specifi c methods
 4. Accessor methods returning the instance variable value
 5. Mutator methods modifying the instance variable
 6. toString method

Once again, we stress that this order is purely the author’s choice and you need not fol-
low this. Th e Stock class we developed is presented in Example 3.7.

Example 3.7

/**

 Keeps ticker symbol, number of shares and dividend

 information.

*/

class Stock

{

 private int numberOfShares;

 private String tickerSymbol;

 private double dividend;

 /**

 Constructs a Stock with zero shares

 */

 public Stock()

 {

 numberOfShares = 0;

 tickerSymbol = "[NA]";

 dividend = 0.0;

 }

 /**

 Computes and returns yearly dividend

 @return the yearly dividend

 */

CRC_C6547_CH003.indd 92CRC_C6547_CH003.indd 92 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

Class Design ■ 93

 public double yearlyDividend()

 {

 double totalDividend;

 totalDividend = numberOfShares * dividend;

 return totalDividend;

 }

 /**

 Accessor method for the number of shares

 @return the number of shares

 */

 public int getNumberOfShares()

 {

 return numberOfShares;

 }

 /**

 Accessor method for the ticker symbol

 @return the ticker symbol

 */

 public String getTickerSymbol()

 {

 return tickerSymbol;

 }

 /**

 Accessor method for the dividend

 @return the dividend

 */

 public double getDividend()

 {

 return dividend;

 }

 /**

 Mutator method to set the number of shares

 @param inNumberOfShares new value for the number

 of shares

 */

 public void setNumberOfShares(int inNumberOfShares)

 {

 numberOfShares = inNumberOfShares;

 }

CRC_C6547_CH003.indd 93CRC_C6547_CH003.indd 93 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

94 ■ Java Programming Fundamentals

 /**

 Mutator method to set the ticker symbol

 @param inTickerSymbol new value for the ticker

 symbol

 */

 public void setTickerSymbol(String inTickerSymbol)

 {

 tickerSymbol = inTickerSymbol;

 }

 /**

 Mutator method to set the dividend

 @param inDividend new value for the dividend

 */

 public void setDividend(double inDividend)

 {

 dividend = inDividend;

 }

 /**

 The toString method

 @return number of shares and ticker symbol

 */

 public String toString()

 {

 String str;

 str = numberOfShares + " " + tickerSymbol;

 return str;

 }

}

Advanced Topic 3.1: Representing Class in UML 2

As mentioned in Chapter 1, the unifi ed modeling language (UML) is a standard language
for soft ware specifi cation. Th e UML uses mostly graphical notations to express the design
of soft ware projects. Th e unifi ed modeling language version 2 (UML 2) is the latest version
of UML. Th e UML 2 notation of the Stock class is shown in Figure 3.2.

Th ere are three distinct areas: class name area, instance variable area, and operations
area. Th e − sign and + sign indicate the access modifi ers private and public, respec-
tively. A simplifi ed notation for the Stock class in UML 2 notation is shown in Figure 3.3
and it is quite useful in showing relationships among classes.

CRC_C6547_CH003.indd 94CRC_C6547_CH003.indd 94 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

Class Design ■ 95

TESTING
Every class you create must be tested thoroughly before it is used in any application. Th e
most general approach to test a class is to create an application program and test every
method of the class you have developed. Th is approach is followed in this book and is
illustrated in the next example. Java development environments such as BlueJ provide the
facility to test a class without an application program. Th e readers are encouraged to test
their class by creating an application program.

Example 3.8

In this example we create an application to test the Stock class.
As you know by now, every application has at least one class and one of the classes

of the application has a method main. Th erefore, we create an application having
exactly one class that contains the method main as shown below:

public class StockTesting

{

 public static void main (String[] args)

 {

 //Java statements to test Stock class

 }

}

Stock

+yearlyDividend() : double
+getNumberOfShares() : int
+getTickerSymbol() : String
+getDividend() : double
+setNumberOfShares(int) : void
+setTickerSymbol(String) : void
+setDividend(double) : void
+toString():void

-numberOfShares : int
-tickerSymbol : String
-dividend : double

FIGURE 3.2 Class diagram of Stock class.

Stock

FIGURE 3.3 Simplifi ed class diagram of Stock class.

CRC_C6547_CH003.indd 95CRC_C6547_CH003.indd 95 8/27/2008 6:41:51 PM8/27/2008 6:41:51 PM

Apago PDF Enhancer

96 ■ Java Programming Fundamentals

To begin with, to test any method of the Stock class, you must create an instance
of the Stock class. Th e required Java statement is

Stock testStock = new Stock(); //(1)

Th e left -hand side of the above assignment statement declares a reference variable
testStock of the type Stock. Th e right-hand side creates a new object belonging
to the Stock class and returns the reference. In fact the new on the right-hand side
is an operator that creates an instance of the class on the basis of the constructor
that follows. For example, Stock() is a constructor with no formal parameter.
Such a constructor is known as default constructor and is present in every class by
default so long as there is no user-defi ned constructor. A default constructor initial-
izes every instance variable of the object with default values. In this example, we
have already included a constructor with no formal parameter, and therefore the
right-hand side of Statement 1 creates an instance of the Stock class, initializes
numberOfShares to 0, tickerSymbol to "[NA]", and dividend to 0.0.
Th e new operator returns the reference of the object created. Th us, the variable
testStock has the reference of the new object created. Note that Statement 1 is
equivalent to the following two statements:

Stock testStock; //(2)

testStock = new Stock(); //(3)

Statement 2 declares a local variable testStock. Statement 3 creates a new
instance of Stock and initializes the reference variable testStock with the ref-
erence of the newly created instance returned by the new operator. In other words,
Statement 3 instantiates the local variable testStock.

Now to test a pair of accessor and mutator methods corresponding to an instance
variable, the best way is to get an input value, use the mutator method to store it, and
then output it with the help of corresponding accessor method. Once all instance
variables received valid data values, application specifi c methods and toString
method can be tested. Th us, we have the following Java application program:

import java.util.Scanner;

/**

 An application class to test Stock class

*/

public class StockTesting

{

 public static void main (String[] args)

CRC_C6547_CH003.indd 96CRC_C6547_CH003.indd 96 8/27/2008 6:41:52 PM8/27/2008 6:41:52 PM

Apago PDF Enhancer

Class Design ■ 97

 {

 //Create an object belonging to the class Stock

 Stock testStock = new Stock();

 //Declare local variables

 int inputNumberOfShares, outputNumberOfShares;

 String inputTickerSymbol, outputTickerSymbol;

 double inputDividend, outputDividend;

 double outputYearlyDividend;

 //Get input values

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter numbers own, stock symbol"

+ " and dividend : ");

 System.out.flush();

 inputNumberOfShares = scannedInfo.nextInt();

 inputTickerSymbol = scannedInfo.next();

 inputDividend = scannedInfo.nextDouble();

 System.out.println();

 //Test mutator and accessor methods

 testStock.setNumberOfShares(inputNumberOfShares);

 testStock.setTickerSymbol(inputTickerSymbol);

 testStock.setDividend(inputDividend);

 outputNumberOfShares

 = testStock.getNumberOfShares ();

 outputTickerSymbol = testStock.getTickerSymbol();

 outputDividend = testStock.getDividend();

 System.out.println("Number of shares : " +

 outputNumberOfShares);

 System.out.println("Stock symbol is : " +

 outputTickerSymbol);

 System.out.println("Dividend per share is : " +

 outputDividend);

 //Test yearlyDividend method

 outputYearlyDividend = testStock.yearlyDividend();

 System.out.println("Yearly Dividend is : " +

 outputYearlyDividend);

 //Test toString method

CRC_C6547_CH003.indd 97CRC_C6547_CH003.indd 97 8/27/2008 6:41:52 PM8/27/2008 6:41:52 PM

Apago PDF Enhancer

98 ■ Java Programming Fundamentals

 System.out.println(testStock.toString());

 }

}

Output

Enter numbers own, stock symbol and dividend: 500 XYZ 1.43

Number of shares : 500

Stock symbol : XYZ

Dividend per share : 1.43

Yearly Dividend : 715.0

500 XYZ

Self-Check

 29. True or false: Every class needs to be tested.
 30. Testing will help identify errors.

Advanced Topic 3.2: Representing Relationship in UML 2

Th e UML 2 class diagram of StockTesting application is presented in Figure 3.4. Th e
association is the most common relationship that exists among classes and it represents
the relationship among instances of classes. Th e multiplicity of the association denotes

Stock

+yearlyDividend() : double
+getNumberOfShares() : int
+getTickerSymbol() : String
+getDividend() : double
+setNumberOfShares(int) : void
+setTickerSymbol(String) : void
+setDividend(double) : void
+toString():void

-numberOfShares : int
-tickerSymbol : String
-dividend : double

StockTesting

+main(String[]) : void

uses1

1..*

FIGURE 3.4 Class diagram of StockTesting application.

CRC_C6547_CH003.indd 98CRC_C6547_CH003.indd 98 8/27/2008 6:41:52 PM8/27/2008 6:41:52 PM

Apago PDF Enhancer

Class Design ■ 99

the number of objects participating in such a relationship. For example, an instance of
the class StockTesting uses one or more instances of the class Stock. Th us, there is
an association between class StockTesting and class Stock. Th e number 1 appearing
near the class StockTesting indicates that corresponding to one Stock object there is
1 StockTesting object and the notation 1..* appearing near the class Stock indicates
that corresponding to one StockTesting object there can be 1 to many Stock objects.
Both 1 and 1..* are known as the multiplicity.

Advanced Topic 3.3: Class Design, Implementation, and Testing

In this section, we continue with the soft ware development process outlined in Chapter 1.
As mentioned in Chapter 1, design, implementation, and testing phases are covered in this
section. We list them fi rst for easy reference and then proceed to elaborate on each of those
phases through an example.

Phase 2. Design
Step 1. Decide on attributes
Step 2. Decide on methods

Phase 3. Implementation (or create classes using Java constructs)
Phase 4. Testing

Design

Th e primary aim of this phase is to decide on various classes required and assign respon-
sibilities to each one of them. Design of the soft ware begins with a formal specifi cation of
the intended product. Th e following is an example of a formal specifi cation of a circular
counter.

Example 3.9

A circular counter counts 0, 1, 2, …, limit − 1. Once the counter reaches limit − 1,
the next value is not limit, rather it is 0. In other words, a circular counter can count
up to limit − 1 and then it resets to 0. Th e value of the limit can be any integer
greater than 1.

From the above specifi cation, it is quite clear that the soft ware we develop must
provide a “get counter value” service to the user. Without such a service, the counter
is of no use. Being a counter, there needs to be service to “increment the counter
value.” Another useful service is “set counter value.” Being a circular counter, there
is a limit value and there needs to be services to set and get the limit value. On the
basis of this analysis, we can create the use case diagram given in Figure 3.5.

Th e design phase starts where the use case analysis left off . Th us in this example,
from the use case diagram given in Figure 3.5, we tentatively decide to have one
class named CircularCounter.

CRC_C6547_CH003.indd 99CRC_C6547_CH003.indd 99 8/27/2008 6:41:52 PM8/27/2008 6:41:52 PM

Apago PDF Enhancer

100 ■ Java Programming Fundamentals

Decide on Attributes
From the use case diagram, it is quite clear that the circular counter must keep the current
value of the counter and limit value. Clearly, both of these values can be of int data type.
Th erefore, the CircularCounter class needs the following two attributes:

private int counterValue;

private int limitValue;

Decide on Methods
In this step you need to decide on methods. As explained before, you may include accessor
and mutator methods corresponding to each instance variable. You may also provide a
toString method. So in this section the focus is on additional methods that are needed
for this class to meet its specifi cations.

Th e “increment counter” is the only use case that needs to be addressed. Th erefore,
there must be a method to increment the counter value by one. In this case, you must
clearly state preconditions and postconditions. Preconditions refer to the necessary condi-
tions for the method to behave as specifi ed. Postconditions refer to the conditions satisfi ed
by inst ance variables at the completion of the method invocation. Th e set of values of all
instance variables is called the state of an object. Th us, preconditions and postconditions
specify the states of an object before and aft er a method have been invoked. In this case, the

Circular counter

Set counter

User

Get counter

Increment counter

Set limit value

Get limit value

FIGURE 3.5 Use case diagram for the circular counter.

CRC_C6547_CH003.indd 100CRC_C6547_CH003.indd 100 8/27/2008 6:41:52 PM8/27/2008 6:41:52 PM

Apago PDF Enhancer

Class Design ■ 101

 preconditions are limitValue > 0 and 0 ≤ counterValue < limitValue. Th e post-
conditions are limitValue > 0, 0 ≤ counterValue < limitValue and counter-
Value is incremented by 1 in the circular order 0, 1, 2, ..., limitValue - 1, 0.

Th us, the class has the following six methods:

public void incrementCounterValue()

// Preconditions : limitValue > 0;

// 0 ≤ counterValue < limitValue.

// Postconditions : limitValue > 0;

// 0 ≤ counterValue < limitValue;

// counterValue is incremented by 1

// in the circular order

// 0, 1, 2, ..., limitValue - 1, 0.

public int getCounterValue()

public int getLimitValue()

public void setCounterValue(int inCounterValue)

public void setLimitValue(int inLimitValue)

public void toString()

Consider the following expression:

(counterValue + 1) % limitValue

Assume that limitValue is 5. Now counterValue has to be one of the following: 0, 1,
2, 3, and 4. Let us evaluate the above expression for each of those values (see Table 3.2).

Th us, the above expression computes the next value based on counterValue as
desired. Th erefore, the Java statement

counterValue = (counterValue + 1) % limitValue

increments instance variable counterValue in circular order 0, 1, 2, ...,
 limitValue - 1, 0.

Th e circular counter can be visualized as in Figure 3.6 and the class diagram is given in
Figure 3.7.

TABLE 3.2 Illustration of Circular Increment

counterValue (counterValue +1) % limitValue

0 (0 + 1) % 5 = 1 % 5 = 1
1 (1 + 1) % 5 = 2 % 5 = 2
2 (2 + 1) % 5 = 3 % 5 = 3
3 (3 + 1) % 5 = 4 % 5 = 4
4 (4 + 1) % 5 = 5 % 5 = 0

CRC_C6547_CH003.indd 101CRC_C6547_CH003.indd 101 8/27/2008 6:41:53 PM8/27/2008 6:41:53 PM

Apago PDF Enhancer

102 ■ Java Programming Fundamentals

Implementation

In this phase, we use Java programming language to code the class(es) designed in the
design phase.

/**

 Circular counter counts 0, ..., limit - 1, 0

*/

public class CircularCounter

{

 private int counterValue;

 private int limitValue;

 /**

 Constructs a circular counter limitValue 100;

 counterValue 0.

 */

 public CircularCounter()

 {

 counterValue = 0;

CircularCounter

− counterValue : int
− limitValue : int

+incrementCounterValue() : void
+getCounterValue() : int
+getLimitValue() : int
+setCounterValue(int) : void
+setLimitValue(int) : void
+toString() : String

FIGURE 3.7 Class diagram of CircularCounter class.

CircularCounter

counterValue

limitValue

FIGURE 3.6 Visualization of CircularCounter.

CRC_C6547_CH003.indd 102CRC_C6547_CH003.indd 102 8/27/2008 6:41:53 PM8/27/2008 6:41:53 PM

Apago PDF Enhancer

Class Design ■ 103

 limitValue = 100;

 }

 /**

 Increments the circular counter

 */

 public void incrementCounterValue()

 {

 counterValue = (counterValue + 1) % limitValue;

 }

 /**

 Accessor method for the counter value

 @return the counter value

 */

 public int getCounterValue()

 {

 return counterValue;

 }

 /**

 Accessor method for the limit value

 @return the limit value

 */

 public int getLimitValue()

 {

 return limitValue;

 }

 /**

 Mutator method to set the counter value

 @param inCounterValue new value for the counter value

 */

 public void setCounterValue(int inCounterValue)

 {

 counterValue = inCounterValue % limitValue;

 }

 /**

 Mutator method to set the limit value

 @param inLimitValue new value for the limit value

 */

 public void setLimitValue(int inLimitValue)

CRC_C6547_CH003.indd 103CRC_C6547_CH003.indd 103 8/27/2008 6:41:54 PM8/27/2008 6:41:54 PM

Apago PDF Enhancer

104 ■ Java Programming Fundamentals

 {

 limitValue = inLimitValue;

 }

 /**

 The toString method

 @return counter value and limit information

 */

 public String toString()

 {

 String str;

 str = "Counter (0 to " + (limitValue - 1) + ") value : "

 + counterValue;

 return str;

 }

}

Testing

In this phase we create an application program to test the class CircularCounter. Th e
UML 2 diagram is shown in Figure 3.8 and the code is as follows:

import java.util.Scanner;

/**

 The application tester class for circular counter

*/

public class CircularCounterTesting

{

 public static void main (String[] args)

 {

 //Create an instance of CircularCounter

 CircularCounter testCir cularCounter = new

CircularCounter();

 //Declare variables to input and output counterValue

 // and limitValue

 int inputCounterValue, outputCounterValue;

 int inputLimitValue, outputLimitValue;

 int outputIncrementCounterValue;

 //Get two input values

 Scanner scannedInfo = new Scanner(System.in);

CRC_C6547_CH003.indd 104CRC_C6547_CH003.indd 104 8/27/2008 6:41:54 PM8/27/2008 6:41:54 PM

Apago PDF Enhancer

Class Design ■ 105

 System.out.print("Enter counter value and

 limit value : ");

 System.out.flush();

 inputCounterValue = scannedInfo.nextInt();

 inputLimitValue = scannedInfo.nextInt();

 System.out.println();

 //Test mutator and accessor corresponding

 //to instance variables.

 testCircularCounter.setCounterValue(inputCounterValue);

 testCircularCounter.setLimitValue(inputLimitValue);

 outputCounterValue =

 testCircularCounter.getCounterValue();

 outputLimitValue =

 testCircularCounter.getLimitValue();

 System.out.println("Counter value : "+

 outputCounterValue);

 System.out.println("Limit value : "+

 outputLimitValue);

 //Test incrementCounterValue method

 System.out.println("Counter is incremented

 five times ");

 System.out.println(testCircularCounter);

 testCircularCounter.incrementCounterValue();

 System.out.println(testCircularCounter);

 testCircularCounter.incrementCounterValue();

 System.out.println(testCircularCounter);

 testCircularCounter.incrementCounterValue();

 System.out.println(testCircularCounter);

 testCircularCounter.incrementCounterValue();

 System.out.println(testCircularCounter);

 testCircularCounter.incrementCounterValue();

 System.out.println(testCircularCounter);

 }

}

Output

Enter counter value and limit value : 3 5

Counter value : 3

Limit value : 5

CRC_C6547_CH003.indd 105CRC_C6547_CH003.indd 105 8/27/2008 6:41:54 PM8/27/2008 6:41:54 PM

Apago PDF Enhancer

106 ■ Java Programming Fundamentals

FIGURE 3.8 Class diagram of circular testing program.

+main(String[]) : void

uses1

1..*

CircularCounter

+incrementCounterValue() : void
+getCounterValue() : int
+getLimitValue() : int
+setCounterValue(int) : void
+setLimitValue(int) : void
+toString() : String

− counterValue : int
− limitValue : int

CircularCounterTesting

Counter is incremented five times

Counter (0 to 4) value : 3

Counter (0 to 4) value : 4

Counter (0 to 4) value : 0

Counter (0 to 4) value : 1

Counter (0 to 4) value : 2

Counter (0 to 4) value : 3

Note 3.1 Compare Figures 3.4 and 3.8. Observe that the essential diff erence is that in Fig-
ure 3.4 we have the Stock class and in Figure 3.8 we have CircularCounter class. In
other words, once the UML 2 class diagram for a class is created, the UML 2 class diagram
for the corresponding testing program is quite obvious. Th erefore, we omit such fi gures.

REVIEW
 1. A class has attributes and operations: attributes are used to store the data, and opera-

tions access and manipulate the data values.
 2. Keeping data along with operations is known as encapsulation.
 3. Unless there is a very compelling reason, all attributes are declared as private.
 4. A private attribute (or operation) is accessible only to the object.

CRC_C6547_CH003.indd 106CRC_C6547_CH003.indd 106 8/27/2008 6:41:54 PM8/27/2008 6:41:54 PM

Apago PDF Enhancer

Class Design ■ 107

 5. A public attribute (or operation) is accessible to any object.
 6. Operations of a class are generally declared as public.
 7. Implementation of an operation is called a method.
 8. Operations provide the necessary interface to initialize or modify an attribute,

retrieve the current value of an attribute, and compute a new value based on current
value of attributes.

 9. A Java program is a collection of collaborating objects.
 10. Th e syntax for invoking a method using a reference variable is

 referenceVariableName.methodName();

Th e reference variable is called an explicit parameter.
 11. Th ere are two types of methods: value returning methods and void methods.
 12. A void method cannot be invoked in an expression. It is invoked as a stand-alone

Java statement.
 13. A value returning method can be invoked in an assignment statement or can be used

in an expression or as part of an output statement. If the value returned is not stored
using an assignment statement, it will be lost forever.

 14. A method has two parts: the header

 public static void main (String[] args)

 and the body

 {

 [statements]

 }

 15. Th e header ends with a list of formal parameters (or arguments) enclosed within a pair
of parentheses. Th e list of formal parameters in a method header can be empty. How-
ever, the pair of parentheses enclosing the formal parameter cannot be omitted.

 16. As part of the method invocation, the actual parameter value is copied into the for-
mal parameter.

 17. Inside a method, you can declare additional variables. All variables declared inside
a method, excluding the formal parameters in the header, are known as local
variables.

 18. A local variable is not accessible outside the block. Th erefore, no access modifi er is
required.

CRC_C6547_CH003.indd 107CRC_C6547_CH003.indd 107 8/27/2008 6:41:55 PM8/27/2008 6:41:55 PM

Apago PDF Enhancer

108 ■ Java Programming Fundamentals

 19. An instance variable is available only within the object (if it is declared private).
A local variable is available only within the block from its point of declaration.
A formal parameter is available within the method.

 20. An instance variable exists as long as the associated object exists. A local variable is
created every time declaration statement is executed during the method execution
and the variable ceases to exist upon the completion of the block. A formal parameter
is created at the beginning of the method invocation and it ceases to exist upon the
completion of the method.

 21. At the beginning of the method invocation, the actual parameter value is copied to
the formal parameter.

 22. Once the return statement is executed, the control goes back to the Java statement
that invoked the method.

 23. A method that does not modify any instance variable of an object is called an acces-
sor method. All other methods are known as mutator methods.

EXERCISES
 1. Mark the following statements as true or false:
 a. An accessor method can access only one attribute.
 b. Th ere are two types of methods: value returning and void.
 c. A mutator method modifi es at least one attribute.
 d. A local variable can be made accessible outside the method by declaring it as

public.
 e. It is okay for a void method to return 0.
 f. Every value returning method must have a return statement.
 g. Every class must have a toString method.
 h. Th e default constructor has no formal parameters.
 i. A void method cannot be used on the right-hand side of an assignment

statement.
 j. Th e method main need not be a static method.
 k. Th e method charAt of the String class is of type char.
 l. Every method must have a return statement.
 2. Mark the following method invocation as valid or invalid. If invalid, explain why it is

invalid. Assume that scannedInfo is a reference variable of type Scanner, word
is a reference variable of the type String, that references the String “Okay, Ready
to go!” and stk is a reference variable of the type Stock.

 a. int a = scannedInfo.next();
 b. int a = scannedInfo.nextInt();
 c. int = scannedInfo.nextInt(a);

CRC_C6547_CH003.indd 108CRC_C6547_CH003.indd 108 8/27/2008 6:41:55 PM8/27/2008 6:41:55 PM

Apago PDF Enhancer

Class Design ■ 109

 d. int a; scannedInfo.nextInt(a);
 e. char ch = charAt(word, 2);
 f. char ch = Character.charAt(word, 2);
 g. char ch = word.charAt(2);
 h. char ch = word.charAt(0);
 i. int n = word.charAt(1);
 j. word.charAt(0) = 'w';
 k. System.out.println;
 l. System.out.write("Hello");
 m. String str = System.out.println("Hi, There");
 n. System.out.println("Hi") + System.out.println(", There");
 o. String str = "Hello"; System.out.println(str.charAt(2));
 p. String str = word.toString();
 q. String str = toString(word);
 r. int gain = Stock.getDividend();
 s. double gain = stk.getDividend();
 t. double gain = stk.getDividend(2008);
 u. stk = setNumberOfShares(100);
 3. Select the best answer.
 a. As a general rule, an attribute is
 (i) private (ii) static (iii) public (iv) none of these
 b. As a general rule, an operation is
 (i) private (ii) static (iii) public (iv) none of these
 c. A void method returns
 (i) null (ii) nothing (iii) 0 (iv) none of these
 d. An accessor method may modify attributes of a class.
 (i) some (ii) none (iii) all (iv) none of these
 e. Th e yearlyDividend method of the class Stock is an example of

method.
 (i) mutator (ii) accessor (iii) static (iv) none of these
 f. A default constructor has explicit parameters.
 (i) 0 (ii) 0 or 1 (iii) many (iv) none of these
 g. An implicit parameter is a variable.
 (i) primitive (ii) reference (iii) parameter (iv) none of these
 h. You need not know the internal parts of a radio to use it is an example of
 (i) encapsulation (ii) interface (iii) information hiding (iv) none of these

CRC_C6547_CH003.indd 109CRC_C6547_CH003.indd 109 8/27/2008 6:41:55 PM8/27/2008 6:41:55 PM

Apago PDF Enhancer

110 ■ Java Programming Fundamentals

 4. Given
 int a, b, c;
 double x, y;

 Scanner scannedInfo = new Scanner(System.in);

 Determine the validity of the assignment statements. If an assignment statement is
invalid, state the reason.

 a. b = scannedInfo.nextInt();
 b. c = scannedInfo.next();
 c. x = scannedInfo.nextDouble();
 d. a = scannedInfo.nextDouble();
 e. a = System.out.println();
 f. x = System.out.println(b + c);
 g. x = System.out.println(y);
 h. c = 7 + scannedInfo.nextInt();
 i. b = scannedInfo.nextInt() + a;
 5. Which of the following method heading is incorrect? Explain.
 a. static void public trial()
 b. static public sum(void)
 c. boolean void public find()
 d. public double next();
 e. private String static try
 f. public void test(10, 20)
 g. public double back(int, int)
 6. Assume that you are implementing a class having three private attributes: symbol a

String, cost a double, and quantity an int. Correct the errors, if any.
 a. public void getCost() { return cost; }
 b. public String getAmount(){ return amount;}
 c. public String getsymbol{ return symbol;}
 d. public int setQuantity(int qty){quantity = qty;}
 e. public void setAmount(double amt){double amount = amt;}
 f. public void set symbol(String smbl){smbl = symbol}
 g. public int returnQuantity(){int a = quantity; return a;}
 h. public void updateCost(double b){cost = cost + b;}
 i. public double find _ cost(){return; }

CRC_C6547_CH003.indd 110CRC_C6547_CH003.indd 110 8/27/2008 6:41:55 PM8/27/2008 6:41:55 PM

Apago PDF Enhancer

Class Design ■ 111

 7. Assume that you are implementing a class having fi ve private attributes: product-
Name a String, price a double, onHand an int, isBackOrder a boolean,
deptCode a char. Write Java statements that accomplish the following tasks:

 a. Get methods for each of the instance variables.
 b. Set methods for each of the instance variables.
 c. toString method that returns a String with information about product-

Name and price.
 d. A method update to change the value of onHand by a given value. If onHand

was 2000, update(–200) will change onHand value to 1800.
 e. A method priceChange to change the price by a given percentage. If price is

100.00, priceChange(.1) will change price to 110.00.

PROGRAMMING EXERCISES
 1. Create a class Square and test it. Th e class Square has exactly one data member

length. Your class must provide getLength, setLength, and toString meth-
ods. Th ere are two application specifi c methods: getArea and getPerimeter.

 2. Create a Circle class and test it. Th e class Circle has exactly one data member
radius. Your class must provide getRadius, setRadius, and toString meth-
ods. Th ere are two application specifi c methods: getArea and getCircumference.
Use Math.PI, a constant defi ned in Math class in your code for the value of pi.

 3. Create a PhoneNumber class and test it. Th e instance variables are fi rst name, last
name, and phone numbers. Th e application specifi c method returns a String of the
form last name, fi rst name, and phone number.

 4. Create an employee class and test it. Th e instance variables are fi rst name, last name,
and annual salary. Th ere are two application specifi c methods. Th e fi rst method returns
the monthly salary. Th e second method returns bonus calculated as a percentage of
the annual salary plus 1000. Th e percentage is an explicit parameter of this method.

 5. According to the grading policy, fi nal grade is determined by the average of four test
scores. Design and test a class to compute the average of four test scores (do not forget
the student name).

 6. Write a program that prompts the user to input time in seconds. Th e program should
then output in day hour minute second format. Design and use appropriate class(es).

 7. Write a program that prompts the user to input distance in inches. Th e program should
then output the distance in miles, furlong, yard, feet, and inches. Design and use appro-
priate class(es).

 8. Write a program to create a shorter version of the name from fullname. A name such
as Meera S. Nair will have a shorter format M.S. Nair. Design and use appropriate
class(es).

CRC_C6547_CH003.indd 111CRC_C6547_CH003.indd 111 8/27/2008 6:41:55 PM8/27/2008 6:41:55 PM

Apago PDF Enhancer

112 ■ Java Programming Fundamentals

 9. Write a program to estimate the profi t from a particular product for a month. Infor-
mation such as product name, unit cost, sale price, and average number of items sold
per month are available. Note that product name may consist of many words such as
“Hunter Miller 56in Ceiling Fan.” Design and use appropriate class(es).

 10. Write a program to convert between Centigrade and Fahrenheit. Design and use
appropriate class(es).

 11. Write a program to convert between days, hours, minutes, seconds, and total sec-
onds. Design and use appropriate class(es).

 12. Write a program to evaluate the expression ax2 + bx + c. Design and use appropri-
ate class(es).

 14. Create a cylinder class to compute area and volume. Th e attributes can be either
radius and height or base of the type circle and height. Th e second option is more
challenging. In the case of second option you need to create a circle class as specifi ed
in Programming Exercise 2.

 15. Create a box class to compute area and volume. Th e attributes are length, width, and
height or base of type rectangle and height. Th e second option is more challenging. It
involves creating a rectangle class with two attributes length and width.

ANSWERS TO SELF-CHECK
 1. information hiding
 2. reserved word
 3. private int noOfStudents;
 4. private double averageGpa;
 5. public
 6. changeChannel
 7. char
 8. double
 9. int
 10. True
 11. block
 12. True
 13. int age = 18;
 14. double interestRate = 5.0;
 15. True
 16. False
 17. False
 18. True

CRC_C6547_CH003.indd 112CRC_C6547_CH003.indd 112 8/27/2008 6:41:55 PM8/27/2008 6:41:55 PM

Apago PDF Enhancer

Class Design ■ 113

 19. True
 20. True
 21. False
 22. True
 23. False
 24. True
 25. accessor
 26. False
 27. False
 28. True
 29. True
 30. logical

CRC_C6547_CH003.indd 113CRC_C6547_CH003.indd 113 8/27/2008 6:41:56 PM8/27/2008 6:41:56 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

115

C H A P T E R 4

Decision Making

In this chapter you learn

Object-oriented concepts
Analysis and design of classes

Java concepts
Boolean variables, logical operators and expressions, equality and relational opera-
tors, control structures if, if … else, and switch, nesting of control struc-
tures, and enumerated data types

Programming skills
Design, implement, and test Java programs capable of decision making

Programs you wrote so far did not make any decision. Given fi ve test scores, you know how
to write a program to add them to obtain a cumulative test score. If you want to translate
the cumulative test score into a letter grade, then you need a control structure that can
make decisions based on cumulative test score. Such a control structure is called a selection
structure. In this chapter you will learn about various selection structures available in Java.
However, the fundamental principles you learn in this chapter can be applied in many
scripting languages and programming languages, including C, C++, and C#.

CONTROL STRUCTURES
Programs you have written so far are executed in sequence. Once a statement is executed,
the immediately following statement is executed next. Th erefore, if sequence is the only
control structure available, every statement in a program or a method is always executed
in the same order. Clearly, such programs cannot make decisions.

Introspection

Programs you have seen so far are like a one-way street with single entrance and
single exit. Your car just rolls through the same predictable, predetermined path.

•
•

•
•

•
•

CRC_C6547_CH004.indd 115CRC_C6547_CH004.indd 115 10/16/2008 4:43:49 PM10/16/2008 4:43:49 PM

Apago PDF Enhancer

116 ■ Java Programming Fundamentals

Every computer program can be constructed from three basic control structures,
sequence, selection, and repetition, shown in Figure 4.1. Th is is the essence of the struc-
ture theorem. So far, all the programs you have encountered consist of only the sequence
structure. Th us, program starts with executing statements one aft er another from the
fi rst executable statement of the method main. Selection structure enables you to selec-
tively execute a certain part of a code while skipping some other parts. Repetition struc-
ture, however, allows you to repeat a certain part of the code again and again. Th us,
both selection and repetition structures alter the order of execution of statements. Th e
selection structure is discussed in this chapter and repetition structure is described in
Chapter 5.

To better understand the issues involved, let us look at the following problem. Mr. James
Jones is a college student. Lately, James has noticed that he ends up wasting lots of time
doing mundane day-to-day chores. James decided to get organized and for that matter, to
have a schedule for every day. He started creating a list of things to do as follows:

Get up in the morning
Eat breakfast
Go to the University
Attend lectures
Have lunch at noon
Visit library
Come back in the evening
Have dinner
Study
Watch TV for an hour
Go to bed

decisionCond
truefalse

statementTruestatementFalse

statement
N

statementOne

statementTwo

Sequence Selection

controlExp

true

actionStatement

false

Repetition

…

FIGURE 4.1 Control structures.

CRC_C6547_CH004.indd 116CRC_C6547_CH004.indd 116 10/16/2008 4:43:52 PM10/16/2008 4:43:52 PM

Apago PDF Enhancer

Decision Making ■ 117

James started in earnest and strictly followed the schedule. On weekends, James does
not go to the University. He could not follow his weekday schedule on weekends. Th erefore,
James came up with the schedules given in Table 4.1.

Th us, James has two schedules. On weekdays, he selects one schedule and on weekends
he selects the other schedule. James's algorithm can be stated as follows:

If today is a weekday then do the following:

Get up in the morning
Eat breakfast
Go to the University
Attend lectures
Have lunch at noon
Visit library
Come back in the evening
Have dinner
Study
Watch TV for an hour
Go to bed

If today is not a weekday then do the following:

Get up in the morning
Eat breakfast
Finish assignments
Have lunch at noon
Have recreation
Have dinner
Go to bed

TABLE 4.1 James's Schedule

Weekday Schedule Weekend Schedule

Get up in the morning Get up in the morning
Eat breakfast Eat breakfast
Go to the University Finish all assignments
Attend lectures Have lunch at noon
Have lunch at noon Have some recreation
Visit the library Have dinner
Come back in the evening Go to bed
Have dinner
Study
Watch TV for an hour
Go to bed

CRC_C6547_CH004.indd 117CRC_C6547_CH004.indd 117 10/16/2008 4:43:52 PM10/16/2008 4:43:52 PM

Apago PDF Enhancer

118 ■ Java Programming Fundamentals

Consider the statement:

Today is a weekday.

Th is statement is either true or false and you could at any time determine whether or not
the above statement is true. In logic, such statements are known as propositions.

Introspection

If it is raining outside, then let us play an indoor game. If it is not raining, then let
us play an outdoor game.

LOGICAL EXPRESSION AND OPERATORS
An expression is called logical if it evaluates to true or false. We evaluate many logical
expressions in our day-to-day life. During shopping you may decide to buy an item based
on whether or not it is on sale. You may decide to go for jogging if outside temperature is
between 45 and 80°F. We evaluate so many logical expressions every day without being
aware of the fact that we are dealing with logical expressions. Th e diff erence between
everyday logical expression and the one you are going to see in connection with program-
ming is very little. In the case of day-to-day logical expressions, we tend to answer yes or
no rather than true or false.

Java has a primitive data type boolean introduced in Chapter 2. Th e boolean data type
can have two values: true and false. Both true and false are reserved words in Java.

Example 4.1

Th e following program illustrates the declaring, the initializing, the inputting, the
outputting, and the assigning of boolean data types. In particular, note that in the
case of inputs, boolean value can be entered using upper or lowercase letters. For
example, the true can be entered in any one of the following forms: true, TrUE,
TRUE, or TruE. However, when used as a literal inside the program to initialize a
boolean variable, true and false need to be entered exactly as it is.

import java.util.Scanner;

/**

 Illustrates declaration, initialization, input and

 output of logical variables

*/

public class LogicalData

{

 public static void main (String[] args)

 {

 boolean numberFound; //declaration

CRC_C6547_CH004.indd 118CRC_C6547_CH004.indd 118 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

Decision Making ■ 119

 boolean processFinished = false;

//initialization

 boolean errorReport = true; //initialization

 Scanner scannedInfo = new Scanner(System.in);

 System.out.println

 ("processFinished = " + processFinished); //output

 System.out.println

 ("errorReport = " + errorReport); //output

 System.out.print

 ("Enter two boolean values : ");

System.out.flush();

 numberFound = scannedInfo.nextBoolean(); //input

 processFinished = errorReport; //assignment

 errorReport = scannedInfo.nextBoolean(); //input

 System.out.println();

 System.out.println("New values are as follows:");

 System.out.println

 ("numberFound (first input) = " + numberFound);

//output

 System.out.println

 ("processFinished (previous value of errorReport) = " +

 processFinished); //output

 System.out.println

 ("errorReport (second input) = " + errorReport);

//output

 }

}

Output

processFinished = false

errorReport = true

Enter two boolean values : TRue FaLSe

New values are as follows:

numberFound (first input) = true

processFinished (previous value of errorReport) = true

errorReport (second input) = false

Note 4.1 Literals appearing in the code are processed during the compile time. However,
input values are processed at the execution time. Input value is treated as a String and
converted to appropriate boolean value using the method, nextBoolean.

CRC_C6547_CH004.indd 119CRC_C6547_CH004.indd 119 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

120 ■ Java Programming Fundamentals

Self-Check

 1. True or false: “Bill is taller than George” is a logical expression.
 2. True or false: “How are you?” is a logical expression.

LOGICAL OPERATORS
Java has fi ve binary operators and one unary operator to form logical expressions. Th ese
operators are shown in Table 4.2.

We will address the logical operators & and | later in this chapter in the subsection on
short-circuit evaluation. It is customary to specify each of these operators through truth
tables. Truth tables list the outcome for each possible input combination.

Th e not operator is a unary operator and it changes a true value to false and vice
versa. For example, if a boolean variable itemFound is true, then the expression
(!itemFound) is false and (!(! itemFound)) is true.

Th e truth table of the not operator is shown in Table 4.3.

Example 4.2

Consider the following program segment:

boolean fileFound;

boolean fileMissing = false; //(1)

fileFound = !fileMissing; //(2)

Observe that in Line 1, the boolean variable fileMissing is initialized to
false. Th erefore, you can initialize fileFound as shown in Line 2. Note that
in Line 2 fileFound receives the value true. However, value of the variable
 fileMissing is still false.

Th e logical operator and is a binary operator. Th us, there are four diff erent possible
combinations and the truth table is shown in Table 4.4. An and expression is true only if
both operands are true. For instance, consider the following two statements:

Today is Monday.
Chris is more than 6 ft tall.

Note that the statement

Today is Monday and Chris is more than 6 ft tall.

TABLE 4.3 Th e Truth Table of the
Logical not Operator

operand !(operand)

false true
true false

TABLE 4.2 Logical Operators in Java

Operator
Symbol Operator Name Common Name

! Logical not not
&&, & Logical and and
||, | Logical or or
^ Logical exclusive or xor

CRC_C6547_CH004.indd 120CRC_C6547_CH004.indd 120 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

Decision Making ■ 121

is true only if both the statements are true.
Th e logical operator or is a binary operator. An or expression is false only when both

operands are false. For example, consider the following two statements:

Today is Monday.
Chris is more than 6 ft tall.

Th e statement

Today is Monday or Chris is more than 6 ft tall

is false only if both the statements are false. Th e logical operator or is also known as
inclusive or. Th e truth table of the or operator is shown in Table 4.5.

Th e logical operator xor (exclusive or) is a binary operator. A xor expression is true
only when exactly one of the operands is true. Th is operator is very rarely used in pro-
gramming. Th e truth table of the xor operator is presented in Table 4.6.

Example 4.3

Th e following program prints the truth tables of all four logical operators discussed
in this section:

/**

 A class to illustrate logical operations

*/

public class LogicalOperator

{

 public static void main (String[] args)

TABLE 4.4 Th e Truth Table of the Logical and Operator

operandOne operandTwo
operandOne &&

operandTwo

false false false
false true false
true false false
true true true

TABLE 4.5 Th e Truth Table of the Logical or
Operator

operandOne operandTwo
operandOne ||
operandTwo

false false false
false true true
true false true
true true true

TABLE 4.6 Th e Truth Table of the Logical xor
Operator

operandOne operandTwo
operandOne ^
operandTwo

false false false
false true true
true false true
true true false

CRC_C6547_CH004.indd 121CRC_C6547_CH004.indd 121 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

122 ■ Java Programming Fundamentals

 {

 boolean trueValueOne = true;

 boolean trueValueTwo = true;

 boolean falseValueOne = false;

 boolean falseValueTwo = false;

 System.out.println("\n\nLogical not Operator");

 System.out.println("!false = " + (!falseValueOne));

 System.out.println("!true = " + (!trueValueOne));

 System.out.println("\n\nLogical and Operator");

 System.out.println("false && false = " +

 (falseValueOne && falseValueTwo));

 System.out.println("true && false = " +

 (trueValueOne && falseValueTwo));

 System.out.println("false && true = " +

 (falseValueOne && trueValueTwo));

 System.out.println("true && true = " +

 (trueValueOne && trueValueTwo));

 System.out.println("\n\nLogical or Operator");

 System.out.println("false || false = " +

 (falseValueOne || falseValueTwo));

 System.out.println("true || false = " +

 (trueValueOne || falseValueTwo));

 System.out.println("false || true = " +

 (falseValueOne || trueValueTwo));

 System.out.println("true || true = " +

 (trueValueOne || trueValueTwo));

 System.out.println("\n\nLogical xor Operator");

 System.out.println("false ^ false = " +

 (falseValueOne ^ falseValueTwo));

 System.out.println("true ^ false = " +

 (trueValueOne ^ falseValueTwo));

 System.out.println("false ^ true = " +

 (falseValueOne ^ trueValueTwo));

 System.out.println("true ^ true = " +

 (trueValueOne ^ trueValueTwo));

 }

}

CRC_C6547_CH004.indd 122CRC_C6547_CH004.indd 122 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

Decision Making ■ 123

Output

Logical not Operator

!false = true

!true = false

Logical and Operator

false && false = false

true && false = false

false && true = false

true && true = true

Logical or Operator

false || false = false

true || false = true

false || true = true

true || true = true

Logical xor Operator

false ^ false = false

true ^ false = true

false ^ true = true

true ^ true = false

Self-Check

 3. What is (false && false)||true?
 4. What is false && (false||true)?

RELATIONAL OPERATORS
In our day-to-day life, we make decisions by comparing values. For example, you may buy
an item only if its price is below a certain amount that you have in mind. In this case, you
are comparing the price of the item with the amount you have decided to spend on it. In
other words, if the price of the item is less than the amount you have decided to spend on
it, you will buy the product. Otherwise, you may go to another shop in search of a better
price. Yet another example is as follows. Th e life expectancy of females is longer than the life
expectancy of males. Th erefore, one of the determining factors, in the case of a life insur-
ance premium is the gender of the person. Th us, there are many situations where decisions
are made aft er comparing the values. Computers can also perform similar tasks.

Java supports six relational operators. Th e result of applying relational operator is a logi-
cal value. Th e six relational operators are shown in Table 4.7.

CRC_C6547_CH004.indd 123CRC_C6547_CH004.indd 123 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

124 ■ Java Programming Fundamentals

Self-Check

 5. True or false: Th e relational operator <= can also be written as =<.
 6. Java supports relational operators.

RELATIONAL OPERATORS AND NUMERICAL DATA TYPES
Th e relational operators can be used in connection with numerical values. Values can be
literals or variables.

Example 4.4

Consider the following declarations:

int numberOne = 22;

int numberTwo = 7;

double fractionOne = 5.0 / 11.0;

double fractionTwo = 6.0 / 11.0;

Relational Expression Comparison Done Result

numberOne < 22 22 is less than 22 false
numberOne <= 22 22 is less than or equal to 22 true
numberOne >= 22 22 is greater than or equal to 22 true
numberOne > 22 22 is greater than 22 false
numberOne == 22 22 is equal to 22 true
numberOne != 22 22 is not equal to 22 false
numberOne <= numberTwo 22 is less than or equal to 7 false
numberOne >= numberTwo 22 is greater than or equal to 7 true
22 >= numberTwo 22 is greater than or equal to 7 true
fractionOne < 1.0 (5.0/11.0) is less than 1.0 true
fractionOne <= fractionTwo (5.0/11.0) is less than or

 equal to (6.0/11.0)
true

0.45 < fractionOne 0.45 is less than (5.0/11.0) true

Example 4.5

Consider the following Java program dealing with relational operator == on data
type double. From the output it can be seen that (1.0/11.0) added 11 times is
more than 1.0! As a result, relational operators may produce results not consistent
with basic arithmetic.

TABLE 4.7 Relational Operators

Relational Operator Semantics

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
!= Not equal to

CRC_C6547_CH004.indd 124CRC_C6547_CH004.indd 124 10/16/2008 4:43:53 PM10/16/2008 4:43:53 PM

Apago PDF Enhancer

Decision Making ■ 125

/**

 Illustrates inexact arithmetic of floating-point numbers

*/

public class RelationalOperator

{

 public static void main (String[] args)

 {

 double fractionOne = 1.0 / 11.0;

 double fractionTwo = fractionOne + fractionOne

 +fractionOne+ fractionOne + fractionOne +fractionOne;

 double fractionThree = fractionTwo + fractionOne

 +fractionOne+ fractionOne + fractionOne +fractionOne;

 System.out.println(" fractionOne = " + fractionOne);

 System.out.println(" fractionTwo = " + fractionTwo);

 System.out.println(" fractionThree = " + fractionThree);

 System.out.println(" (fractionThree == 1.0) is " +

 (fractionThree == 1.0));

 System.out.println(" (fractionThree > 1.0) is " +

 (fractionThree > 1.0));

 }

}

Output

fractionOne = 0.09090909090909091

fractionTwo = 0.5454545454545455

fractionThree = 1.0000000000000002

(fractionThree == 1.0) is false

(fractionThree > 1.0) is true

Common Programming Error 4.1

Comparing two fl oating-point numbers for equality may cause unexpected results.

Note 4.2 Instead of testing two fl oating-point numbers for equality, test whether or not
the absolute value of their diff erence is closer to zero. Java has a static method abs
in the Math class. Math.abs(x - y) computes the absolute value of the diff erence
between two values x and y. Th erefore, instead of the expression(x == y) use the expres-
sion (Math.abs(x - y) <= ERROR _ ALLOWED). Here, ERROR _ ALLOWED is a named
constant that can be declared at the method level as follows:

final double ERROR_ALLOWED = 1.0E-14;

CRC_C6547_CH004.indd 125CRC_C6547_CH004.indd 125 10/16/2008 4:43:54 PM10/16/2008 4:43:54 PM

Apago PDF Enhancer

126 ■ Java Programming Fundamentals

Self-Check

 7. What is (3 <= 3)?
 8. What is (3 < 3)?

RELATIONAL OPERATORS AND CHARACTER DATA TYPES
You can compare two char data based on their character codes. For example, the char-
acter code of the space character is 32, and thus it is smaller than all letters and digits.
Similarly, the character code of the character 'A' is 65 and that of 'a' is 97. Th us, 'A' is
smaller than 'a'. In fact, 'a' is larger than all uppercase letters. Note that '8' has a Uni-
code value 56. As a consequence, '8' < 8 evaluates to false.

Example 4.6

Consider the following Java program:

/**

 A class to illustrate relational operators and characters

*/

public class CharRelationalOperator

{

 public static void main (String[] args)

 {

 char space = ' ';

 char upperA = 'A';

 char lowerA = 'a';

 char upperZ = 'Z';

 char char8 = '8';

 System.out.println(" space < 'A' is " + (space < 'A'));

 System.out.println(" space < '8' is " + (space < '8'));

 System.out.println(" space == 32 is " + (space == 32));

 System.out.println

 (" 'A' < 'a' is " + (upperA < lowerA));

 System.out.println

 (" 'Z' < 'a' is " + (upperZ < lowerA));

 System.out.println (" '8' < 8 is " + (char8 < 8));

 }

}

Output

space < 'A' is true

space < '8' is true

space == 32 is true

CRC_C6547_CH004.indd 126CRC_C6547_CH004.indd 126 10/16/2008 4:43:54 PM10/16/2008 4:43:54 PM

Apago PDF Enhancer

Decision Making ■ 127

'A' < 'a' is true

'Z' < 'a' is true

'8' < 8 is false

Self-Check

 9. What is ('A' <= 65)?
 10. What is ('a' > 'Z')?

Advanced Topic 4.1: Relational Operators and Objects

In the case of objects, there is no predetermined ordering of items. You may compare
two objects based on the application. For example, you may order two diamonds based
on clarity, purity, brilliance, and so on. So in the case of objects, comparison of objects is
made possible through methods. However, you could use equality operators == and !=.
We illustrate this fact in detail in Chapter 6. Since you are familiar with the String class,
methods in the String class for comparing strings is presented next. Th e use of equality
operators in conjunction with String references is also presented.

LEXICOGRAPHICAL ORDERING OF STRINGS
Recall that a string is a sequence of zero or more characters. If you look for the words like
and lake in dictionary, the word lake appears before the word like. Th us, you could say that
the word lake is smaller than the word like. Th us, there is an ordering of words in a diction-
ary. Similarly, the word like is smaller than the word live and the word live is smaller than
the word liver. Th is ordering is called lexicographical ordering.

In the lexicographical ordering, strings are compared character by character, from the
beginning of the string. You have already seen that there is an ordering within the Unicode
character set based on the collating sequence. If a mismatch occurs, as in the case of words
like and lake, the character-by-character comparison stops and the order of the mismatched
characters determines the order of words. Th us, in our example, the mismatch occurs at
second character position. Now, the letter a is smaller than the letter i; therefore, the word
lake is smaller than the word like. Similarly, considering words like and live, a mismatch
occurs at third character. Again the letter k is smaller than the letter v; therefore, the word
like is smaller than the word live. If no mismatch occurs, then eventually one or both
strings may end. Th ese possibilities are explored next.

Consider the case in which character-by-character comparison continues and one of the
strings ends. In our discussion, this will be the situation for words live and liver. You could
treat this as a mismatch at fi ft h character position. Th e fi ft h character of the word live is
a null character. Recall that null character is the fi rst character in the collating sequence.
Th us, any other character is larger than null character. In particular, character r is larger
than null character. Th us, the string live is smaller than liver. Th us, in general, if two strings
match until one of them ends, the string that ended is smaller than the other.

Th e only case that remains is both strings end simultaneously. In this case, both strings
are identical or both strings are equal.

CRC_C6547_CH004.indd 127CRC_C6547_CH004.indd 127 10/16/2008 4:43:54 PM10/16/2008 4:43:54 PM

Apago PDF Enhancer

128 ■ Java Programming Fundamentals

Th e class String has two methods to compare strings: equals and compareTo.
Th e syntax to use both methods is as follows:

strOne.equals(strTwo)

strOne.compareTo(strTwo)

In the above syntax, strOne must be a String reference variable, whereas strTwo can
be either a String reference variable or a String literal. Th e equals method returns
a logical value. If both the strings are equal, then equals method returns true; oth-
erwise returns false. Th e compareTo method returns an integer value. If strOne is
smaller than strTwo, then the value returned is a negative integer. If strOne is larger
than strTwo, then the value returned is a positive integer. If both strings are equal, the
method compareTo returns integer 0. You should not relay on the actual integer returned
by compareTo method. Rather, you should make your decisions on the basis of the sign
of the number.

Example 4.7

Consider the following statements:

String strOne = "America the beautiful";

String strTwo = "America the beautiful!";

String strThree = "Maple leaf";

String strFour = "Maple Leaf";

String strFive = "Maple Leaf";

Table 4.8 illustrates the behavior of equals and compareTo methods.
Th e following program verifi es Table 4.8:

/**

 Illustration of methods equals and compareTo in String class

*/

public class EqualsCompareToStringMethods

{

 public static void main(String[] args)

 {

 String strOne = "America the beautiful";

 String strTwo = "America the beautiful!";

 String strThree = "Maple leaf";

 String strFour = "Maple Leaf";

 String strFive = "Maple Leaf";

 System.out.println("strOne.equals(strTwo) is "

 + strOne.equals(strTwo));

 System.out.println("strOne.compareTo(strTwo) is "

 + strOne.compareTo(strTwo));

CRC_C6547_CH004.indd 128CRC_C6547_CH004.indd 128 10/16/2008 4:43:54 PM10/16/2008 4:43:54 PM

Apago PDF Enhancer

Decision Making ■ 129

 System.out.println("strTwo.equals(strOne) is "

 + strTwo.equals(strOne));

 System.out.println("strTwo.compareTo(strOne) is "

 + strTwo.compareTo(strOne));

 System.out.println("strThree.equals(strFour) is "

 + strThree.equals(strFour));

 System.out.println("strThree.compareTo(strFour) is "

 + strThree.compareTo(strFour));

 System.out.println("strThree.equals((\"Maple leaf\") is "
 + strThree.equals(("Maple leaf"));

 System.out.println("strFour.compareTo(strFive) is "

 + strFour.compareTo(strFive));

 }

}

Output

strOne.equals(strTwo) is false

strOne.compareTo(strTwo) is -1

strTwo.equals(strOne) is false

strTwo.compareTo(strOne) is 1

strThree.equals(strFour) is false

strThree.compareTo(strFour) is 32

strThree.equals("Maple leaf") is true

strFour.compareTo(strFive) is 44

Self-Check

 11. Assume the assignment statement strOne = "Bad";. What is strOne.
compareTo("Good")?

 12. Assume the assignment statement strOne = "Better";. What is strOne.
compareTo("Best")?

TABLE 4.8 String Class Methods equals and compareTo

Method Invocation Value Retuned

strOne.equals(strTwo) false
strOne.compareTo(strTwo) An integer < 0
strTwo.equals(strOne) false
strTwo.compareTo(strOne) An integer > 0
strThree.equals(strFour) false
strThree.compareTo(strFour) An integer > 0
strThree.equals("Maple leaf") true
strFour.compareTo(strFive) An integer > 0

CRC_C6547_CH004.indd 129CRC_C6547_CH004.indd 129 10/16/2008 4:43:54 PM10/16/2008 4:43:54 PM

Apago PDF Enhancer

130 ■ Java Programming Fundamentals

Advanced Topic 4.2: Equality Operators and String Class

Equality operators == and != can be applied to reference variables of String type. For
example, if strOne and strTwo are two reference variables of the String type, both
expressions

strOne == strTwo

strOne != strTwo

are legal in Java. Th e expression strOne == strTwo returns true if the reference kept
in both variables are identical. In other words, strOne == strTwo returns true if both
refer to the same String object. Similarly, strOne == strTwo returns false if both
refer to diff erent String objects.

In Java, String is a class. However, it is diff erent from other classes in many respects.
During compilation, a String literal is stored once only. Th erefore, the following two
statements

String strOne = "Have a pleasant day!" //(1)

String strTwo = "Have a pleasant day!" //(2)

create only one String object. To be more specifi c, as compiler encounters (1), the follow-
ing steps are carried out:

 a. Creates a reference variable strOne of String type
 b. Creates a String object corresponding to the literal "Have a pleasant day!"
 c. Assigns the reference of the object created in (b) to reference variable strOne

As compiler encounters (2), the following steps are carried out:

 a. Creates a reference variable strTwo of String type.
 b. Recognizes the fact that a String object corresponding to the literal "Have a pleas

ant day!" already exists. Th erefore, no new object is created.
 c. Assigns the reference of the existing object to the reference variable strTwo.

Th erefore, the expression strOne == strTwo evaluates to true. However, if you
input two identical String literals and then compare them using equality operator, the
Java system will return a false value. In this case, system in fact creates two String
objects. Th us, creating only one String object for a String literal is done during com-
pilation and not during execution. Th ese ideas are illustrated in the following example:

/**

 Illustration of equality operator in String class

*/

public class EqualityOperatorsOnString

{

CRC_C6547_CH004.indd 130CRC_C6547_CH004.indd 130 10/16/2008 4:43:55 PM10/16/2008 4:43:55 PM

Apago PDF Enhancer

Decision Making ■ 131

 public static void main(String[] args)

 {

 String strOne = "Have a nice day!";

 String strTwo = "Have a nice day!";

 String strThree = "Happy birthday to you";

 String strFour = strThree;

 String strFive = "America";

 Scanner scannedInfo = new Scanner(System.in);

 System.out.println("strOne == strTwo is "

 + (strOne == strTwo));

 System.out.println("strThree == strFour is "

 + (strThree == strFour));

 System.out.println("strOne == strThree is "

 + (strOne == strThree));

 System.out.print("Input the word America twice : ");

 strOne = scannedInfo.next();

 strTwo = scannedInfo.next();

 System.out.flush();

 System.out.println("strOne is " + strOne);

 System.out.println("strTwo is " + strTwo);

 System.out.println("strOne == strTwo is "

 + (strOne == strTwo));

 System.out.println("strOne.equals(strTwo) is "

 + strOne.equals(strFive));

 System.out.println("strOne == strFive is "

 + (strOne == strFive));

 System.out.println("strOne.equals(strFive) is "

 + strOne.equals(strFive));

 }

}

Output

strOne == strTwo is true

strThree == strFour is true

strOne == strThree is false

Input the word America twice : America America

strOne is America

strTwo is America

strOne == strTwo is false

strOne.equals(strTwo) is true

CRC_C6547_CH004.indd 131CRC_C6547_CH004.indd 131 10/16/2008 4:43:55 PM10/16/2008 4:43:55 PM

Apago PDF Enhancer

132 ■ Java Programming Fundamentals

strOne == strFive is false

strOne.equals(strFive) is true

Note that associated with each input of the word “America”, Java system created a new
String object. As a consequence, strOne == strTwo is false. Further, even though
there is a String object with string value “America”, during execution a new object is
 created. Th us, strOne == strFive is false.

Note 4.3 String literals appearing in the code are processed during the compile time.
However, input values are processed at the execution time. As a consequence, storing a
String literal once only rule applies during compile time and not at the execution time.

Self-Check

 13. True or false: Let strOne and strTwo be two String references. If
strOne == strTwo is true, then strOne.equal(strTwo) is also true.

 14. True or false: If strOne.equal(strTwo) is false, then strOne ==
strTwo is false.

PRECEDENCE RULES
In Chapter 2, you had seen precedence rules for arithmetic operations. Th ese rules deter-
mine the priority and associativity of operators. Since an expression may involve arithmetic,
relational, and logical operators, we need a precedence rule for all those operators. As men-
tioned in Chapter 2, it is customary to state these rules in the form of a table (see Table 4.9).
For a complete list see Appendix A.

Table 4.9 may be quite overwhelming for anyone, particularly for a beginner. With prac-
tice, you will get better at it. However, the following observations may be helpful.

 1. Assignment operator has the lowest precedence. Th erefore, there is no need to enclose
the expression on the right-hand side with a pair of parentheses.
In other words,

variable = (expression);

is equivalent to

variable = expression;

 2. Binary logical operator has lower precedence than all arithmetic and relational oper-
ators. Th erefore, there is no need to put parentheses around the operands of a binary
logical operator.
Th us,

(expressionOne) && (expressionTwo)

(expressionOne) || (expressionTwo)

CRC_C6547_CH004.indd 132CRC_C6547_CH004.indd 132 10/16/2008 4:43:55 PM10/16/2008 4:43:55 PM

Apago PDF Enhancer

Decision Making ■ 133

are equivalent, respectively, to

(expressionOne && expressionTwo)

(expressionOne || expressionTwo)

 3. Relational operators have lower precedence than all arithmetic operators. Th erefore,
there is no need to put parentheses around arithmetic expressions.
In other words,

(exp1 / exp2) <= (exp3 – exp4)

are equivalent to

(exp1 / exp2 <= exp3 – exp4)

TABLE 4.9 Precedence Rules

Operator Operand Types Operation Level Group Associativity

++ Numeric variable Postincrement 1 Post LR
— — Postdecrement
++ Numeric variable Preincrement 2 Pre RL
— — Predecrement
+ Number Unary plus 2 Unary
— Unary minus
! Logical Logical not
* Number, number Multiplication 4 Arithmetic LR
/ Division
% Modulus
+ Number, number Addition 5
— Subtraction
< Number, number Less than 7 Relational
<= Less than or equal
> Greater than
>= Greater than or equal
== Any type, the same type Equality operators 8
!=

^ Boolean, boolean Logical XOR 10 Logical
&& Boolean, boolean Logical AND 12
|| Boolean, boolean Logical OR 13
= Variable, same type Assignment 15 Assignment RL
*= Variable, number Assignment with

operator
/=
%= Variable, integer
+= Variable, number
−=

CRC_C6547_CH004.indd 133CRC_C6547_CH004.indd 133 10/16/2008 4:43:55 PM10/16/2008 4:43:55 PM

Apago PDF Enhancer

134 ■ Java Programming Fundamentals

Example 4.8

Consider the following declarations:

boolean workCompleted = true;

boolean errorFound = false;

char letter = 'J';

int numOne = 7, numTwo = 9, numThree = 20;

double valueOne = 2.25, valueTwo = 0.452;

Evaluation of Logical Expressions

Expression Value Explanation

!errorFound true !errorFound = !false =
true.

!workCompleted false !workCompleted = !true =
false.

workCompleted && !errorFound true Order of evaluation: !, &&.
true && true = true.

letter == 'P' false letter is 'J'.
workCompleted || letter == 'P' true Order of evaluation: ==, ||.

workCompleted is true;
letter == 'P' is false;
true || false = true.

!workCompleted && letter ! = 'P' false Order of evaluation: !, !=, &&.
!workCompleted is false;
letter != 'P' is true;
false && true = false.

numOne + numTwo < 15 false Order of evaluation: +, <.
numOne + numTwo is 7 + 9 = 16.
Th erefore, 16 > 15 evaluates to false.

numOne >= 0 && numOne <= 9 true Order of evaluation: >=, <=, &&.
numOne = 7. Note that 7 >= 0 and
7 >= 9 evaluate to true. true &&
true = true.

letter >= 'a' && letter <= 'z' false Order of evaluation: >=, <=, &&
letter is 'J'. Note that 'J' >=
'a' is false and 'J' <= 'z' is
true. false && true = false.

letter >= 'A' && letter <= 'Z' true Order of evaluation: >=, <=, &&
letter is 'J'. Th us, 'J' >= 'A' is
true and 'J' <= 'Z' is true.
true && true = true.

letter >= 'a' && letter <= 'z'
||

false Order of evaluation: >=, <=, &&, ||

letter >= 'A' && letter <= 'Z' false || true = true.
valueTwo > 0.25 && valueTwo <
0.45

false Order of evaluation: >, <, &&
valueTwo is 0.452. Th us, 0.452 >
0.25 is true. Also, 0.452 < 0.45
is false. true && false = false.

(continued)

CRC_C6547_CH004.indd 134CRC_C6547_CH004.indd 134 10/16/2008 4:43:55 PM10/16/2008 4:43:55 PM

Apago PDF Enhancer

Decision Making ■ 135

Expression Value Explanation

valueOne < 7.75 true valueOne is 2.25. Th us, 2.25 <
7.75 is true

valueOne < 7.75 || valueTwo >
2.5 && valueTwo < 10

false true || false = true.

(valueOne < 7.75 || valueTwo >
2.5)&& valueTwo < 10

true (true || true) && false =
true && false = false.

Th e following example verifi es our computations through a Java program.

Example 4.9

/**

 Illustrates the operator precedence involving logical

 operators

*/

public class OperatorPrecedence

{

 public static void main(String[] args)

 {

 boolean workCompleted = true;

 boolean errorFound = false;

 char letter = 'J';

 int numOne = 7, numTwo = 9, numThree = 20;

 double valueOne = 2.25, valueTwo = 0.452;

 System.out.println("!errorFound is "

 + (!errorFound));

 System.out.println("!workCompleted is "

 + (!workCompleted));

 System.out.println("workCompleted && !errorFound is "

 + (workCompleted && !errorFound));

 System.out.println("letter == 'P' is "

 + (letter == 'P'));

 System.out.println("workCompleted || letter == 'P' is "

 + (workCompleted || letter == 'P'));

 System.out.println("!workCompleted && letter != 'P' is "

 + (!workCompleted && letter != 'P'));

 System.out.println("numOne + numTwo < 15 is "

 + (numOne + numTwo < 15));

 System.out.println("numOne >= 0 && numOne <= 9 is "

 + (numOne >= 0 && numOne <= 9));

 System.out.println("letter >= 'a' && letter <= 'z' is "

 + (letter >= 'a' && letter <= 'z'));

CRC_C6547_CH004.indd 135CRC_C6547_CH004.indd 135 10/16/2008 4:43:55 PM10/16/2008 4:43:55 PM

Apago PDF Enhancer

136 ■ Java Programming Fundamentals

 System.out.println("letter >= 'A' && letter <= 'Z' is "

 + (letter >= 'A' && letter <= 'Z'));

 System.out.println("letter >= 'a' && letter <= 'z' || "

 + "letter >= 'A' && letter <= 'Z' is "

 + (letter >= 'a' && letter <= 'z' ||

 letter >= 'A' && letter <= 'Z'));

 System.out.println("valueTwo > 2.5 && valueTwo < 0.45

 is " + (valueTwo > 2.5 && valueTwo < 0.45));

 System.out.println("valueOne < 7.75 is "

 + (valueOne < 7.75));

 System.out.println("valueOne < 7.75 || valueTwo >

 0.25 " + "&& valueTwo < 0.45 is "

 + (valueOne < 7.75 || valueTwo > 0.25

 && valueTwo < 0.45));

 System.out.println("(valueOne < 7.75 || valueTwo >

 0.25) "+ "&& valueTwo < 0.45) "

 + ((valueOne < 7.75 || valueTwo > 0.25)

 && valueTwo < 0.45));

 }

}

Output

!errorFound is true

!workCompleted is false

workCompleted && !errorFound is true

letter == 'P' is false

workCompleted || letter == 'P' is true

!workCompleted && letter != 'P' is false

numOne + numTwo < 15 is false

numOne >= 0 && numOne <= 9 is true

letter >= 'a' && letter <= 'z' is false

letter >= 'A' && letter <= 'Z' is true

letter >= 'a' && letter <= 'z' || letter >= 'A' && letter <=

 'Z' is true

valueTwo > 0.25 && valueTwo < 0.45 is false

valueOne < 7.75 is true

valueOne < 7.75 || valueTwo > 0.25 && valueTwo < 0.45 is true

(valueOne < 7.75 || valueTwo > 0.25) && valueTwo < 0.45) false

Note 4.4 Parentheses can be used to change the order of execution. In particular, consider
the last two expressions in Example 4.9.

CRC_C6547_CH004.indd 136CRC_C6547_CH004.indd 136 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

Decision Making ■ 137

valueOne < 7.75 || valueTwo > 0.25 && valueTwo < 0.45 is true (1)

(valueOne < 7.75 || valueTwo > 0.25) && valueTwo < 0.45) false (2)

In expression 1 above, no parentheses were used. Th us, logical and operation is carried
out before the logical or. In expression 2, due to the parenthesis, logical or is carried out
before the logical and. Th us, in the case 1 the expression is evaluated to true, whereas in
case 2 it is evaluated to false.

Self-Check

 15. True or false: Relational operators have higher precedence than assignment
operators.

 16. True or false: Logical operators have higher precedence than arithmetic
operators.

Advanced Topic 4.3: Syntax Error Explained

Th e logical expressions (letter >= 'a' && letter <= 'z') and ('a' <= letter &&
letter <= 'z') are equivalent. However, it cannot be written as ('a' <= letter <=
'z'). Many beginning programmers wonder why one could write (valueOne + value-
Two + valueThree) without any syntax error; while ('a' <= letter <= 'z') is not
legal in Java. Th e reason can be explained as follows: Th e expression (valueOne + value-
Two + valueThree) is evaluated in two steps. First, valueOne + valueTwo is com-
puted. Th e result of this computation is a numeric value and is added to valueThree.
However, 'a' <= letter is a logical expression. Th erefore, 'a' <= letter is either true
or false. Th erefore, ('a' <= letter <= 'z') is either (true <= 'z') or (false <=
'z'). Since a relational operator cannot be used to compare a logical value with a charac-
ter, ('a' <= letter <= 'z') is an illegal expression.

Advanced Topic 4.4: Short-Circuit Evaluation

In the case of logical operation or, you know that

true || false is true

and

true || true is true

In other words, if the fi rst operand evaluates to true, the value of the second operand has
no bearing on the fi nal result. Th us, in a logical expression of the form

(logicalExpressionOne || logicalExpressionTwo)

if logicalExpressionOne evaluates to true, there is no need to evaluate
logicalExpressionTwo.

Similarly, in the case of logical operation and

false && false = false

CRC_C6547_CH004.indd 137CRC_C6547_CH004.indd 137 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

138 ■ Java Programming Fundamentals

and

false && true = false

Th us, if the fi rst operand evaluates to false, the value of the second operand has no bear-
ing on the fi nal result. Th us, in a logical expression of the form

(logicalExpressionOne && logicalExpressionTwo)

if logicalExpressionOne evaluates to false, there is no need to evaluate
logicalExpressionTwo.

Java compiler makes use of these facts and skips the evaluation of operands accordingly.
Th is method of evaluating a logical expression is called the short-circuit evaluation.

Advanced Topic 4.5: Additional Logical Operators

Java provides two other operators & and |. You can use these operators instead of && and
||, respectively, to avoid short-circuit evaluation. Some programmers use them to achieve
certain side eff ects as shown in the following example. Author does not recommend their
approach. Th e following example is given only to illustrate operators & and |.

Example 4.10

Consider the following declarations:

int numOne = 7, numTwo = 9, numThree = 20;

In the case of the following expression,

(numOne <= numTwo || numTwo == numThree++)

the fi rst operand of the or operator numOne <= numTwo evaluates to true.
Due to short-circuit evaluation, second operand (numTwo == numThree++) is
never evaluated. Th erefore, the variable numThree is not incremented by 1. Th us,
numThree is 20. However, in the following expression,

(numOne <= numTwo | numTwo == numThree++)

no short-circuit evaluation is performed and the second operand (numTwo ==
numThree++) is evaluated. Th e variable numThree is incremented by 1. Th us,
numThree becomes 21.

For a slightly more complex example, consider the following declaration and the
logical expression:

int numFour = 107, numFive = 109, numSix = 120;

(numFour >= numFive && 200 <= numFive++ || 300 == numSix++)

CRC_C6547_CH004.indd 138CRC_C6547_CH004.indd 138 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

Decision Making ■ 139

In this case, since fi rst operand numFour >= numFive of the logical and oper-
ation is false, the second operand 200 <= numFive++ of the logical and opera-
tions is never performed. Th us, we have the intermediate result

false || 300 == numSix++

Now, the fi rst operand of a logical or operation is false. Th erefore, no short-
circuit evaluation is possible. Recall that in the case of a logical or operation, com-
piler will employ short-circuit evaluation only if the fi rst operand is true. Th us,
in this case, compiler evaluates the operand 300 == numSix++. Th erefore, aft er
evaluating the statement

(numFour >= numFive && 200 <= numFive++ || 300 == numSix++)

the variable numFive is not incremented by 1 while the variable numSix is incre-
mented by 1.

However, the following expression evaluates every operand, and thus as a side
eff ect increments both variables numFive and numSix:

(numFour >= numFive & 200 <= numFive++ | 300 == numSix++)

In this book we will consistently use expressions with no side eff ects. Th erefore,
we will not be using logical operators & and |.

Example 4.11

Th is example provides a Java program to verify Example 4.10.

/**

 Operator precedence involving logical operators

*/

public class ShortCircuitEvaluation

{

 public static void main(String[] args)

 {

 int numOne = 7, numTwo = 9, numThree = 20;

 int numFour = 107, numFive = 109, numSix = 120;

 System.out.println("(numOne <= numTwo ||"

 + " numTwo == numThree++) is "

 + (numOne <= numTwo || numTwo == numThree++));

 System.out.println("numThree is " + numThree);

 System.out.println("(numOne <= numTwo |"

 + " numTwo == numThree++) is "

 + (numOne <= numTwo | numTwo == numThree++));

CRC_C6547_CH004.indd 139CRC_C6547_CH004.indd 139 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

140 ■ Java Programming Fundamentals

 System.out.println("numThree is " + numThree);

 System.out.println("(numFour >= numFive &&"

 + " 200 <= numFive++ || 300 == numSix++) is "

 + (numFour >= numFive && 200 <= numFive++

 || 300 == numSix++));

 System.out.println("numFive is " + numFive);

 System.out.println("numSix is " + numSix);

 System.out.println("(numFour >= numFive &"

 + " 200 <= numFive++ | 300 == numSix++) is "

 + (numFour >= numFive & 200 <= numFive++

 | 300 == numSix++));

 System.out.println("numFive is " + numFive);

 System.out.println("numSix is " + numSix);

 }

}

Output

(numOne <= numTwo || numTwo == numThree++) is true

numThree is 20

(numOne <= numTwo | numTwo == numThree++) is true

numThree is 21

(numFour >= numFive && 200 <= numFive++ || 300 == numSix++)

is false

numFive is 109

numSix is 121

(numFour >= numFive & 200 <= numFive++ | 300 == numSix++) is

false

numFive is 110

numSix is 122

Advanced Topic 4.6: Positive Logic

Research studies have shown that it is easy to understand positive logic compared to nega-
tive logic. In this section, we discuss De Morgan’s rule and other techniques for converting
a negative logic expression into a positive one.

Consider the following expression:

!(numOne > 7).

Th is is an example of negative logic. To convert this logical expression into a positive logic,
replace the relational operator > with its complement relational operator <=. Th us, the logical
expression !(numOne > 7) can be replaced by the following equivalent logical expression:

(numOne <= 7)

CRC_C6547_CH004.indd 140CRC_C6547_CH004.indd 140 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

Decision Making ■ 141

Table 4.10 shows each relational operator and its complement operator.
Now let us consider a more complex expression involving logical operators && and ||.

In this case, you can apply De Morgan’s rules as follows:
!(expOne && expTwo) is equivalent to !(expOne) || !(expTwo)

and
!(expOne || expTwo) is equivalent to !(expOne) && !(expTwo)

Example 4.12

Consider the following declarations:

boolean workCompleted = true;

char letter = 'J';

int numOne = 7, numTwo = 9, numThree = 20;

Positive Logic

Expression Modifi ed Expression and Explanation

!(numOne < 17 || NumTwo > 9) = !(numOne < 17) && !(NumTwo > 9)
= (numOne >= 17) && (NumTwo <= 9)
= (numOne >= 17 && NumTwo <= 9).

!(numOne <= 17 && NumTwo > 9) = !(numOne <= 17) || !(NumTwo > 9)
= (numOne > 17) || (NumTwo <= 9)
= (numOne > 17 || NumTwo <= 9).

!(numOne <= 17 && NumTwo > 9 = !((numOne <= 17 && NumTwo > 9) ||
 || letter == 'P') (letter == 'P'))

= !(numOne <= 17 && NumTwo > 9) &&
 !(letter == 'P')
= (!(numOne <= 17) || !(NumTwo > 9))
 && !(letter == 'P')
= ((numOne > 17) || (NumTwo <= 9))
 &&(letter != 'P')
= (numOne > 17 || NumTwo <= 9) &&
 (letter != 'P').

!(numOne >= 17 || NumTwo < 9
= !((numOne >= 17) || (NumTwo < 9 &&

 && letter != 'P') letter != 'P'))
= !(numOne >= 17) && !(NumTwo < 9 &&
 letter != 'P')

TABLE 4.10 Th e Complement of a Relational Operator

Operator Complement Negative Expression Positive Expression

< >= !(numOne < 7) (numOne >= 7)

<= > !(numOne <= 7) (numOne > 7)

> <= !(numOne > 7) (numOne <= 7)

>= < !(numOne >= 7) (numOne < 7)

== != !(numOne == 7) (numOne != 7)

!= == !(numOne != 7) (numOne == 7)

(continued)

CRC_C6547_CH004.indd 141CRC_C6547_CH004.indd 141 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

142 ■ Java Programming Fundamentals

Expression Modifi ed Expression and Explanation

= !(numOne >= 17) && (!(NumTwo < 9)
 ||!(letter != 'P'))
= (numOne < 17) && ((NumTwo >= 9) ||
 (letter == 'P'))
= (numOne < 17 && (NumTwo >= 9 ||
 letter == 'P').

!(numOne > 17 || NumTwo <= 9
= !((numOne > 17 || NumTwo <= 9) ||

 || !workCompleted) (!workCompleted))
= !(numOne > 17 || NumTwo <= 9) &&
 !(!workCompleted)
= !(numOne > 17) && !(NumTwo <= 9) &&
 !(!workCompleted)
= (numOne <= 17) && (NumTwo > 9) &&
 (workCompleted)
= (numOne <= 17 && NumTwo > 9 &&
 workCompleted).

!(numOne > 17 && NumTwo != 9
= !((numOne > 17 && NumTwo != 9) &&

 && !workCompleted) (!workCompleted))
= !(numOne > 17 && NumTwo != 9) ||
 !(!workCompleted)
= !(numOne > 17) || !(NumTwo != 9) ||
 !(!workCompleted)
= (numOne <= 17) || (NumTwo == 9) ||
 (workCompleted)
= (numOne <= 17 || NumTwo == 9 ||
 workCompleted)

SELECTION STRUCTURES
Java provides three structures for selection and decision making. In the next section,
we discuss the one-way selection structure if. Th e two-way selection structure if …
else and the multiway selection structure switch are introduced later in this chapter.
Although Java provides three diff erent structures, any decision making can in fact be per-
formed using a sequence of if structures. In other words, a two-way decision structure
can be replaced by two one-way decision structures. Similarly, a n-way decision-making
structure can in fact be replaced by n one-way decision-making structures. Th ese issues
will be further explored later in this chapter.

ONE-WAY SELECTION STRUCTURE
A university may place a student in its prestigious dean’s list if the student has at least
3.75 grade point average (gpa) out of a possible 4.0. Th us, if the gpa of a student is greater
than or equal to 3.75, student’s name is entered into dean’s list. However, if the gpa of a
student is less than 3.75, no action needs to be carried out. Th is is a situation where a one-
way selection structure is appropriate. Similarly, an automobile insurance fi rm may apply a

CRC_C6547_CH004.indd 142CRC_C6547_CH004.indd 142 10/16/2008 4:43:56 PM10/16/2008 4:43:56 PM

Apago PDF Enhancer

Decision Making ■ 143

20% discount to drivers with no accident claim in past 3 years. Again, the discount applies
to drivers with no accident claim in past 3 years and no action needs to be taken if a driver
had an accident in past 3 years.

Th e syntax template of one-way selection structure if is

if (decisionCondition)

 actionStatement

Th us, the one-way selection structure if has three parts. It begins with the reserved word
if. Th e second part, known as decision condition, is a logical expression enclosed within a
pair of left and right parentheses. Th e third part is any executable Java statement, known
as the action statement. Java treats all three parts together as one Java statement and for the
sake of discussion, we call it the if statement.

Th e semantics of the if statement is as follows. If the decision condition evaluates to
true, then the action statement is executed. However, if the decision condition evaluates
to false, then the action statement is not executed. Th e statement immediately following
the if statement is always executed.

Consider the following:

statementBefore

if (decisionCondition)

 actionStatement

statementAfter

Th e semantics of the if statement can be illustrated through the diagram shown in
Figure 4.2. Here the statementBefore and statementAfter stands for Java
 statements immediately before and aft er the if statement.

statementBefore

statementAfter

actionStatement

decisionCondition
true

false

FIGURE 4.2 Control structure if.

CRC_C6547_CH004.indd 143CRC_C6547_CH004.indd 143 10/16/2008 4:43:57 PM10/16/2008 4:43:57 PM

Apago PDF Enhancer

144 ■ Java Programming Fundamentals

Example 4.13

Consider the following segment of code:

char characterFound;

characterFound = 'Q';

if (characterFound >= 'A' && characterFound <= 'Z')

 System.out.println("The character found is uppercase. ");

System.out.println("Good Bye!");

In the above code, the decision condition (characterFound >= 'A' &&
characterFound <= 'Z') evaluates to true. Th erefore,

The character found is uppercase.

is printed. Th en as a next line,

Good Bye!

is also printed. However, if characterFound = 'Q'; is replaced by character-
Found = 'q'; statement, then the decision condition (characterFound >=
'A' && characterFound <= 'Z') evaluates to false. Th erefore,

The character found is uppercase.

will not be printed. However,

Good Bye!

will be printed.
Let us write a Java program to test our reasoning. Th e following program reads a

character and outputs

The character found is uppercase.

Good Bye!

if the character is uppercase, and outputs

Good Bye!

in all other cases.

/**

 Example: One-way selection - Uppercase letter

*/

import java.util.Scanner;

public class OnewayUppercase

{

 public static void main (String[] args)

 {

 char characterFound;

CRC_C6547_CH004.indd 144CRC_C6547_CH004.indd 144 10/16/2008 4:43:57 PM10/16/2008 4:43:57 PM

Apago PDF Enhancer

Decision Making ■ 145

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Input a character : ");

 System.out.flush();

 characterFound = scannedInfo.next().charAt(0);

 System.out.println();

 if (characterFound >= 'A' && characterFound <= 'Z')

 System.out.println

 ("The character found is uppercase.");

 System.out.println("Good Bye!");

 }

}

Output

Case 1. Input is an uppercase letter

Input a character: Q

The character found is uppercase.

Good Bye!

Case 2. Input is not an uppercase letter

Input a character : q

Good Bye!

Example 4.14

In this example, the preceding program is modifi ed so that if the input is an
 uppercase letter, the following messages are printed:

The character found is uppercase.

Good Bye!

If the input happens to be a lowercase letter, the following messages are printed:

The character found is lowercase.

Good Bye!

In all other cases, program outputs

Good Bye!

Recall that in the case of uppercase letters, the statement that was instrumental in
producing the message is the following if statement:

if (characterFound >= 'A' && characterFound <= 'Z')

 System.out.println("The character found is uppercase.");

CRC_C6547_CH004.indd 145CRC_C6547_CH004.indd 145 10/16/2008 4:43:57 PM10/16/2008 4:43:57 PM

Apago PDF Enhancer

146 ■ Java Programming Fundamentals

Th erefore, to produce a similar message corresponding to lowercase letters, all
you need is another if statement with appropriate decision condition and action
statement. Th us, we have the following Java statement:

if (characterFound >= 'a' && characterFound <= 'z')

 System.out.println("The character found is lowercase.");

Th e modifi ed program is given as follows:

/**

 Example: One-way selection - Uppercase and lowercase

*/

import java.util.Scanner;

public class OnewayUpperLowercase

{

 public static void main (String[] args)

 {

 char characterFound;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Input a character : ");

 System.out.flush();

 characterFound = scannedInfo.next().charAt(0);

 System.out.println();

 if (characterFound >= 'A' && characterFound <= 'Z')

 System.out.println

 ("The character found is uppercase.");

 if (characterFound >= 'a' && characterFound <= 'z')

 System.out.println

("The character found is lowercase.");

 System.out.println("Good Bye!");

 }

}

CRC_C6547_CH004.indd 146CRC_C6547_CH004.indd 146 10/16/2008 4:43:57 PM10/16/2008 4:43:57 PM

Apago PDF Enhancer

Decision Making ■ 147

Output

Case 1. Input is an uppercase letter

Input a character : Q

The character found is uppercase.

Good Bye!

Case 2. Input is a lowercase letter

Input a character : q

The character found is lowercase.

Good Bye!

Case 3. Input is not a letter

Input a character : %

Good Bye!

Th e one-way selection structure is quite useful in validating data. In Chapter 3,
you have encountered setNumberOfShares of the class Stock.

 public void setNumberOfShares(int inNumberOfShares)

 {

 numberOfShares = inNumberOfShares;

 }

Note that inNumberOfShares can have any int value. However, number
of shares owned by a person must always be a nonnegative value. Th erefore, if
 inNumberOfShares is a negative value such as −200, you may want to assign 0.
Th us, you need the following one-way decision statement:

if (inNumberOfShares < 0)

 inNumberOfShares = 0;

Th erefore, the setNumberOfShares method can be written as follows:

 public void setNumberOfShares(int inNumberOfShares)

 {

 if (inNumberOfShares < 0)

 inNumberOfShares = 0;

 numberOfShares = inNumberOfShares;

 }

CRC_C6547_CH004.indd 147CRC_C6547_CH004.indd 147 10/16/2008 4:43:57 PM10/16/2008 4:43:57 PM

Apago PDF Enhancer

148 ■ Java Programming Fundamentals

Example 4.15

In this example, we revisit the setCounterValue method of the class
 CircularCounter introduced in Chapter 3. For the sake of convenience, the
method is shown below:

 public void setCounterValue(int inCounterValue)

 {

 counterValue = inCounterValue;

 }

Note that the inCounterValue is assigned to counterValue. However,
recall that the counterValue is supposed to be an integer between 0 and
 limitValue – 1. Th erefore, you need to have a strategy to deal with situation
where inCounterValue is outside the range. Th at is, inConterValue is less
than 0 or inConterValue is greater than or equal to limitValue. A possible
approach is to assign counterValue with 0 whenever inCounterValue is out-
side the allowed range. Th e required Java statement is

if (inCounterValue < 0 || inCounterValue >= limitValue)

 inCounterValue = 0;

Th us, the modifi ed version of the setCounterValue method is as follows:

 public void setCounterValue(int inCounterValue)

 {

 if (inCounterValue < 0 || inCounterValue >=

 limitValue)

 inCounterValue = 0;

 counterValue = inCounterValue;

 }

Self-Check

 17. Rewrite the setNumberOfShares method such that if the number of shares
is less than 1, then the instance variable is set to 0.

 18. Rewrite the setCounterValue method such that the relational operator >=
is replaced by another relational operator without changing the logic.

BLOCK STATEMENT
Th e if structure has one action statement. However, there are many situations where you
may want to execute more than one action statement if the decision condition evaluates
to true. To accommodate this need, Java provides block statement. A block statement
is a sequence of Java statements enclosed within a pair of braces. Th e syntax of a block
 statement is as follows:

CRC_C6547_CH004.indd 148CRC_C6547_CH004.indd 148 10/16/2008 4:43:57 PM10/16/2008 4:43:57 PM

Apago PDF Enhancer

Decision Making ■ 149

{

 actionStatementOne

 actionStatementTwo

 .

 .

 .

 actionStatementN

}

Example 4.16

Consider the following situation. Mr. Jones has two accounts with ABC bank. One
is a checking account and the other is a savings account. Since checking accounts
do not pay any interest, Mr. Jones keeps essentially all his savings in his savings
account. However, he has bills to pay. So, fi rst of every month, Mr. Jones checks his
current balance in his checking account. If his current checking account balance
happens to be less than or equal to $500.00, he transfers $1000.00 from his savings
account to his checking account.

Assume the following declarations:

double savingsBalance; // keeps track of savings acct.

 balance

double checkingBalance; // keeps track of checking acct.

 balance

final double MINIMUM_BALANCE = 500.00;

final double TRANSFER_AMT = 1000.00;

Now, the segment of code relevant to our discussion can be written as follows.
First, check whether or not the checking balance is below MINIMUM _ BALANCE. If
the decision condition evaluates to true, then you need to withdraw TRANSFER _
AMT from savings account and deposit TRANSFER _ AMT to checking account.
Th us, we have the following:

if (checkingBalance <= MINIMUM_BALANCE)

{

 savingsBalance = savingsBalance - TRANSFER_AMT;

 checkingBalance = checkingBalance + TRANSFER_AMT;

}

Common Programming Error 4.2

In Java, = is an assignment operator. Th erefore, using = in a logical expression is a
syntax error.

CRC_C6547_CH004.indd 149CRC_C6547_CH004.indd 149 10/16/2008 4:43:58 PM10/16/2008 4:43:58 PM

Apago PDF Enhancer

150 ■ Java Programming Fundamentals

For example, the following code is incorrect:

if (checkingBalance = MINIMUM_BALANCE) //ERROR

{

 savingsBalance = savingsBalance - TRANSFER_AMT;

 checkingBalance = checkingBalance + TRANSFER_AMT;

}

In this context, using == is a logical error. Th e logic dictates that you use <= and
not ==.

Common Programming Error 4.3

In the case of an if statement, the decision condition must always be within a pair of
parentheses. Th us, omitting the parenthesis enclosing a decision condition is an error.

Th e following code illustrates the error:

if checkingBalance <= MINIMUM_BALANCE //ERROR

{

 savingsBalance = savingsBalance - TRANSFER_AMT;

 checkingBalance = checkingBalance + TRANSFER_AMT;

}

Common Programming Error 4.4

In the case of an if statement, there is no semicolon immediately following the
right parenthesis enclosing the decision condition. Th us, placing a semicolon
 immediately following the right parenthesis aft er decision condition is an error.

Th e following code has the Common Programming Error 4.3. Statements 1 and
2 will always be executed.

if (checkingBalance <= MINIMUM_BALANCE); //ERROR

{

 savingsBalance = savingsBalance - TRANSFER_AMT; //(1)

 checkingBalance = checkingBalance + TRANSFER_AMT; //(2)

}

Common Programming Error 4.5

In Java, a block statement is always enclosed within a pair of braces. Th us, omitting
braces in a block statement is an error.

For example, in the following code, (1) alone is the action statement. Th us, State-
ment 2 is always executed.

if (checkingBalance <= MINIMUM_BALANCE) //ERROR

 savingsBalance = savingsBalance - TRANSFER_AMT; //(1)

 checkingBalance = checkingBalance + TRANSFER_AMT; //(2)

CRC_C6547_CH004.indd 150CRC_C6547_CH004.indd 150 10/16/2008 4:43:58 PM10/16/2008 4:43:58 PM

Apago PDF Enhancer

Decision Making ■ 151

Self-Check

 19. Can a block statement contain exactly one statement?
 20. Modify the code so that amount is transferred only if the checking account

 balance falls below $300.00.

TWO-WAY SELECTION STRUCTURE
You learned how to handle multiple actions in a one-way selection structure. Just as there
are many situations in which you must perform multiple actions when a decision condi-
tion evaluates to true, there are many situations in which you must perform two diff erent
sets of actions when a decision condition evaluates to true and false, respectively.
For example, a university may place a student in its prestigious dean’s list if the student
has 3.75 gpa out of a possible 4.0. If the gpa of a student is greater than or equal to 3.75, the
student’s name is entered into dean’s list. However, if the gpa of a student is less than 3.75,
university may want to send an encouraging message to the student. In this case, you need
a two-way selection structure. Similarly, an automobile insurance fi rm may apply a 20%
discount to drivers with no accident claim in past 3 years. Th is discount applies to drivers
with no accident claim in past 3 years. However, as a public relations matter, every customer
is given 5% discount. Th is is another situation where a two-way selection is required.

Java provides a control structure if … else to address this issue. Th e syntax of the
control structure if … else is as follows:

if (decisionCondition)

 actionStatementTrue

else

 actionStatementFalse

Th us, the two-way selection structure if … else has fi ve parts. First, it begins with
the reserved word if. Th e second part is a decision condition enclosed within a pair of
left and right parentheses. Th e third part is an executable Java statement. Th e fourth is the
reserved word else. Th e fi ft h is an executable Java statement. Java treats all fi ve parts together
as one Java statement and for the sake of discussion, we call it the if … else statement.

Th e semantics of the if … else statement is as follows. If decision condition evaluates to
true, the action statement actionStatementTrue is executed. However, if the decision
condition evaluates to false, the action statement actionStatementFalse is executed.
Th e statement immediately following the if … else statement is always executed.
Consider the following:

statementBefore

if (decisionCondition)

 actionStatementTrue

else

 actionStatementFalse

statementAfter

CRC_C6547_CH004.indd 151CRC_C6547_CH004.indd 151 10/16/2008 4:43:58 PM10/16/2008 4:43:58 PM

Apago PDF Enhancer

152 ■ Java Programming Fundamentals

Th e semantics of the if … else structure can be illustrated through the diagram shown
in Figure 4.3. Here, the statementBefore and statementAfter stand for Java
 statements immediately before and aft er the if … else statement.

As in the case of the if statement, any one or both the action statements can be a block
statement.

Example 4.17

Consider the following segment of code:

int ageDifference;

.

.

.

 if (ageDifference <= 20)

 System.out.println("are of the same generation");

 else

 System.out.println("are of different generations");

In the above code, let ageDifference contain the absolute diff erence between
ages of two individuals. Th en, if the decision condition (ageDifference <= 20)
evaluates to true, then the following message is printed:

They are of the same generation

However, if the expression (ageDifference <= 20) evaluates to false, then
the following message is printed:

They are of different generations

Let us write a Java program to test our reasoning.

statementBefore

statementAfter

decisionCondition truefalse

actionStatementTrueactionStatementFalse

FIGURE 4.3 Control structure if … else.

CRC_C6547_CH004.indd 152CRC_C6547_CH004.indd 152 10/16/2008 4:43:58 PM10/16/2008 4:43:58 PM

Apago PDF Enhancer

Decision Making ■ 153

Th e following program reads fi rst names, last names, and ages of two individuals
and determines whether or not they are of the same generation. Assume that
ageOne and ageTwo are the variables containing the ages of two individuals.
Th en (ageTwo - ageOne) is the diff erence between two age values. However,
the above diff erence can be positive or negative. Th erefore, we need to fi nd the
 absolute value (ageTwo - ageOne). Recall that Java has a static method abs
in the Math class. Math.abs(ageTwo - ageOne) computes the absolute
 diff erence between ageTwo and ageOne.

/**

Example: Two-way selection - same generation

*/

import java.util.Scanner;

public class TwowayAge

{

 public static void main (String[] args)

 {

 String firstNameOne, lastNameOne;

 String firstNameTwo, lastNameTwo;

 int ageOne, ageTwo, ageDifference;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print

 ("Enter first name, last name and age : ");

 System.out.flush();

 firstNameOne = scannedInfo.next();

 lastNameOne = scannedInfo.next();

 ageOne = scannedInfo.nextInt();

 System.out.println();

 System.out.print

 ("Enter first name, last name and age : ");

 System.out.flush();

 firstNameTwo = scannedInfo.next();

 lastNameTwo = scannedInfo.next();

 ageTwo = scannedInfo.nextInt();

 System.out.println();

 ageDifference = Math.abs(ageTwo - ageOne);

 System.out.print(firstNameOne + " " + lastNameOne

 + " and " + firstNameTwo + " " + lastNameTwo + " ");

CRC_C6547_CH004.indd 153CRC_C6547_CH004.indd 153 10/16/2008 4:43:58 PM10/16/2008 4:43:58 PM

Apago PDF Enhancer

154 ■ Java Programming Fundamentals

 if (ageDifference <= 20)

 System.out.println("are of the same generation.");

 else

 System.out.println("are of different generations.");

 }

}

Output

Case 1: ageOne < ageTwo, same generation

Enter first name, last name and age : Joy Mathew 37

Enter first name, last name and age : Chris Cox 57

Joy Mathew and Chris Cox are of the same generation.

Case 2: ageOne > ageTwo, diff erent generation

Enter first name, last name and age : Adam Smith 67

Enter first name, last name and age : Mike McCoy 46

Adam Smith and Mike McCoy are of different generations

Example 4.18

In this example, we use the String method compareTo. Th is example also
 illustrates the use of block statements in an if … else statement.

Let us call the name of a person ascending if the last name is lexicographically larger
than the fi rst name. Th is example verifi es whether or not a person’s name is ascend-
ing. Recall that to compare two strings, you use compareTo method of the String
class and if strOne and strTwo are two strings, strOne.compareTo(strTwo)
returns a negative value if strOne is smaller than strTwo. Th erefore, if first-
Name and lastName are String variables for fi rst name and last name of a person,
firstName.compareTo(lastName) is less than 0 if the name of the person is
an ascending name. In other words, (firstName.compareTo(lastName) < 0)
is true for ascending names. Th e complete program is as follows:

/**

Example: Two-way selection – Ascending Name

*/

import java.util.Scanner;

public class AscendingName

{

 public static void main (String[] args)

 {

 String firstName, lastName;

CRC_C6547_CH004.indd 154CRC_C6547_CH004.indd 154 10/16/2008 4:43:59 PM10/16/2008 4:43:59 PM

Apago PDF Enhancer

Decision Making ■ 155

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print

 ("Enter first name, last name: ");

 System.out.flush();

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 System.out.println();

 if (firstName.compareTo(lastName) < 0)

 {

 System.out.println("Hi " + firstName + " " +

 lastName);

 System.out.println

 ("You got an ascending Name!");

 }

 else

 {

 System.out.println("Sorry! " + firstName + " " +

 lastName);

 System.out.println

 ("Your name is not an ascending one!");

 }

 }

}

Output

Case 1: Ascending name

Enter first name, last name: James Jones

Hi James Jones

You got an ascending Name!

Case 2: Not an ascending name

Enter first name, last name: Elaine Cox

Sorry! Elaine Cox

Your name is not an ascending one!

Self-Check

 21. Write the code to print “Set for life!” if the net worth is more than $10 million dol-
lars and print “Not there yet!” otherwise.

 22. Write the code to print “Expensive item” if the cost is more than $25.00 and
print “Reasonable Item” otherwise.

CRC_C6547_CH004.indd 155CRC_C6547_CH004.indd 155 10/16/2008 4:43:59 PM10/16/2008 4:43:59 PM

Apago PDF Enhancer

156 ■ Java Programming Fundamentals

PRIMITIVE DATA TYPE boolean
In Chapter 2, you have seen the primitive data type boolean. You can declare and
 initialize boolean variables similar to other primitive data types.
boolean errorFound;

boolean jobCompleted = true;

boolean isLowercaseLetter;

errorFound = false;

You can also use a logical expression on the right-hand side of an assignment statement as
shown below:
isLowercaseLetter = ('a' <= charOne && charOne <= 'z');

Note that above statement assigns true to isLowercaseLetter if charOne is a char-
acter between 'a' and 'z' and assigns false otherwise.

Note 4.5 Th ere is no need to use an if structure to assign a boolean variable true
or false based on a boolean expression. For example, instead of the following if
statement,
if ('a' <= charOne && charOne <= 'z')

 isLowercaseLetter = true;

else

 isLowercaseLetter = false;

use

isLowercaseLetter = ('a' <= charOne && charOne <= 'z');

Note 4.6 Observe that true and false have no numerical value and hence you cannot
use any of the relational operators. However, equality operators can be used to test whether
or not two boolean variables have the same logical value.

Note 4.7 Th e expression isLowercaseLetter == true is true if isLower-
caseLetter is true and isLowercaseLetter == true is false if isLow-
ercaseLetter is false. Th erefore, isLowercaseLetter == true is equivalent
to isLowercaseLetter. Similarly, the expression isLowercaseLetter == false
is true if !isLowercaseLetter is true, and isLowercaseLetter == false is
false if !isLowercaseLetter is false. Th us, isLowercaseLetter == false
is equivalent to !isLowercaseLetter. Th erefore, there is no need to compare a
 boolean variable and a boolean literal. If isLowercaseLetter is a boolean vari-
able, use isLowercaseLetter instead of isLowercaseLetter == true and use
 !isLower caseLetter instead of isLowercaseLetter == false.

Self-Check

 23. Write a statement similar to

 isLowercaseLetter = ('a' <= charOne && charOne <= 'z');

 for the boolean variable isUppercaseLetter.

CRC_C6547_CH004.indd 156CRC_C6547_CH004.indd 156 10/16/2008 4:43:59 PM10/16/2008 4:43:59 PM

Apago PDF Enhancer

Decision Making ■ 157

 24. Can the expression ('a' <= charOne && charOne <= 'z') be replaced by
('a' <= charOne <= 'z')?

NESTED STRUCTURES
James was following his schedule and things seemed to work well. He thought it would
be a great idea to organize a party on a weekend. Defi nitely, he cannot follow his regular
 weekend schedule, if he is throwing a party. In other words, his weekend schedule has two
possible options and it depends on the fact that whether or not he is throwing a party. Th us,
his schedule has the following outline:

if (weekday)
 //follow weekday schedule
else
 if (throwing a party)
 //follow party schedule
 else
 //follow regular weekend schedule

Observe the presence of a decision structure inside another decision structure. Placing one
control structure within another control structure is called nesting and the control struc-
ture obtained through nesting is known as a nested control structure.

Consider the syntax of if and if … else structure you have already learned. For the
sake of convenience, those structures are reproduced here.

if (logicalExpression)

 ActionStatement

if (logicalExpression)

 ActionStatement

else

 ActionStatement

In the above structures, ActionStatement stands for any executable Java statement,
including a block statement. In particular, ActionStatement can be another if or
if … else statement.

Example 4.19

In this example, we graphically illustrate some of the possible nested structures
using if and if … else.

Th e structure shown in Figure 4.4 is an if … else structure nested inside an
if structure. Th e two structures shown in Figure 4.5 are obtained by nesting one
if structure inside an if … else.

Th e structure shown in Figure 4.6 is created by nesting two if structures inside
an if … else structure.

CRC_C6547_CH004.indd 157CRC_C6547_CH004.indd 157 10/16/2008 4:43:59 PM10/16/2008 4:43:59 PM

Apago PDF Enhancer

158 ■ Java Programming Fundamentals

FIGURE 4.6 Nesting control structure 3.

logicalExp3
true

false

logicalExpOne

logicalExpTwo
true

false

truefalse

FIGURE 4.4 Nesting control structure 1.

logicalExpOne
true

false

logicalExpTwo
truefalse

FIGURE 4.5 Nesting control structure 2.

logicalExpOne

logicalExpTwo
true

false

truefalse truefalse
logicalExpOne

logicalExpTwo
true

false

CRC_C6547_CH004.indd 158CRC_C6547_CH004.indd 158 10/16/2008 4:43:59 PM10/16/2008 4:43:59 PM

Apago PDF Enhancer

Decision Making ■ 159

Th e structure shown in Figure 4.7 shows the nesting of two if … else struc-
tures inside an if … else structure. Observe that it can make a four-way decision.
Th e four diff erent selections are

logicalExpOne is false and logicalExpTwo is false
logicalExpOne is false and logicalExpTwo is true
logicalExpOne is true and logicalExp3 is false
logicalExpOne is true and logicalExp3 is true

Example 4.19 shows that a wide variety of structures can be created through nesting of
if and if … else structures.

Example 4.20

Consider the income tax rules of a certain country. Th ere is no income tax for the
fi rst $25,000.00. Th e next $75,000.00 is taxed at the rate of 15% and the amount
above 100,000.00 is taxed at the rate of 25%.

Note that there are two groups of people. One group has the income less than or
equal to 25,000.00 and as such do not pay any income tax at all. Th e other group has
income greater than 25,000.00 and has to pay income tax. Th us, we can start with
the following if statement:

if (totalIncome > 25000.00)

 "compute income tax"

else

 incomeTax = 0.0;

•
•
•
•

FIGURE 4.7 Nesting control structure 4.

logicalExpOne
truefalse

logicalExp3
truefalse

logicalExpTwo
truefalse

CRC_C6547_CH004.indd 159CRC_C6547_CH004.indd 159 10/16/2008 4:44:00 PM10/16/2008 4:44:00 PM

Apago PDF Enhancer

160 ■ Java Programming Fundamentals

Now consider the group of people who pay income tax. Th is group can be clas-
sifi ed into two subgroups: those with income less than or equal to 100,000.00 and
those with income greater than 100,000.00. Income tax for those with income less
than or equal to 100,000 can be computed using the formula

incomeTax = (totalIncome – 25000.00) * .15

and for people with income greater than 100,000.00 it can be computed using the
formula

incomeTax = 75000.00 * .15 + (totalIncome – 100000.00) * .25
= 11250.00 + (totalIncome – 100000.00) * .25

Th us, for the group with income more than 25,000.00, we have the following:

if (totalIncome > 100000.00)

 incomeTax = 11250.00 + (totalIncome - 100000.00) * .25

else

 incomeTax = (totalIncome - 25000.00) * .15

Now, the above code applies to people with total income more than 25,000.00.
Th us, we have the following:

if (totalIncome > 25000.00) // (1)

 if (totalIncome > 100000.00) // (2)

 incomeTax = 11250.00 + (totalIncome - 100000.00) * .25;

 else // (3)

 incomeTax = (totalIncome - 25000.00) * .15;

else // (4)

 incomeTax = 0.0;

Later in this chapter you will see a more elegant solution using a multiway selection struc-
ture. Another improvement to the code can be achieved by using named constants for
25,000.00 and 100,1000.00.

In Java, there is no else structure. Every else must be part of an if … else struc-
ture. As you start creating nested if and if … else structure, you may be wondering
which else corresponds to which if? Th e rule is quite simple. An else is always paired
with last if statement without else. Th us, else in line (3) pairs with if in line (2) and
else in line (4) pairs with the if in line (1).

Self-Check

 25. Could you write the code for income tax computation without nesting?
 26. True or false: Nesting improves understanding of the logic involved.

CRC_C6547_CH004.indd 160CRC_C6547_CH004.indd 160 10/16/2008 4:44:00 PM10/16/2008 4:44:00 PM

Apago PDF Enhancer

Decision Making ■ 161

Advanced Topic 4.7: Better Coding Options

Note that above computation can be accomplished by the following sequence of if
statements:

if (totalIncome <= 25000.00)

 incomeTax = 0.0;

if (totalIncome > 25000.00 && totalIncome <= 100000.00)

 incomeTax = (totalIncome - 25000.00) * .15;

if (totalIncome > 100000.00)

 incomeTax = 11250.00 + (totalIncome - 100000.00) * .25;

Th ere is a natural tendency among many students to code as shown above. You are strongly
encouraged to refrain from that practice. Compared to our fi rst solution, the one above
is less effi cient since all three logical expressions will be evaluated irrespective of a per-
son’s total income. However, in our fi rst solution, if total income is less than or equal to
25,000.00, only one logical expression will be evaluated and in all other cases two logical
expressions will be evaluated.

Example 4.21

A certain university has a grading policy shown in Table 4.11.
Let wats denote the weighted average of all tests rounded to the nearest integer.

Since grade assigned can be more than one character, you need a String variable
to store the grade assigned. Th us, we have the following declarations:

int wats;

String gradeAssigned;

Th e highest grade a student can get is A. Th erefore, you need to test whether the
student is eligible for A. So, you can start the code as follows:

if (wats >= 90)

 gradeAssigned = "A"

else

 // a grade other than A is assigned

TABLE 4.11 Th e Grading Policy

Weighted Average of Test Scores (wats) Grade Assigned

wats >= 90 A
85 <= wats < 90 A–
80 <= wats < 85 B
75 <= wats < 80 B–
70 <= wats < 75 C
60 <= wats < 70 D
wats < 60 F

CRC_C6547_CH004.indd 161CRC_C6547_CH004.indd 161 10/16/2008 4:44:00 PM10/16/2008 4:44:00 PM

Apago PDF Enhancer

162 ■ Java Programming Fundamentals

For a student who has not received A, the next highest possible grade is A–.
Hence, you need to test whether the student is eligible for A–. Th us, the code can be
written as follows:

if (wats >= 90)

 gradeAssigned = "A"

else

 if (wats >= 85)

 gradeAssigned = "A-"

 else

 // a grade other than A or A- is assigned

Repeating the above analysis, we arrive at the following segment of code:

if (wats >= 90)

 gradeAssigned = "A" ;

else

 if (wats >= 85)

 gradeAssigned = "A-" ;

 else

 if (wats >= 80)

 gradeAssigned = "B" ;

 else

 if (wats >= 75)

 gradeAssigned = "B-" ;

 else

 if (wats >= 70)

 gradeAssigned = "C" ;

 else

 if (wats >= 60)

 gradeAssigned = "D" ;

 else

 gradeAssigned = "F" ;

Similar situations arise quite oft en in programming. Th erefore, to reduce the
indentation, the above code is quite oft en written as follows:

if (wats >= 90)

 gradeAssigned = "A";

else if (wats >= 85)

 gradeAssigned = "A-";

else if (wats >= 80)

 gradeAssigned = "B";

else if (wats >= 75)

 gradeAssigned = "B-";

CRC_C6547_CH004.indd 162CRC_C6547_CH004.indd 162 10/16/2008 4:44:00 PM10/16/2008 4:44:00 PM

Apago PDF Enhancer

Decision Making ■ 163

else if (wats >= 70)

 gradeAssigned = "C";

else if (wats >= 60)

 gradeAssigned = "D";

else

 gradeAssigned = "F";

Th e above code is in fact a seven-way selection statement.

In general, a multiway selection structure has the following syntax:

if (logicalExpOne)

 actionStatementOne

else if (logicalExpTwo)

 actionStatementTwo

else if (logicalExp3)

 actionStatement3

.

.

.

else if (logicalExpN)

 actionStatementN

else

 actionStatement(N+1)

Th e following code we developed in Example 4.20

if (totalIncome > 25000.00)

 if (totalIncome > 100000.00)

 incomeTax = 11250.00 + (totalIncome - 100000.00) * .25;

 else

 incomeTax = (totalIncome - 25000.00) * .15;

else

 incomeTax = 0.0;

is better programmed as a three-way selection since there are three disjoint groups
of people: the total income greater than 100,000.00, the total income less than or
equal to 100,000.00 but greater than 25,000.00, and the total income less than or
equal to 25,000.00.

if (totalIncome > 100000.00)

 incomeTax = 11250.00 + (totalIncome - 100000.00) * .25;

else if (totalIncome > 25000.00)

 incomeTax = (totalIncome - 25000.00) * .15;

else

 incomeTax = 0.0;

CRC_C6547_CH004.indd 163CRC_C6547_CH004.indd 163 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

164 ■ Java Programming Fundamentals

Advanced Topic 4.8: Order of Logical Expressions

In the case of a multiway selection structure, the order in which the logical expressions
are evaluated is quite crucial. Unless great care is taken, your program may not behave
the way you have expected. For example, consider the grade assignment code presented
in Example 4.21. If you change the order of logical expressions, the code will not work as
desired. For instance, the following code is not correct:

//Following code is not correct

if (wats >= 70)

 gradeAssigned = "C" ;

else if (wats >= 85)

 gradeAssigned = "A-" ;

else if (wats >= 80)

 gradeAssigned = "B" ;

else if (wats >= 75)

 gradeAssigned = "B-" ;

else if (wats >= 90)

 gradeAssigned = "A" ;

else if (wats >= 60)

 gradeAssigned = "D" ;

else

 gradeAssigned = "F" ;

Note that the above code is equivalent to the following segment of code:

if (wats >= 70)

 gradeAssigned = "C" ;

else if (wats >= 60)

 gradeAssigned = "D" ;

else

 gradeAssigned = "F" ;

Th us, anyone with wats greater than or equal to 70 will receive C grade and no one will
receive A, A–, B, or B–.

However, you can avoid the above pitfall through the use of better logical expressions.
For instance, the following code is correct:

if (wats >= 70 && wats < 75)

 gradeAssigned = "C" ;

else if (wats >= 85 && wats < 90)

 gradeAssigned = "A-" ;

else if (wats >= 80 && wats < 85)

 gradeAssigned = "B" ;

CRC_C6547_CH004.indd 164CRC_C6547_CH004.indd 164 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

Decision Making ■ 165

else if (wats >= 75 && wats < 80)

 gradeAssigned = "B-" ;

else if (wats >= 90)

 gradeAssigned = "A" ;

else if (wats >= 60 && wats < 70)

 gradeAssigned = "D" ;

else

 gradeAssigned = "F" ;

Advanced Topic 4.9: Overriding if … else Pairing Rule

Th e following example illustrates the need and technique involved in overriding the if …
else pairing rule.

Example 4.22

A certain automobile insurance company assigns risk factor based on the following
facts. Every driver has a risk factor 1.0. Anyone in the age group 16–25 is consid-
ered of high risk and has a risk factor 5.0. Anyone not in the high-risk category but
has children in high-risk category is considered of modest risk and has a risk
factor of 3.0.

You may be tempted to write the following code:

int driverAge;

double riskFactor;

boolean hasHighRiskChildren;

.

.

.

riskFactor = 1.0;

if (driverAge >= 26) // (1)

 if (hasHighRiskChildren) // (2)

 riskFactor = 3.0;

else // (3)

 riskFactor = 5.0;

However, the above code is not correct. Recall that an else is always paired with
the immediate if with no else part. Th erefore, else in Line 3 is paired with if
in Line 2 and not with if in Line 1. Note that indentation has no signifi cance on the
way if and else are paired. To pair an else with an if of your choice, you must
create a block statement as shown below:

riskFactor = 1.0;

if (driverAge >= 26) // (1)

CRC_C6547_CH004.indd 165CRC_C6547_CH004.indd 165 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

166 ■ Java Programming Fundamentals

{

 if (hasHighRiskChildren) // (2)

 riskFactor = 3.0;

}

else // (3)

 riskFactor = 5.0;

Note that the above code may in fact be written as multiway selection statement
as shown below:

if (driverAge <= 25)

 riskFactor = 5.0;

else if (hasHighRiskChildren)

 riskFactor = 3.0;

else

 riskFactor = 1.0;

Advanced Topic 4.10: Ternary Operator

Java provides a ternary operator ?: that can be used in place of an if … else structure
in certain cases. Consider an if … else structure of the following form:

if (logicalExpression)

 variable = valueTrueCase ;

else

 variable = valueFalseCase ;

Note that in the above statement, if (logicalExpression) evaluates to true,
 variable = valueTrueCase is executed. Otherwise, variable = valueFalse
Case is executed. In other words, the purpose of the above if structure is to assign one
value or another to the same variable based on the truth or falsehood of a logical expression.
In such cases, you can replace the above if … else structure by the following semantically
equivalent Java statement:

variable = (logicalExpression) ? valueTrueCase : valueFalseCase ;

Th e expression appearing on the right-hand side of the above assignment statement is
called a conditional expression. Consider the following if … else structure:

if (valueOne <= valueTwo)

 minValue = valueOne;

else

 minValue = valueTwo;

CRC_C6547_CH004.indd 166CRC_C6547_CH004.indd 166 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

Decision Making ■ 167

Using the conditional operator, the above statement can be written as follows:

minValue = (valueOne <= valueTwo)? valueOne : valueTwo;

MULTIWAY STRUCTURE switch
You have already seen a multiway structure created through the nesting of if … else
structure. In this section, a new structure called switch is presented. Th e general syntax
of the switch statement is as follows:

switch(expression)

{

case valueOne:

 statementsOne

 [break;]

case valueTwo:

 statementsTwo

 [break;]

.

.

.

case valueN:

 statementsN

 [break;]

[default:

 statementsD

 [break;]]

}

Note that break, case, default, and switch are reserved words and statements-
One, statementsTwo, and so on can be one or more executable statements. Th e semantics
of the switch statement can be explained as follows. First, the expression is evaluated.
If the value of the expression is equal to valueOne, then statementsOne are exe-
cuted. If the break statement is present, then no other statements within the structure are
executed. However, if there is no break statement, statementsTwo are executed. If the
break statement is present, then no other statements within the structure are executed.
However, if there is no break statement, statementsThree are executed, and so on.

Similarly, if the value of the expression is equal to valueTwo, then state-
mentsTwo are executed. If the break statement is present, then no other statements
within the structure are executed. However, if there is no break statement, statement-
sThree are executed, and so on. If none of the values listed in case statements match the
expression, then statementsD are executed.

Th e value of expression can only be an integral or enumerated data type; and is called the
controlling expression. Th e enumerated data types will be introduced in the next section.
Th e literal value that appears aft er a case in a case statement is called a label. A specifi c
label can appear only in one case statement and a case statement can list only one label.

CRC_C6547_CH004.indd 167CRC_C6547_CH004.indd 167 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

168 ■ Java Programming Fundamentals

However, you can list case statements one aft er another without any action statements
for all of them except the last one. Th us, all these case statements will have the same action
statements. Since syntax allows us to have multiple statements corresponding to a case, there
is no need to use braces. All break statements are optional. In particular, the break state-
ment associated with default value has no signifi cance at all and can be omitted.

Th e semantics of a switch structure can be summarized as follows (see Figure 4.8):
 1. If the expression evaluates to a case label, then the statements are executed

 starting from that matching label until either a break statement or end of the
switch structure is encountered. Once a break statement is encountered, no other
statement in the switch structure is executed.

 2. If the expression evaluates to a value that does not exist as a case label, then
statements are executed starting from the label default.

 3. If the expression evaluates to a value that does not exist and the switch struc-
ture has no default label, then no statement in the switch structure is executed.

Example 4.23

A university’s admission criteria include points of the athletic participation. Th e
points are awarded as follows: 25 points for international level participation, 18
points for national level participation, 12 points for state level participation, 6 points
for district level participation, and 3 points for school level participation. Th is situ-
ation can be coded using a switch statement as follows:

switch(participationLevel)

{

case 1: // school level

 athleticPoints = 3;

 break;

case 2: // district level

 athleticPoints = 6;

 break;

case 3: // state level

 athleticPoints = 12;

 break;

case 4: // national level

 athleticPoints = 18;

 break;

case 5: // international level

 athleticPoints = 25;

 break;

default: // no participation

 athleticPoints = 0;

 break;

}

CRC_C6547_CH004.indd 168CRC_C6547_CH004.indd 168 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

Decision Making ■ 169

false

expression
 == valueOne

true

statementsOne break

expression
 ==valueTwo

true

statementsTwo break

false

expression
==valueThree

true

statementsThree break

false

expression
 == valueN

true

statementsN break

false

statementsD breakdefault

.

.

.

FIGURE 4.8 Th e control structure switch.

CRC_C6547_CH004.indd 169CRC_C6547_CH004.indd 169 10/16/2008 4:44:01 PM10/16/2008 4:44:01 PM

Apago PDF Enhancer

170 ■ Java Programming Fundamentals

In this example, the control expression participationLevel is an int
 variable. Th e labels are int literals 1 through 5.

Th e above switch statement can be replaced by the following semantically
equivalent multiway if … else statement:

if (participationLevel == 1)

 athleticPoints = 3;

else if (participationLevel == 2)

 athleticPoints = 6;

else if (participationLevel == 3)

 athleticPoints = 12;

else if (participationLevel == 4)

 athleticPoints = 18;

else if (participationLevel == 5)

 athleticPoints = 25;

else

 athleticPoints = 0;

Self-Check

 27. True or false: In the switch statement to compute the athletic points, the order
of case statements is immaterial.

 28. Is above statement true in general?

Advanced Topic 4.11: Sharing Code in a switch Statement

Example 4.24

Th e following switch statement illustrates the sharing of common code for more
than one label. Assume that month and numberOfDays are int variables and
 leap Year is a boolean variable.

switch(month)

{

case 1 :

case 3 :

case 5 :

case 7 :

case 8 :

case 10 :

case 12 :

 numberOfDays = 31;

 break;

case 2 :

 if (leapYear)

 numberOfDays = 29;

CRC_C6547_CH004.indd 170CRC_C6547_CH004.indd 170 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

Decision Making ■ 171

 else

 numberOfDays = 28;

 break;

case 4 :

case 6 :

case 9 :

case 11 :

 numberOfDays = 30;

 break;

default:

 numberOfDays = 0;

 break;

}

Th e above switch statement can be replaced by the following if … else
statement:

if (month == 1 || month == 3 || month == 5 || month == 7 ||

 month == 8 || month == 10 || month == 12)

 numberOfDays = 31;

else if (month == 4 || month == 6 || month == 9 || month == 11)

 numberOfDays = 30;

else if (month == 2)

 if (leapYear)

 numberOfDays = 29;

 else

 numberOfDays = 28;

else

 numberOfDays = 0;

Example 4.25

A credit card company issues four diff erent types of credit cards: basic, silver, gold,
and platinum. As one moves up the level, one has all the benefi ts of the level below
and some additional benefi ts. A switch statement is quite useful in this context.

System.out.println("You are entitled to the following:");

System.out.println();

switch(cardType)

{

case 1 : //platinum

 System.out.println("\t$100,000 in travel insurance");

case 2 : //gold

 System.out.println("\tThree month price protection");

case 3 : //silver

 System.out.println("\tFree rental car insurance");

CRC_C6547_CH004.indd 171CRC_C6547_CH004.indd 171 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

172 ■ Java Programming Fundamentals

case 4 : //basic

 System.out.println("\tFree credit protection against loss");

 System.out.println("\t24/7 toll free customer service");

 System.out.println();

 break;

default :

 // no action required.

}

Th e above code is equivalent to the following segment of code:

System.out.println("You are entitled to the following:");

System.out.println();

if (cardType == 1) //platinum

{

 System.out.println("\t$100,000 in travel insurance");

 System.out.println("\tThree month price protection");

 System.out.println("\tFree rental car insurance");

 System.out.println("\tFree credit protection against loss");

 System.out.println("\t24/7 toll free customer service");

 System.out.println();

}

else if (cardType == 2) //gold

{

 System.out.println("\tThree month price protection");

 System.out.println("\tFree rental car insurance");

 System.out.println("\tFree credit protection against loss");

 System.out.println("\t24/7 toll free customer service");

 System.out.println();

}

else if (cardType == 3) //silver

{

 System.out.println("\tFree rental car insurance");

 System.out.println("\tFree credit protection against loss");

 System.out.println("\t24/7 toll free customer service");

 System.out.println();

}

else //basic

{

 System.out.println("\tFree credit protection against loss");

 System.out.println("\t24/7 toll free customer service");

 System.out.println();

}

CRC_C6547_CH004.indd 172CRC_C6547_CH004.indd 172 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

Decision Making ■ 173

Advanced Topic 4.12: Limitations of a switch Statement

As you can observe from the preceding examples, a switch statement can always be
implemented as a multiway if … else structure. However, since switch statement
relies on equality operator and the controlling expression cannot be a fl oating-point value,
not every if … else structure can be replaced by an elegant switch statement. Even
though there are no broadly accepted rules to determine whether or not to use a switch
structure to implement multiway selections, readability and maintainability can be one of
the criteria in your decision making. When an equality comparison is involved with three
or more alternatives, a switch statement may be more readable.

Example 4.26

In this example, we make use of the code developed in Example 4.25 to gener-
ate personalized messages for every customer. We begin by creating a Credit-
CardCustomer class. Th is class has four data members: salutation,
firstName, lastName, and cardType. Th e only application-specifi c method
is create WelcomeMessage that returns a personalized message as a string.

/**

 Credit card message generator class

*/

public class CreditCardCustomer

{

 private String salutation;

 private String firstName;

 private String lastName;

 private int cardType;

 /**

 Creates and returns the customized message

 @return message as a string

 */

 public String createWelcomeMessage()

 {

 String outStr;

 outStr = "\n\n\n\t\t\t" +

 "Hi " + salutation + " " +

 firstName + " " + lastName +

 "\n\n\n" +

 "\n\tYou are entitled to the following:\n";

 switch(cardType)

 {

 case 1 :

 outStr = outStr +"\t$100,000 in travel insurance\n";

CRC_C6547_CH004.indd 173CRC_C6547_CH004.indd 173 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

174 ■ Java Programming Fundamentals

 case 2 :

 outStr = outStr +"\tThree month price protection\n";

 case 3 :

 outStr = outStr +"\tFree rental car insurance\n";

 case 4 :

 outStr = outStr +"\tFree credit protection against

 loss\n";

 outStr = outStr + "\t24/7 toll free customer service";

 }

 outStr = outStr + "\n\n\n\n";

 return outStr;

}

/**

 Accessor method for salutation

 @return salutation

*/

public String getSalutation()

{

 return salutation;

}

/**

 Accessor method for first name

 @return first name

*/

public String getFirstName()

{

 return firstName;

}

/**

 Accessor method for last name

 @return last name

*/

public String getLastName()

{

 return lastName;

}

/**

 Accessor method for card type

 @return card type

*/

CRC_C6547_CH004.indd 174CRC_C6547_CH004.indd 174 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

Decision Making ■ 175

 public int getCardType()

 {

 return cardType;

 }

 /**

 mutator method for salutation

 @param inSalutation new value for salutation

 */

 public void setSalutation(String inSalutation)

 {

 salutation = inSalutation;

 }

 /**

 mutator method for first name

 @param inSalutation new value for first name

 */

 public void setFirstName(String inFirstName)

 {

 firstName = inFirstName;

 }

 /**

 mutator method for last name

 @param inSalutation new value for last name

 */

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 mutator method for card type

 @param inSalutation new value for card type

 */

 public void setCardType(int inCardType)

 {

 cardType = inCardType;

 }

 /**

 toString method returns name as a string

 @return name of the customer

 */

CRC_C6547_CH004.indd 175CRC_C6547_CH004.indd 175 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

176 ■ Java Programming Fundamentals

 public String toString()

 {

 String str;

 str = firstName + " " + lastName;

 return str;

 }

}

Th e application program creates an object of the class CreditCardCus-
tomer. Th en it reads salutation, fi rst name, and last name, followed by credit card
type code (4 for the basic, 3 for the silver, 2 for the gold, and 1 for the platinum)
and sets those values. A personalized welcome message is produced using the
 create WelcomeMessage method.

import java.util.Scanner;

/**

 Tester class for credit card customer

*/

public class CreditCardCustomerTesting

{

 public static void main (String[] args)

 {

 String custSalutation, custFirstName, custLastName;

 int custCardType;

 CreditCardCustomer customer = new CreditCardCustomer();

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter salutation, first name, last

name and credit card type: ");

 System.out.flush();

 custSalutation = scannedInfo.next();

 custFirstName = scannedInfo.next();

 custLastName = scannedInfo.next();

 custCardType = scannedInfo.nextInt();

 customer.setSalutation(custSalutation);

 customer.setFirstName(custFirstName);

 customer.setLastName(custLastName);

 customer.setCardType(custCardType);

 System.out.print(customer.createWelcomeMessage());

 }

}

CRC_C6547_CH004.indd 176CRC_C6547_CH004.indd 176 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

Decision Making ■ 177

Advanced Topic 4.13: Enumerated Types

Consider Example 4.25. As mentioned, a credit card can have only four diff erent types:
basic, silver, gold, and platinum. In Example 4.26 we just assigned values 1 through 4 for
those four diff erent types. A better option is to use enumerated types. We can create a new
data type called CardType as follows:

public enum CardType {PLATINUM, GOLD, SILVER, BASIC};

You can declare a variable customerCardType of CardType as follows:

CardType customerCardType; // (1)

Now the following assignment statement is legal:

customerCardType = CardType.GOLD; // (2)

Just as in the case of any other data type, you can combine Lines 1 and 2 as follows:

CardType customerCardType = CardType.GOLD;

Trying to assign any value other than CardType.BASIC, CardType.SILVER, Card-
Type.GOLD, and CardType.PLATINUM is an error. For example, values such as 7 and
CardType.DIAMOND will result in compilation error.

You can use equality operators == and !=. Quite oft en, we create an enumerated type
within a class. In that case, enumerated data values can be accessed using the following
syntax template:

ClassName.EnumeratedDataTypeName.DataValue

For example, if CardType is created within a class CreditCardCustomer, you can use
the enumerated data value GOLD outside the class as CreditCardCustomer.Card-
Type.GOLD.

Example 4.27

Th is example illustrates the use of enumerated type. We redesign the CreditCard-
Customer class presented in Example 4.26. Apart from changing the data type of
the data member cardType, the only change required is in the setCardType
method. You can still use the same application program without any modifi cations.

/**

 Illustration class for enumerated data type

*/

public class CreditCardCustomerEnumVersion

{

 public enum CardType {PLATINUM, GOLD, SILVER, BASIC};

 private String salutation;

 private String firstName;

 private String lastName;

 private CardType cardType;

CRC_C6547_CH004.indd 177CRC_C6547_CH004.indd 177 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

178 ■ Java Programming Fundamentals

 /**

 Creates and returns the customized message

 @return message as a string

 */

 public String createWelcomeMessage()

 {

 String outStr;

 outStr = "\n\n\n\t\t\t" +

 "Hi " + salutation + " " +

 firstName + " " + lastName +

 "\n\n\n" +

 "\n\tYou are entitled to the following:\n";

 switch(cardType)

 {

 case PLATINUM :

 outStr = outStr + "\t$100,000 in travel insurance\n";

 case GOLD :

 outStr = outStr + "\tThree month price protection\n";

 case SILVER :

 outStr = outStr + "\tFree rental car insurance\n";

 case BASIC :

 outStr = outStr +

 "\tFree credit protection against loss\n";

 outStr = outStr + "\t24/7 toll free customer service";

 }

 outStr = outStr + "\n\n\n\n";

 return outStr;

 }

 /**

 Accessor method for salutation

 @return salutation

 */

 public String getSalutation()

 {

 return salutation;

 }

 /**

 Accessor method for first name

 @return first name

CRC_C6547_CH004.indd 178CRC_C6547_CH004.indd 178 10/16/2008 4:44:02 PM10/16/2008 4:44:02 PM

Apago PDF Enhancer

Decision Making ■ 179

 */

 public String getFirstName()

 {

 return firstName;

 }

 /**

 Accessor method for last name

 @return last name

 */

 public String getLastName()

 {

 return lastName;

 }

 /**

 Accessor method for card type

 @return card type

 */

 public CardType getCardType()

 {

 return cardType;

 }

 /**

 Mutator method for salutation

 @param inSalutation new value for salutation

 */

 public void setSalutation(String inSalutation)

 {

 salutation = inSalutation;

 }

 /**

 Mutator method for first name

 @param inFirstName new value for first name

 */

 public void setFirstName(String inFirstName)

 {

 firstName = inFirstName;

 }

 /**

 Mutator method for last name

 @param inLastName new value for last name

 */

CRC_C6547_CH004.indd 179CRC_C6547_CH004.indd 179 10/16/2008 4:44:03 PM10/16/2008 4:44:03 PM

Apago PDF Enhancer

180 ■ Java Programming Fundamentals

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 Mutator method for card type

 @param inCardType new value for card type

 */

 public void setCardType(int inCardType)

 {

 switch(inCardType)

 {

 case 1 :

 cardType = CardType.PLATINUM;

 case 2 :

 cardType = CardType.GOLD;

 case 3 :

 cardType = CardType.SILVER;

 case 4 :

 cardType = CardType.BASIC;

 }

 }

 /**

 toString method returns name as a string

 @return name of the customer

 */

 public String toString()

 {

 String str;

 str = firstName + " " + lastName;

 return str;

 }

}

CASE STUDY 4.1: PAYROLL FOR A SMALL BUSINESS
Specifi cation

Mr. Jones is the proud owner of Heartland Cars of America (HCA), a car dealership.
Mr. Jones has three types of employees. In the case of full-time employees, Mr. Jones
pays a base salary for fi rst 80 h of work and 150% of hourly rate for each additional hour.

CRC_C6547_CH004.indd 180CRC_C6547_CH004.indd 180 10/16/2008 4:44:03 PM10/16/2008 4:44:03 PM

Apago PDF Enhancer

Decision Making ■ 181

A part-time employee is paid by hour. Employees in sales are compensated by a base sal-
ary plus 1% of the sales amount for the period.

Mr. Jones pays his employees on alternate Fridays. One of the full-time employees
 happened to be Ms. Smart, a Java programmer. Her fi rst task is to write Java program to
help Mr. Jones print a payroll stub on each payday.

Input

Input varies by employee type. For full-time employees, the input values are character
F (indicating the employee is full-time), fi rst name, last name, base salary, and hours
worked. In the case of a part-time employee, the input values are character P (indicating
the employee is part-time), fi rst name, last name, hourly compensation, and hours worked.
For employees in sales, the input values are character S (indicating the employee is in sales),
fi rst name, last name, base salary, and sales amount.

Output

Pay stub for every employee.
We begin by performing a use case analysis. Clearly, there needs to be a use case to

 prepare the pay stub. To prepare the pay stub, you may need to compute the compensation
for each employee. Finally, there are three diff erent types of employees: full-time, part-
time, and sales. Th us, we arrive at the use case diagram shown in Figure 4.9.

Decide on Classes

From the use case diagram, it is quite clear that there are three diff erent types of employees.
Th erefore, let us start with the following three classes: FullTimeEmp, PartTimeEmp,
and SalesEmp.

Decide on Attributes

From the above specifi cation, the following design decision is quite clear:

Class: FullTimeEmp

Data members:

private String firstName;

private String lastName;

private double baseSalary;

private int hoursWorked;

Class: PartTimeEmp

Data members:

private String firstName;

private String lastName;

private double payPerHour;

private int hoursWorked;

CRC_C6547_CH004.indd 181CRC_C6547_CH004.indd 181 10/16/2008 4:44:03 PM10/16/2008 4:44:03 PM

Apago PDF Enhancer

182 ■ Java Programming Fundamentals

Class: SalesEmp

Data members:

private String firstName;

private String lastName;

private double baseSalary;

private double salesVolume;

Decide on Methods

In this step you need to decide on methods. As explained before, you may include
 accessor and mutator methods corresponding to each data member. Further, it is nice to
have toString in each class. So in this section, the focus is on additional methods that
are needed in each of the above three classes. Once again, from the use case diagram,
each of the three classes needs at least two operations: computeCompensation and
createPayStub.

Payroll

computeCompensation
for full-time employee

User

computeCompensation
for part-time employee

computeCompensation
 for sales employee

createPayStub for
full-time employee

createPayStub for
part-time employee

createPayStub for
sales employee

FIGURE 4.9 Use case diagram for the payroll.

CRC_C6547_CH004.indd 182CRC_C6547_CH004.indd 182 10/16/2008 4:44:03 PM10/16/2008 4:44:03 PM

Apago PDF Enhancer

Decision Making ■ 183

Class: FullTimeEmp

Methods:

public double computeCompensation()

public void createPayStub()

From the problem specifi cation, it follows that the compensation can be computed using
the formula, if the hoursWorked > 80.

compensation = baseSalary + (hoursWorked – 80) * 1.5 * payPerHour.

where payPerHour can be computed using the formula, payPerHour = baseSalary
/ 80.

If hoursWorked <= 80, then the following formula applies: compensation =
baseSalary.

Th e createPayStub() method creates a string containing all the data in the employ-
ee’s pay stub. It creates an object currencyFormat of the class DecimalFormat as
follows:

DecimalFormat currencyFormat = new DecimalFormat("0.00");

Th e String parameter "0.00" in the constructor specifi es a decimal format with two
 decimal positions. To format a double variable value such as the salary, the required
expression is currencyFormat.format(salary). Note that the expression invokes
the format method of the DecimalFormat class.

Class: PartTimeEmp

Methods:

public double computeCompensation()

public void createPayStub()

From the problem specifi cation the compensation is computed using the following
formula:

compensation = payPerHour * hoursWorked

Th e createPayStub() method creates a string containing all the data in the employee’s
pay stub.

Class: SalesEmp

Methods:

public double computeCompensation()

public void createPayStub()

CRC_C6547_CH004.indd 183CRC_C6547_CH004.indd 183 10/16/2008 4:44:04 PM10/16/2008 4:44:04 PM

Apago PDF Enhancer

184 ■ Java Programming Fundamentals

From the problem specifi cation, it follows that the compensation can be computed using
the following formula if the hoursWorked > 80:

compensation = baseSalary + 0.02 * salesVolume

Th e createPayStub() method creates a string containing all the data in the employee’s
pay stub (Figure 4.10) shows the UML 2 class diagram of three types of employees.

Implementation

/**

 Full-time employee class

*/

public class FullTimeEmp

{

 private String firstName;

 private String lastName;

 private double baseSalary;

 private int hoursWorked;

 /**

 Computes and returns the compensation

 @return compensation

 */

 public double computeCompensation()

 {

 double compensation, payPerHour;

 payPerHour = baseSalary / 80;

FullTimeEmp

− firstName : String
− lastName : String
− baseSalary : double
− hoursWorked : int

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getBaseSalary() : double
+getHoursWorked() : int
+setFirstName(String) : void
+setLastName(String) : void
+setBaseSalary(double) : void
+setHoursWorked(int) : void
+toString() : String

SalesEmp

− firstName : String
− lastName : String
− baseSalary : double
− salesVolume : double

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getBaseSalary() : double
+getSalesVolume() : double
+setFirstName(String) : void
+setLastName(String) : void
+setBaseSalary(double) : void
+setSalesVolume(double) : void
+toString() : String

PartTimeEmp

− firstName : String
− lastName : String
− payPerHour : double
− hoursWorked : int

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getPayPerHour() : double
+getHoursWorked() : int
+setFirstName(String) : void
+setLastName(String) : void
+setPayPerHour(double) : void
+setHoursWorked(int) : void
+toString() : String

FIGURE 4.10 Class diagram of employees.

CRC_C6547_CH004.indd 184CRC_C6547_CH004.indd 184 10/16/2008 4:44:04 PM10/16/2008 4:44:04 PM

Apago PDF Enhancer

Decision Making ■ 185

 if (hoursWorked > 80)

 {

 compensation = baseSalary +

 (hoursWorked – 80) * 1.5 * payPerHour;

 }

 else

 {

 compensation = baseSalary;

 }

 return compensation;

}

/**

 Creates and returns a String for Paystub

 @return paystub information

*/

public String createPayStub()

{

 DecimalFormat currencyFormat = new DecimalFormat("0.00");

 double salary;

 salary = computeCompensation();

 String outStr;

 outStr = "\n\n\n\t\t\t" +

 "HEARTLAND CARS OF AMERICA" +

 "\n\n\n\t" +

 firstName + " " + lastName +

 "\n\n\n" +

 "\n\tBasic Salary \t$" +

 currencyFormat.format(baseSalary) +

 "\n\tHours Worked \t " + hoursWorked +

 "\n\tPay \t$" +

 currencyFormat.format(salary) +

 "\n\n\n\n";

 return outStr;

}

/**

 Accessor method for first name

 @return first name

*/

CRC_C6547_CH004.indd 185CRC_C6547_CH004.indd 185 10/16/2008 4:44:04 PM10/16/2008 4:44:04 PM

Apago PDF Enhancer

186 ■ Java Programming Fundamentals

 public String getFirstName()

 {

 return firstName;

 }

 /**

 Accessor method for last name

 @return last name

 */

 public String getLastName()

 {

 return lastName;

 }

 /**

 Accessor method for base salary

 @return base salary

 */

 public double getBaseSalary()

 {

 return baseSalary;

 }

 /**

 Accessor method for hours worked

 @return hours worked

 */

 public int getHoursWorked()

 {

 return hoursWorked;

 }

 /**

 Mutator method for first name

 @param inFirstName new value for first name

 */

 public void setFirstName(String inFirstName)

 {

 firstName = inFirstName;

 }

 /**

 Mutator method for last name

 @param inLastName new value for last name

 */

CRC_C6547_CH004.indd 186CRC_C6547_CH004.indd 186 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

Decision Making ■ 187

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 Mutator method for base salary

 @param inBaseSalary new value for base salary

 */

 public void setBaseSalary(int inBaseSalary)

 {

 baseSalary = inBaseSalary;

 }

 /**

 Mutator method for hours worked

 @param inHoursWorked new value for hours worked

 */

 public void setHoursWorked (int inHoursWorked)

 {

 hoursWorked = inHoursWorked;

 }

 /**

 toString method returns name as a string

 @return name of the customer

 */

 public String toString()

 {

 String str;

 str = firstName + " " + lastName;

 return str;

 }

}

/**

 Part-time employee class

*/

public class PartTimeEmp

{

 private String firstName;

 private String lastName;

 private double payPerHour;

 private int hoursWorked;

CRC_C6547_CH004.indd 187CRC_C6547_CH004.indd 187 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

188 ■ Java Programming Fundamentals

 /**

 Computes and returns the compensation

 @return compensation

 */

 public double computeCompensation()

 {

 double compensation;

 compensation = payPerHour * hoursWorked;

 return compensation;

 }

 /**

 Creates and returns a String for Paystub

 @return paystub information

 */

 public String createPayStub()

 {

 DecimalFormat currencyFormat = new

 DecimalFormat("0.00");

 double salary;

 salary = computeCompensation();

 String outStr;

 outStr = "\n\n\n\t\t\t" +

 "HEARTLAND CARS OF AMERICA" +

 "\n\n\n\t" +

 firstName + " " + lastName +

 "\n\n\n" +

 "\n\tSalary/Hour \t$" +

 currencyFormat.format(payPerHour) +

 "\n\tHours Worked \t " + hoursWorked +

 "\n\tPay \t$" +

 currencyFormat.format(salary) +

 "\n\n\n\n";

 return outStr;

 }

 /**

 Accessor method for first name

 @return first name

 */

CRC_C6547_CH004.indd 188CRC_C6547_CH004.indd 188 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

Decision Making ■ 189

 public String getFirstName()

 {

 return firstName;

 }

 /**

 Accessor method for last name

 @return last name

 */

 public String getLastName()

 {

 return lastName;

 }

 /**

 Accessor method for pay per hour

 @return pay per hour

 */

 public double getPayPerHour()

 {

 return payPerHour;

 }

 /**

 Accessor method for hours worked

 @return hours worked

 */

 public int getHoursWorked()

 {

 return hoursWorked;

 }

 /**

 Mutator method for first name

 @param inFirstName new value for first name

 */

 public void setFirstName(String inFirstName)

 {

 firstName = inFirstName;

 }

 /**

 Mutator method for last name

 @param inLastName new value for last name

 */

CRC_C6547_CH004.indd 189CRC_C6547_CH004.indd 189 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

190 ■ Java Programming Fundamentals

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 Mutator method for pay per hour

 @param inPayPerHour new value for pay per hour

 */

 public void setPayPerHour (double inPayPerHour)

 {

 payPerHour = inPayPerHour;

 }

 /**

 Mutator method for hours worked

 @param inHoursWorked new value for hours worked

 */

 public void setHoursWorked (int inHoursWorked)

 {

 hoursWorked = inHoursWorked;

 }

 /**

 toString method returns name as a string

 @return name of the customer

 */

 public String toString()

 {

 String str;

 str = firstName + " " + lastName;

 return str;

 }

}

/**

 Sales employee class

*/

public class SalesEmp

{

 private String firstName;

 private String lastName;

 private double baseSalary;

 private double salesVolume;

CRC_C6547_CH004.indd 190CRC_C6547_CH004.indd 190 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

Decision Making ■ 191

/**

 Computes and returns the compensation

 @return compensation

*/

public double computeCompensation()

{

 double compensation;

 compensation = baseSalary + 0.02 * salesVolume;

 return compensation;

}

/**

 Creates and returns a String for Paystub

 @return paystub information

*/

public String createPayStub()

{

 DecimalFormat currencyFormat = new DecimalFormat("0.00");

 double salary;

 salary = computeCompensation();

 String outStr;

 outStr = "\n\n\n\t\t\t" +

 "HEARTLAND CARS OF AMERICA" +

 "\n\n\n\t" +

 firstName + " " + lastName +

 "\n\n\n" +

 "\n\tBasic Salary \t$" +

 currencyFormat.format(baseSalary) +

 "\n\tSales Volume \t$" +

 currencyFormat.format(salesVolume) +

 "\n\tPay \t$" +

 currencyFormat.format(salary) +

 "\n\n\n\n";

 return outStr;

}

/**

 Accessor method for first name

 @return first name

*/

CRC_C6547_CH004.indd 191CRC_C6547_CH004.indd 191 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

192 ■ Java Programming Fundamentals

 public String getFirstName()

 {

 return firstName;

 }

 /**

 Accessor method for last name

 @return last name

 */

 public String getLastName()

 {

 return lastName;

 }

 /**

 Accessor method for base salary

 @return base salary

 */

 public double getBaseSalary()

 {

 return baseSalary;

 }

 /**

 Accessor method for sales volume

 @return sales volume

 */

 public double getSalesVolume()

 {

 return salesVolume;

 }

 /**

 Mutator method for first name

 @param inFirstName new value for first name

 */

 public void setFirstName(String inFirstName)

 {

 firstName = inFirstName;

 }

 /**

 Mutator method for last name

 @param inLastName new value for last name

 */

CRC_C6547_CH004.indd 192CRC_C6547_CH004.indd 192 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

Decision Making ■ 193

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 Mutator method for base salary

 @param inBaseSalary new value for base salary

 */

 public void setBaseSalary(int inBaseSalary)

 {

 baseSalary = inBaseSalary;

 }

 /**

 Mutator method for sales volume

 @param inSalesVolume new value for sales volume

 */

 public void setSalesVolume (double inSalesVolume)

 {

 salesVolume = inSalesVolume;

 }

 /**

 toString method returns name as a string

 @return name of the customer

 */

 public String toString()

 {

 String str;

 str = firstName + " " + lastName;

 return str;

 }

}

Application Program

Th e class diagram of the application program is shown in Figure 4.11 and the application
program is as follows:

import java.util.Scanner;

/**

 Heartland Cars of America pay roll

*/

CRC_C6547_CH004.indd 193CRC_C6547_CH004.indd 193 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

194 ■ Java Programming Fundamentals

public class HeartlandCarsOfAmericaPayRoll

{

 public static void main (String[] args)

 {

 //Create reference variable of all three employee types

 FullTimeEmp fullTimeEmployee;

 PartTimeEmp partTimeEmployee;

 SalesEmp salesEmployee;

 //Declare variables to input

 char inputEmployeeType;

 String inputFirstName;

 String inputLastName;

 double inputBaseSalary;

 double inputPayPerHour;

 int inputSalesVolume;

 int inputHoursWorked;

HCAPayRoll

+main(String[]) : void
Uses

1

1..*

FullTimeEmp

− firstName : String
− lastName : String
− baseSalary : double
− hoursWorked : int

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getBaseSalary() : double
+getHoursWorked() : int
+setFirstName(String) : void
+setLastName(String) : void
+setBaseSalary(double) : void
+setHoursWorked(int) : void
+toString() : String

SalesEmp

− firstName : String
− lastName : String
− baseSalary : double
− salesVolume : double

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getBaseSalary() : double
+getSalesVolume() : double
+setFirstName(String) : void
+setLastName(String) : void
+setBaseSalary(double) : void
+setSalesVolume(double) : void
+toString() : String

PartTimeEmp

− firstName : String
− lastName : String
− payPerHour : double
− hoursWorked : int

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getPayPerHour() : double
+getHoursWorked() : int
+setFirstName(String) : void
+setLastName(String) : void
+setPayPerHour(double) : void
+setHoursWorked(int) : void
+toString() : String

1..*1..*

FIGURE 4.11 Class diagram of HCA payroll.

CRC_C6547_CH004.indd 194CRC_C6547_CH004.indd 194 10/16/2008 4:44:05 PM10/16/2008 4:44:05 PM

Apago PDF Enhancer

Decision Making ■ 195

 //Get two input values

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter Employee Type : ");

 System.out.flush();

 inputEmployeeType = scannedInfo.next().charAt(0);

 System.out.println();

 switch (inputEmployeeType)

 {

 case 'F' :

 case 'f' :

 //get necessary values as input

 System.out.print("Enter First Name, " +

 "Last Name, Base Salary, Hours : ");

 System.out.flush();

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputBaseSalary = scannedInfo.nextDouble();

 inputHoursWorked = scannedInfo.nextInt();

 System.out.println();

 //create an object and initialize data members

 fullTimeEmployee = new FullTimeEmp();

 fullTimeEmployee.setFirstName(inputFirstName);

 fullTimeEmployee.setLastName(inputLastName);

 fullTimeEmployee.setBaseSalary(inputBaseSalary);

 fullTimeEmployee.setHoursWorked(inputHoursWorked);

 //invoke the printPayStub method

 System.out.print(fullTimeEmployee.createPayStub());

 break;

 case 'P' :

 case 'p' :

 //get necessary values as input

 System.out.print("Enter First Name, Last Name, "+

 "Pay per hour, Hours : ");

 System.out.flush();

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputPayPerHour = scannedInfo.nextDouble();

 inputHoursWorked = scannedInfo.nextInt();

 System.out.println();

CRC_C6547_CH004.indd 195CRC_C6547_CH004.indd 195 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

196 ■ Java Programming Fundamentals

 //create an object and initialize data members

 partTimeEmployee = new PartTimeEmp();

 partTimeEmployee.setFirstName(inputFirstName);

 partTimeEmployee.setLastName(inputLastName);

 partTimeEmployee.setPayPerHour(inputPayPerHour);

 partTimeEmployee.setHoursWorked(inputHoursWorked);

 //invoke the printPayStub method

 System.out.print(partTimeEmployee.createPayStub());

 break;

 case 'S' :

 case 's' :

 //get necessary values as input

 System.out.print("Enter First Name, Last Name, "+

 "Base Salary, Sales Volume : ");

 System.out.flush();

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputBaseSalary = scannedInfo.nextDouble();

 inputSalesVolume = scannedInfo.nextInt();

 System.out.println();

 //create an object and initialize data members

 salesEmployee = new SalesEmp();

 salesEmployee.setFirstName(inputFirstName);

 salesEmployee.setLastName(inputLastName);

 salesEmployee.setBaseSalary(inputBaseSalary);

 salesEmployee.setSalesVolume(inputSalesVolume);

 //invoke the printPayStub method

 System.out.print(salesEmployee.createPayStub());

 break;

 }

}

}

Testing

You need to test three totally diff erent sets of data: full-time employee, part-time employee,
and sales employees. Among full-time employees, there are two categories: one who
worked 80 h or less and others. In particular, you must test full-time employees who worked
exactly 80 h.

CRC_C6547_CH004.indd 196CRC_C6547_CH004.indd 196 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

Decision Making ■ 197

Th us, test data can be as follows:

F Adam Smith 2450.00 87
F Joyce Witt 3425.67 80
F Mike Morse 1423.56 75
P Chris Olsen 34.56 34
S Patrick McCoy 1040.57 856985

Output

Enter Employee Type : F

Enter First Name, Last Name, Base Salary, Hours : Adam Smith

 2450.00 87

 HEARTLAND CARS OF AMERICA

 Adam Smith

 Basic Salary $2450.00

 Hours Worked 87

 Pay $2771.56

Enter Employee Type : P

Enter First Name, Last Name, Pay per hour, Hours : Chris Watt

 18.75 94

REVIEW
 1. Control structures determine the fl ow of control.
 2. Every computer program can be constructed from the following three control

 structures: sequence, selection, and repetition.
 3. Selection structure enables you to selectively execute a certain part of a code while

skipping some other parts.
 4. Repetition structure, however, allows you to repeat a certain part of the code again

and again.
 5. A logical expression always evaluates to either true or false.
 6. Th ere are fi ve binary logical operators: && (and), & (and), || (or), | (or), and ^

(xor) in Java.
 7. Th e only logical unary operator in Java is ! (not).
 8. Th ere are six relational operators in Java. Th ey are == (equal to), != (not equal

to), < (less than), <= (less than or equal to), > (greater than), and > =
(greater than or equal to).

CRC_C6547_CH004.indd 197CRC_C6547_CH004.indd 197 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

198 ■ Java Programming Fundamentals

 9. It is a syntax error to have a space character in the middle of any one of the following
relational operators: ==, <=, >=, and !=.

 10. Th e assignment operator has lower precedence than relational operators.
 11. Th e relational operator has lower precedence than arithmetic operators.
 12. Java provides three structures for selection and decision making. Th ey are the one-

way selection structure if, the two-way selection structure if … else, and the
 multiway selection structure switch.

 13. Th e semantics of the one-way selection structure

if(decisionCondition)

 actionStatement

is as follows: if the decisionCondition is true, then the actionStatement
is executed; otherwise, the actionStatement will be skipped.

 14. A block statement is a sequence of Java statements enclosed within a pair of braces.
 15. In Java, = is an assignment operator. Th erefore, using = instead of == in a logical

expression is a syntax error.
 16. In the case of an if statement, the decision condition must always be within a pair of

parentheses.
 17. In the case of an if statement, there is no semicolon immediately following the right

parenthesis enclosing the decision condition.
 18. Th e semantics of the two-way selection structure

if (decisionCondition)

 actionStatementTrue

else

 actionStatementFalse

is as follows: if decision condition evaluates to true, the action statement
 actionStatementTrue is executed. However, if the decision condition evaluates
to false, the action statement actionStatementFalse is executed.

 19. In Java, there is no selection structure else.
 20. An else is always paired with the most recent if that has not been paired with any

other else.
 21. Placing one control structure inside another control structure is called nesting.
 22. A conditional operator can replace certain if … else structures.
 23. Th e switch control structure can replace certain multiple selections.
 24. Use of enumerated types makes a program more readable.
 25. You can use equality operators with objects and enumerated types.

CRC_C6547_CH004.indd 198CRC_C6547_CH004.indd 198 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

Decision Making ■ 199

EXERCISES
 1. Mark the following statements as true or false:
 a. A logical expression can be assigned to a boolean variable.
 b. Logical expression true + true evaluates to true.
 c. Logical literal true has numeric value 1.
 d. Any program can be rewritten without any two-way or multiway selection

structures.
 e. Every else must have a corresponding if.
 f. Every if must have a corresponding else.
 g. A switch statement need not have any default case.
 h. Th e logical operators || and && have the same precedence.
 i. Addition has lower precedence than the logical operator!
 2. What is the output produced by the following codes? If there is no output, then write

“No output”. Indicate any syntax errors.

 a. int x = 2;

if(x <= 2);

 System.out.print("Good");

 System.out.print(" Morning");

 b. int x = 2;
int y = 7;

if(x > y || y < 4)

 System.out.print("Good");

 System.out.print(" Afternoon");

 c. int x = 2;
int y = 7;

int z = 20;

if(z > y * x && x < y – 2)

 System.out.print("Good");

 System.out.print(" Night");

 d. int x = 10;

int y = 8;

if(!(x < y))

 System.out.print("Good");

 System.out.print(" Night");

 e. int x = 12;

if(x < 12);

 System.out.print("Good");

CRC_C6547_CH004.indd 199CRC_C6547_CH004.indd 199 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

200 ■ Java Programming Fundamentals

else

 System.out.print(" Morning");

 f. int x = 8;

int y = 17;

if(x >= y || y <= 14)

 System.out.print("Good");

 else

 System.out.print(" Afternoon");

 g. int x = 2;

int y = 7;

int z = 20;

if(z > y * x && x < y – 2)

 System.out.print("Good");

else

 System.out.print(" Night");

 h. int x = 11;
int y = 5;

if(!(x > y))

 System.out.print("Good");

else

 System.out.print(" Night");

 i. int x = 8;

int y = 17;

if(!(x > y || y <= 14))

 System.out.print("Good");

else

 System.out.print(" Day");

 j. int x = 2;

int y = 7;

int z = 20;

if(!(z > y * x && x < y – 2))

 System.out.print("Good");

else

 System.out.print(" Night");

 k. int x = 2;
int y = 7;

int z = 20;

CRC_C6547_CH004.indd 200CRC_C6547_CH004.indd 200 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

Decision Making ■ 201

if(z > y)

 System.out.print("Excellent");

if(x > y)

 System.out.print("Good");

else

 System.out.print("Acceptable");

 l. int x = 2;

int y = 7;

int z = 20;

if(z < y - x)

 System.out.print("Accept");

if(x > y)

 System.out.print("Reject");

else

 System.out.print("undecided");

System.out.print("?");

 m. int x = 2;
int y = 7;

int z = 20;

if(z > y)

 System.out.print("Excellent");

if(x > y)

 System.out.print("Good");

else

 System.out.print("Acceptable");

else

 System.out.print("Unacceptable");

 n. int x = 2;

int y = 7;

int z = 20;

if(z < y - x)

 System.out.print("Red");

else

 System.out.print("Blue");

if(x > y)

 System.out.print("Green");

else

 System.out.print("Yellow");

 3. What is the output produced by the following codes? Check the switch statements
for syntax errors. Explain each error identifi ed.

CRC_C6547_CH004.indd 201CRC_C6547_CH004.indd 201 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

202 ■ Java Programming Fundamentals

 a. double value = 1000;

switch(value)

{

case 1000: System.out.println("High");

 break;

case 100: System.out.println("Medium");

 break;

case 1: System.out.println("Low");

 break;

case default: System.out.println("Perfect");

}

 b. int value = 100;
switch(value < 10000)

{

case 1: System.out.println("Value is reasonable");

 break;

case 10: System.out.println("Value out of range");

case 1000: System.out.println("Value computed is wrong");

 break;

}

 c. int num = 1000;

switch (num % 4 + 1)

{

case 1:

case 2: System.out.println("Too Small");

 break;

case 2:

case 3: System.out.println("Perfect");

 break;

case 3:

case 4: System.out.println("Too Big");

}

 d. int n = 7;
int num = 0;

switch(num = n%2)

 {

 case 0: System.out.println("Even number");

 break;

 case 1: System.out.println("Odd number");

 break;

 }

CRC_C6547_CH004.indd 202CRC_C6547_CH004.indd 202 10/16/2008 4:44:06 PM10/16/2008 4:44:06 PM

Apago PDF Enhancer

Decision Making ■ 203

 e. int num = 10;

switch (num == 10)

{

case false : System.out.println("False case");

case true : System.out.println("True case");

case all : System.out.println("All cases");

}

 f. int num = 10;

switch (num % 2)

{

case 0 : num = num / 2;

System.out.println("even case");

case 1 : num = 3*num + 1;

System.out.println("odd case");

}

 4. (a) What are the outputs produced by the following segments of code?
 (b) Rewrite the code without switch statement.
 (c) What is the output, if the control variable has the value 3?

int k = 4;

int n = 0;

int m = 0;

switch(k)

{

case 1: k = k – 2;

 break;

case 2: m = 2 * k;

 break;

case 3: n = 3 * k; k = k + 3;

case 4:

case 5: m = 4 * k; k = k + 4;

case 6: k = 8;

 break;

 default: m = k;

}

System.out.println("k = " + k);

System.out.println("n = " + n);

System.out.println("m = " + m);

 5. (a) What are the outputs produced by the following segments of code?
 (b) Rewrite the code without switch statement.
 (c) What is the output, if the control variable has the value 5?

int k = 3;

CRC_C6547_CH004.indd 203CRC_C6547_CH004.indd 203 10/16/2008 4:44:07 PM10/16/2008 4:44:07 PM

Apago PDF Enhancer

204 ■ Java Programming Fundamentals

int n = 0;

int m = 0;

 switch(k)

 {

 case 1:

 case 2: m = 2 * k; k = k + 2;

 break;

 case 3: n = 3 * k; k = k + 3;

 case 5: m = 4 * k; k = k + 4;

 break;

 case 6: k = 8;

 break;

 default: m = k;

 break;

 }

 System.out.println("k = " + k);

 System.out.println("n = " + n);

 System.out.println("m = " + m);

 6. (a) What are the outputs produced by the following segments of code?
 (b) Rewrite the code without switch statement.
 (c) What is the output, if the control variable has the value 3?

int k = 1;

int n = 0;

int m = 0;

switch(k)

{

case 1:

case 2:

case 3: k = k + 2;

case 4: k = k + 3;

case 5: m = 4 * k; k = k + 4;

 case 6: k = 8;

default: m = k;

}

System.out.println("k = " + k);

System.out.println("n = " + n);

System.out.println("m = " + m);

PROGRAMMING EXERCISES
 1. Design and test the following class:
 a. Create a class BankAccount with data members firstName, lastName,

accountNumber, and balance.

CRC_C6547_CH004.indd 204CRC_C6547_CH004.indd 204 10/16/2008 4:44:07 PM10/16/2008 4:44:07 PM

Apago PDF Enhancer

Decision Making ■ 205

 b. Provide a method that returns true if the balance is greater than the minimum
balance, which currently is 500.00.

 c. Implement a method withdraw that will deduct the amount specifi ed from the bal-
ance, provided balance is greater than or equal to the amount to be withdrawn.

 2. Ms. Erin Cook just bought a little puppy. Each Sunday, she will weigh her puppy to
make sure it is neither overfed nor underfed. Design a class to help Ms. Cook to keep
the weight of her puppy within the range. (Hint: Th ere are three attributes: lower-
Limit, upperLimit, and current weight. Th e method checkPuppyWeight that will
output a message depending on the puppy’s weight.)

 3. Design a class student with the following six data members to store fi rst name, last
name, and four test scores. Provide a method getLetterGrade() that returns the
letter grade based on the policy outlined in Example 4.21.

 4. Design a class Student with the following three data members to store fi rst name,
last name, and levelofparticipation (school, district, state, national, international).
 Provide a method that returns athletic points as specifi ed in the chapter. (Hint: Level
of participation may be maintained as an integer value as in the text.)

 5. Redo Programming Exercise 4 using enumerated types and switch structure.
 6. Redo Programming Exercise 5 so that user can enter “school,” “district,” “state,”

“national,” “international” as data rather than integer values. Make your program more
user-friendly by allowing user to mix uppercase and lowercase letters as they input
participation level. (Hint: Use equalsIgnoreCase method of the String class.)

 7. Enhance your solution to Programming Exercise 6 by allowing user to make spelling
mistakes while they enter “school,” “district,” “state,” “national,” “international” as
data. If the fi rst two letters are s and c, it will be treated as school. If the fi rst letter is
d (s, n, i), then it will be treated as district (state, national, international).

 8. Mr. Jones insurance coverage is as follows: He has $500 deductable and as such he gets
nothing for fi rst 500.00. Next 5000, he gets 90% and for the next 5000 he gets 80% and
he gets 70% for anything over 10,500 from the insurance company. Design a class for
Mr. Jones to determine the amount he can expect from the insurance company.

 9. Th e income tax of a certain country is based on two factors: income and whether or
not the taxfi ler is a resident of the country. Th e tax structure can be summarized as
follows: A resident pays no tax for the fi rst 37,500.00. Anything above 37,500.00 and
less than 120,000.00 is taxed at the rate of 17%. Anything above 120,000.00 is taxed
at the rate of 21%. A nonresident pays 10% for any amount up to 20,000.00. Next
100,000.00 is taxed at the rate of 20% and any amount over 120,000.00 is taxed at the
rate of 35%. Design a class to perform the tax computation.

 10. Design, implement, and test a class to solve quadratic equations. Th e roots of the
quadratic equation ax2 + bx + c = 0, a ≠ 0 are given by the following formula:

� � �b b ac
a

2 4
2

CRC_C6547_CH004.indd 205CRC_C6547_CH004.indd 205 10/16/2008 4:44:07 PM10/16/2008 4:44:07 PM

Apago PDF Enhancer

206 ■ Java Programming Fundamentals

Th e term b2 – 4ac is called the discriminant. If discriminant is nonnegative, then
the equation has two real solutions. Otherwise, the equation has two complex solu-
tions. (Hint: Have three data members: a, b, and c. Provide methods hasRealRoots
that will return true if discriminant is nonnegative and hasEqualRoots that
will return true if discriminant is zero. Also, provide following four methods:
 SolutionOne, SolutionTwo, realPart, and imaginaryPart. Th e method
sqrt in the class Math can be used to compute the square root of the discrimi-
nant, if the discriminant is nonnegative.)

 11. Create a class with three data members and three methods: maxValue, middleValue,
and minValue returning maximum, middle, and minimum values, respectively.

 12. Th e Great Eastern Bank (GEB) off ers savings accounts. In the case of savings account,
there is no charge if the minimum balance is at least 300.00. Otherwise, each
 customer must pay $15.00 toward maintenance fee. A savings account also allows 10
free withdrawals per month. For each additional withdrawal, the customer is charged
$5.00. Create the Java program to compute the monthly charges for a customer.

 13. Design a class FortuneCookie with a method getFortune that returns a
fortune cookie message. Your class must produce at least eight diff erent messages
(use Math.Random() to generate a random number). Select the fortune cookie mes-
sage based on the random number generated.

 14. Create a class Classifier as follows. A Classifier object keeps the x–y
co ordinates of four points in Cartesian plane. Two of them are “normal points” and the
other two are “abnormal points.” If the new point is closer to two normal points, then the
new point is classifi ed as normal and if the new point is closer to two abnormal points,
then the new point is classifi ed as abnormal. Otherwise, the point cannot be classifi ed.
To make it more challenging, create a class point and use it in your program.

 15. Create a class Triangle. A Triangle object keeps the x–y coordinates of three
points in Cartesian plane. Provide three methods, isTriangle, isIsosceles,
and isEquilateral. (Hint: Th ree points form a triangle, if sum of the lengths of
any two sides is greater than the third side. A triangle is isosceles if at least two of its
sides are equal. A triangle is equilateral if all three of its sides are equal.) To make it
more challenging, create a class point and use it in your program.

ANSWERS TO SELF-CHECK
 1. True
 2. False
 3. true
 4. false
 5. False
 6. six
 7. true

CRC_C6547_CH004.indd 206CRC_C6547_CH004.indd 206 10/16/2008 4:44:07 PM10/16/2008 4:44:07 PM

Apago PDF Enhancer

Decision Making ■ 207

 8. false
 9. true
 10. true
 11. Negative integer
 12. Positive integer
 13. True
 14. True
 15. True
 16. False
 17. Replace (inNumberOfShares < 0) with (inNumberOfShares < 1)
 18. Replace inCounterValue >= limitValue with limitValue <= inCoun

terValue

 19. Yes
 20. Make the following changes: MINIMUM _ BALANCE = 300.0; and (checking-

Balance < MINIMUM _ BALANCE)
 21. if (cost > 25.0)
 System.out.println("Set for life!");

 else

 System.out.println("Not there yet!");

 22. if (networth > 10000000.0)
 System.out.println("Expensive Item");

 else

 System.out.println("Reasonable Item");

 23. isUppercaseLetter = ('A' <= charOne && charOne <='Z');
 24. No
 25. Yes
 26. True
 27. True
 28. No

CRC_C6547_CH004.indd 207CRC_C6547_CH004.indd 207 10/16/2008 4:44:07 PM10/16/2008 4:44:07 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

209

C H A P T E R 5

The Power of Repetition

In this chapter you learn

Java concepts
Repetition structures while, for, and do … while
Control statements break and continue
Exceptions

Programming skills
Process multiple sets of data
Appropriate use of repetition structures
Nesting of control structures
Using text fi les for input and output

In Chapter 2, you have studied the control structure sequence. In Chapter 4, you have
seen the control structure selection. In this chapter, you will study the control structure
repetition. A program with sequence structure alone is capable of executing one statement
aft er another in sequence. Such a program has no ability to make decisions. With the intro-
duction of selection structure, programs became capable of making decisions based on
data values. For example, using sequence structure alone it is possible to write a program
to compute the cumulative test score by adding fi ve test scores. If you want to translate
the cumulative test score into letter grades, you need a control structure that can examine
and make decisions based on the test score. Suppose you want to fi nd the class average of a
test. If the class consists of only a handful of students, you can defi nitely use the sequence
structure to fi nd the average. However, such a technique is not practical if there are 75 stu-
dents. What you need is a structure capable of repeating an action. To fi nd the sum of the
test scores of all students in a class, you need a control structure that can read a number
and add the number read to a partial sum repeatedly. Such a structure is called a repeti-
tion structure. In this chapter, you will learn about various repetition structures available

•
•
•
•

•
•
•
•
•

CRC_C6547_CH005.indd 209CRC_C6547_CH005.indd 209 8/27/2008 4:35:48 PM8/27/2008 4:35:48 PM

Apago PDF Enhancer

210 ■ Java Programming Fundamentals

in Java. However, the fundamental principles you learn in this chapter can be applied in
many scripting languages and programming languages including C, C++, and C#.

CONTROL STRUCTURES
Recall that every computer program can be constructed from three basic control struc-
tures, sequence, selection, and repetition, shown in Figure 5.1. Repetition structure allows
you to repeat a certain code. Note that both selection and repetition structures alter the
order of execution of statements. We study the repetition structure in this chapter.

Let us revisit the pay stub–printing program presented in Chapter 4. Heartland Cars of
America turned out to be a very successful business. Now it has 40 employees. However, this
introduced two major issues for Ms. Smart. Every 2 weeks, Ms. Smart has to enter lots of data
items. However, a big majority of the data values remain the same from one pay period to the
next. For example, consider a full-time employee like Adam Smith. Ms. Smart has to enter
four values: fi rst name, last name, base salary, and hours worked. First name and last name
are not going to change. Base salary may change once a year or so. Th erefore, the only data
item that may change in a 2 week period is the hours worked. Ms. Smart need not type in all
these values every time. Instead, Ms. Smart can keep these values in a fi le, and all she needs
to do is to modify the hours worked. In Chapter 4, Ms. Smart printed the pay stub for each
employee as she entered the data. A better alternative is to store the pay stub information
for all employees in a fi le and then print that fi le. Th is approach has two advantages. First, it
makes the printing more effi cient. Second, it permits the preservation of the pay stub data for
future reference. Ms. Smart decided to modify the program using the following algorithm:

 1. Read the data for an employee from a fi le
 2. Process the information for an employee
 3. Write the pay stub information of an employee to a fi le
 4. Repeat steps 1 through 3 for every employee

DecisionCond
truefalse

statementTruestatementFalse

statement
N

statementOne

statementTwo

.

.

.

Sequence Selection

controlExp

true

actionStatement

false

Repetition

FIGURE 5.1 Control structures.

CRC_C6547_CH005.indd 210CRC_C6547_CH005.indd 210 8/27/2008 4:35:50 PM8/27/2008 4:35:50 PM

Apago PDF Enhancer

The Power of Repetition ■ 211

Self-Check

 1. What are the three control structures?
 2. To implement step 4, Ms. Smart needs a control structure.

USING TEXT FILE FOR INPUT
In Chapter 2, you have seen how to input data from standard input device. Recall that
with System.in, you can input either a single byte or a sequence of bytes. To be useful,
you want to break the input into meaningful units of data called tokens. Java provides a
Scanner class with necessary methods to get individual tokens. You need to create an
object belonging to the Scanner class. Recall from Chapter 2 that this is achieved by the
following Java statement:

Scanner scannedInfo = new Scanner(System.in);

You can replace System.in with a fi le object and input can be read from a fi le object.
If the data is in a fi le C:\myfile.dat, you can modify the above statement as follows:

Scanner scannedInfo = new Scanner(new File("C:\\myfile.dat"));

Observe that you need two backslash characters inside a string to produce one backslash
character. Further, new File("C:\\myfile.dat") creates a fi le object using the new
operator. Th e program in Example 5.1 reads data from a fi le instead of a standard input.
Th is program is obtained by replacing

Scanner scannedInfo = new Scanner(System.in);

by

Scanner scannedInfo = new Scanner(new File("C:\\myfile.dat"));

in Example 2.25. Th e File class belongs to java.io package and therefore java.io
package needs to be imported.

Self-Check

 3. Write the Java statement to import the package containing the class File.
 4. Write the necessary Java statements to create a scanner object that can be used

to read data from a fi le testData.txt in the C drive.

Declaring Exceptions

Unlike System.in, there is no guarantee that the fi le named in the program is available
in the location specifi ed. If the fi le cannot be found, then it is an error and such errors

CRC_C6547_CH005.indd 211CRC_C6547_CH005.indd 211 8/27/2008 4:35:51 PM8/27/2008 4:35:51 PM

Apago PDF Enhancer

212 ■ Java Programming Fundamentals

are classifi ed as exceptions in Java. Exceptions are discussed in detail in Chapter 11.
For the present, just note that certain types of exceptions must be declared in a pro-
gram. File not found is one such exception, and corresponding to that exception there
is a FileNotFoundException class in package java.io. To declare a fi le not found
exception, you add “throws FileNotFoundException” as follows:

public static void main (String[] args) throws

 FileNotFoundException

Another exception that needs to be declared is the IOException. An IOException
occurs, whenever a mismatch in data type happens during an I/O operation. For example, if
an integer is expected and instead a string is encountered as input, an I/O exception occurs.

Example 5.1

import java.io.*;

import java.util.Scanner;

/**

 Illustration of reading from an input file

*/

public class ScannerInputFile

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 String socialSecNum;

 String firstName;

 String lastName;

 int age;

 double monthlySalary;

 Scanner scannedInfo = new Scanner(new

 File("C:\\myfile.dat"));

 socialSecNum = scannedInfo.next();

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 age = scannedInfo.nextInt();

 monthlySalary = scannedInfo.nextDouble();

 System.out.println(socialSecNum);

 System.out.println(firstName);

 System.out.println(lastName);

CRC_C6547_CH005.indd 212CRC_C6547_CH005.indd 212 8/27/2008 4:35:51 PM8/27/2008 4:35:51 PM

Apago PDF Enhancer

The Power of Repetition ■ 213

 System.out.println(age);

 System.out.println(monthlySalary);

 }

}

Output

 123-45-6789

 James

 Watts

 56

 5432.78

Self-Check

 5. True or false: If the social security number appeared as 123X45X6789, an
exception will occur during the program execution.

 6. If the social security number appeared as 123 45 6789, the value of
socialSecNum will be .

USING FILE FOR OUTPUT
To create an output fi le C:\myfile.out you need a statement similar to

PrintWriter output = new PrintWriter

 (new FileWriter("C:\\myfile.out"));

Recall that the new operator creates an object. Th e above statement fi rst creates a
 FileWriter object and then using this object a PrintWriter object is created. Note
that both FileWriter and PrintWriter classes are in the package java.io and there
is no need to import any other packages. Th is newly created PrintWriter object can be
referenced using the reference variable output. Now, the PrintWriter class has meth-
ods such as print and println to print various data types. Th e program in Example 5.1
can be modifi ed so that the output is written in C:\myfile.out.

Self-Check

 7. Write the Java statement to import the package containing the class
PrintWriter.

 8. Write the necessary Java statements to create a PrintWriter object that can
be used to write data to a fi le info.txt in the C drive.

Method close

It is a good programming practice to close PrintWriter objects before program terminates.
Th e close method, in particular, will fl ush any data remaining in the output buff er to the
output fi le. To close the PrintWriter object output, you need the following statement:

output.close();

CRC_C6547_CH005.indd 213CRC_C6547_CH005.indd 213 8/27/2008 4:35:51 PM8/27/2008 4:35:51 PM

Apago PDF Enhancer

214 ■ Java Programming Fundamentals

Th e program in Example 5.1 can be modifi ed so that the output is written in a fi le
C:\myfile.out.

Example 5.2

import java.io.*;

import java.util.Scanner;

/**

 Illustration of reading/writing from/to an input/output file

*/

public class ScannerInputOutputFile

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 String socialSecNum;

 String firstName;

 String lastName;

 int age;

 double monthlySalary;

 Scanner scannedInfo =

 new Scanner(new File("C:\\myfile.dat"));

 PrintWriter output =

 new PrintWriter(new FileWriter("C:\\myfile.out"));

 socialSecNum = scannedInfo.next();

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 age = scannedInfo.nextInt();

 monthlySalary = scannedInfo.nextDouble();

 output.println(socialSecNum);

 output.println(firstName);

 output.println(lastName);

 output.println(age);

 output.println(monthlySalary);

 scannedInfo.close();

 output.close();

 }

}

CRC_C6547_CH005.indd 214CRC_C6547_CH005.indd 214 8/27/2008 4:35:51 PM8/27/2008 4:35:51 PM

Apago PDF Enhancer

The Power of Repetition ■ 215

Having studied the basic fi le processing techniques, you are now ready to learn the
repetition structure. Th e fi rst repetition structure you will be introduced to is the
while statement, which is the subject of our next section.

Self-Check

 9. True or false: In Java, you must always close all fi les explicitly.
 10. True or false: Th e close method will fl ush any data remaining in the output

buff er to the output fi le.

REPETITION STRUCTURE: while
Consider a program to compute the average of three fl oating-point numbers. Th e algo-
rithm can be outlined as follows:

Get the values in three variables, say, valueOne, valueTwo, and valueThree.
Add the three values together and divide by 3.

averageValue = (valueOne + valueTwo + valueThree)/3.0

Th e following example presents a program to compute the average of three fl oating-
point numbers.

Example 5.3

import java.util.Scanner;

/**

 Computes the average of three double values

*/

public class AverageOfThreeValues

{

 public static void main (String[] args)

 {

 double valueOne;

 double valueTwo;

 double valueThree;

 double averageValue;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter three double values : ");

 System.out.flush();

 valueOne = scannedInfo.nextDouble();

 valueTwo = scannedInfo.nextDouble();

 valueThree = scannedInfo.nextDouble();

•
•

CRC_C6547_CH005.indd 215CRC_C6547_CH005.indd 215 8/27/2008 4:35:51 PM8/27/2008 4:35:51 PM

Apago PDF Enhancer

216 ■ Java Programming Fundamentals

 System.out.println();

 averageValue = (valueOne + valueTwo + valueThree)/3.0;

 System.out.println("The average value is " +

 averageValue);

 }

}

Output

Enter three double values : 34.67 56.98 45.69

The average value is 45.78

Suppose you want to fi nd the average of 100 numbers. Th e above approach is quite cum-
bersome. Further, if you would like to fi nd the average of 10,000 data items, the above
approach is practically impossible. Let us approach the problem in a diff erent way. To begin
with, notice that once the sum of all the numbers is known, you could compute the average
by dividing the sum by the number of items. Th erefore, the real issue is how to compute
the sum of a large set of data.

Have a look at the following numbers:

4.1 2.2 3.3

One way to add them is to just add one number at a time to a partial sum. To begin with,
partial sum is zero. Th e next number is 4.1. We add the next number to the partial sum. Th e
partial sum becomes 0 + 4.1 = 4.1. Now the next number is 2.2. Th erefore, aft er adding
next number the partial sum becomes 6.3. Th e next number is 3.3. Aft er adding the next
number the partial sum becomes 9.6. At this point all three data values have been added
to the partial sum and there is no more number to be added to the partial sum. All that is
remaining is to divide 9.6, the partial sum, by 3. Th is logic can be explained as follows:

 1. Initialize the partial sum to zero
 2. Get the next number and add the next number to the partial sum
 3. Get the next number and add the next number to the partial sum
 4. Get the next number and add the next number to the partial sum
 5. Divide the partial sum by 3

In the above description, note that steps 2 through 4 are essentially identical. Th erefore,
another way of expressing the above logic is

 1. Initialize the partial sum to zero
 2. Repeat three times the following: get the next number and add the next number to

the partial sum
 3. Divide the partial sum by 3

CRC_C6547_CH005.indd 216CRC_C6547_CH005.indd 216 8/27/2008 4:35:52 PM8/27/2008 4:35:52 PM

Apago PDF Enhancer

The Power of Repetition ■ 217

Introspection

What exactly we mean by repetition? Clearly you are not adding the same number.
However, you are “reading a number and adding to the partial sum.”

You know how to code step 1. You need a variable, say sum and you need to initialize it to
zero. Th e step 1 can be implemented as follows:

double sum = 0.0;

Similarly, step 3 can be coded as shown below assuming average is a variable of
type double.

average = sum / 3;

Now, let us look into step 2. Getting a number can be implemented as follows:

nextValue = scannedInfo.nextDouble();

and nextValue can be added to the variable sum by

sum = sum + nextValue;

Here, nextValue is a variable of type double and scannedInfo is a reference vari-
able as in Example 5.1. Now all that is left to implement is the logic “repeat three times the
following.” You need a repetition structure to implement it. Th e basic syntax of a while
statement is as follows:

while (controlExp)

 actionStatement

Note that while is a reserved word and the pair of parentheses enclosing the controlExp
is part of the syntax. Th e control Exp is a logical expression and therefore it evaluates to
either true or false. Th e semantics of the while statement can be explained as follows:
First, the controlExp is evaluated, and if the control expression evaluates to true, then
the actionStatement is executed once. Th e actionStatement can be a single state-
ment or a block statement. Aft er executing the actionStatement once, the controlExp
is evaluated again and if the control expression evaluates to true, then the action-
Statement is executed once more and so on. In other words, so long as the controlExp
evaluates to true, the actionStatement is executed and the controlExp is evalu-
ated again. If the controlExp evaluates to false, then the action Statement is not
executed. Figure 5.2 illustrates the semantics of a while statement.

Generally speaking there are three types of while statements: counter-controlled,
event-controlled, and data-controlled.

CRC_C6547_CH005.indd 217CRC_C6547_CH005.indd 217 8/27/2008 4:35:52 PM8/27/2008 4:35:52 PM

Apago PDF Enhancer

218 ■ Java Programming Fundamentals

Self-Check

 11. True or false: It is possible to write a while statement such that the action
 statement gets executed an infi nite number of times.

 12. True or false: It is possible to write a while statement such that the action
 statement is never executed.

Counter-Controlled while Statement

Consider the following code:

double nextValue;

double sum;

double average;

int counter;

sum = 0; // (1)

counter = 1; // (2)

while (counter < 4) // (3)

{

 nextValue = scannedInfo.nextDouble(); // (4)

 sum = sum + nextValue; // (5)

 counter = counter + 1; // (6)

}

average = sum / 3; // (7)

Line 1 initializes the variable sum to zero and Line 2 initializes the counter to 1. At
Line 3, counter value is 1 and the control expression counter < 4 is true. Th erefore,
Lines 4 through 6 are executed. Th e fi rst value gets stored in the variable nextValue.
Further, sum becomes the same as nextValue and counter becomes 2. Now the control

controlExp

true

actionStatement

false

FIGURE 5.2 while state ment.

CRC_C6547_CH005.indd 218CRC_C6547_CH005.indd 218 8/27/2008 4:35:52 PM8/27/2008 4:35:52 PM

Apago PDF Enhancer

The Power of Repetition ■ 219

goes back to Line 3. Th e control expression counter < 4 is evaluated again. Note that
counter < 4 is true. Hence Lines 4 through 6 are executed. Th e second value gets stored
in the variable nextValue. Further, sum becomes the sum of fi rst and second values.
Th e counter is incremented and becomes 3. Th e control goes back to Line 3. Th e control
expression counter < 4 evaluates to true, and therefore nextValue becomes the third
input value and sum becomes the sum of all three input values. Th e counter is incre-
mented and the counter value becomes 4. Th erefore, as control goes back to Line 3, the
control expression counter < 4 evaluates to false. Consequently, Lines 4 through 6
are skipped and Line 7 gets executed. Th e above segment inputs three data values and
 computes their average.

Example 5.4

In this example while statement is used to compute the average of three numbers.

import java.util.Scanner;

/**

 Computes average of three values using while loop

*/

public class AverageThreeValuesUsingWhile

{

 public static void main (String[] args)

 {

 double nextValue, sum, averageValue;

 int counter;

 Scanner scannedInfo = new Scanner(System.in);

 sum = 0;

 counter = 1;

 while (counter < 4)

 {

 System.out.print("Enter a double value : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

 }

 averageValue = sum / 3;

 System.out.println("The average value is " +

 averageValue);

 }

}

CRC_C6547_CH005.indd 219CRC_C6547_CH005.indd 219 8/27/2008 4:35:52 PM8/27/2008 4:35:52 PM

Apago PDF Enhancer

220 ■ Java Programming Fundamentals

Output

Enter a double value : 34.67

Enter a double value : 56.98

Enter a double value : 45.69

The average value is 45.78

Th e following points are worth mentioning:

 1. In a counter-controlled while statement, the counter variable need not be
named counter. However, to indicate the purpose of the variable names such
as counter, count, and cnt are quite oft en used.

 2. Th e counter variable must be initialized before executing the control expression
of the while statement.

 3. If the initialization of the counter variable is such that the control expression
evaluates to true, within the action statement of the while statement the
counter variable needs to be modifi ed in such a way that the control expression
eventually become false.

Segment of Code Comment

countValue = 1; No error.
while (countValue < 11) Th e action statement will be executed 11 – 1 = 10 times
{
 …
 countValue++
}

CountValue = 1; Error.
while (countValue < 11) countValue needs to be modifi ed inside the action

statement. As it stands, while loop will never
terminate. It is an infi nite loop.

{
 …
}

CountValue = 10; No error.
while (countValue > 0) Th e action statement will be executed 10 – 0 = 10 times.
{
 …
 countValue--
}

countValue = 1; Error.
while (countValue < 11) Th e countValue is always less than 11 and therefore,

while will never terminate. It is an infi nite loop.{
 …
 countValue--
}

(Continued)

CRC_C6547_CH005.indd 220CRC_C6547_CH005.indd 220 8/27/2008 4:35:52 PM8/27/2008 4:35:52 PM

Apago PDF Enhancer

The Power of Repetition ■ 221

Segment of Code Comment

counter = 1; No error.
while (counter < 21) Th e action statement will be executed Math.ceil

((21 – 1)/3) = 1 + 20/3 = 7 times for the
values 1, 4, 7, 10, 13, 16, and 19. Note that Math.ceil
returns equal or next higher integer.

{
 …
 counter = counter + 3;
}

counter = 1; Error.
while (counter == 21) counter value is initially 1. Th us, counter == 21

evaluates to false. Th erefore, while statement is
never executed.

{
 …
 counter = counter + 3;
}

counter = 1; Error.
while (counter != 21) counter value is initially 1. Th us, counter != 21

evaluates to true. Th e counter value changes as 4, 7,
10, 13, 16, 19, 22, and so on. Th e counter never
becomes 21. Th is is an infi nite loop.

{
 …
 counter = counter + 3;
}

countValue = 75; No error.
while (countValue < 85) Th e action statement will be executed 85 – 75 = 10 times

for the following countValues: 75, 76, 77, 78, 79, 80,
81, 82, 83, and 84.

{
 …
 countValue++
}

Th e following template can be used to implement a counter-controlled while
statement:

countValue = 1; // (1)

while (countValue < numberOfRepetitionsPlusOne) // (2)

{

 …
 countValue++; // (3)

}

In the above segment of code, Line 1 initializes the counter variable countValue
to 1. In Line 2 numberOfRepetitionsPlusOne can be either a variable or a
literal value equal to 1 more than the number of repetitions required. For instance,
if number of repetitions required is 100, you can replace numberOfRepeti -
 tionsPlusOne by 101.

Self-Check

 13. Write a while statement in which the counter assumes all even number values
between 1 and 99 in the ascending order.

CRC_C6547_CH005.indd 221CRC_C6547_CH005.indd 221 8/27/2008 4:35:52 PM8/27/2008 4:35:52 PM

Apago PDF Enhancer

222 ■ Java Programming Fundamentals

 14. Write a while statement in which the counter assumes the values 99, 88, 77, 66,
55, and 44 in descending order.

Advanced Topic 5.1: Use of Counter inside Counter-Controlled while Statement

You can use the counter inside the while statement just like any other variable. However,
counter can play very important role inside a counter-controlled while statement.

Consider the following problem: you want to create a table that prints fi rst 10 powers of
2 for your easy reference. Clearly you want to print 10 items. You can start with the follow-
ing counter-controlled while statement:

counter = 1;

while (counter < 11)

{

 …

 counter++;

}

Now, if you include a statement

System.out.println("\t" + counter);

as shown below,

counter = 1;

while (counter < 11)

{

 System.out.println("\t" + counter);

 counter++;

}

the following output will be produced:

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

CRC_C6547_CH005.indd 222CRC_C6547_CH005.indd 222 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

The Power of Repetition ■ 223

Th erefore, all that is left to do can be summarized as follows:

Compute and print 21 when counter is 1
Compute and print 22 when counter is 2
Compute and print 23 when counter is 3
Compute and print 24 when counter is 4
Compute and print 25 when counter is 5
Compute and print 26 when counter is 6
Compute and print 27 when counter is 7
Compute and print 28 when counter is 8
Compute and print 29 when counter is 9
Compute and print 210 when counter is 10

In other words, compute and print 2counter for counter = 1, 2, …, 10. Now Java has a
built-in static method pow(x, y) in the class Math. Here both x and y can be of
type int or double. Being a static method, you can invoke the method pow as follows:

Math.pow(x,y)

and the method returns the double value xy. Th erefore, to compute 2counter you can invoke
the method pow as follows:

Math.pow(2, counter)

Th e segment of code necessary to print fi rst 10 powers of 2 can be written as follows:

counter = 1;

while (counter < 11)

{

 System.out.println("\t" + counter + "\t\t\t" +

 (int) Math.pow(2, counter));

 counter++;

}

Th e complete program is as follows:

public class FirstTenPowersOfTwo

{

 public static void main (String[] args)

 {

 int counter;

CRC_C6547_CH005.indd 223CRC_C6547_CH005.indd 223 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

224 ■ Java Programming Fundamentals

 counter = 1;

 while (counter < 11)

 {

 System.out.println("\t" + counter + "\t\t\t" +

 (int) Math.pow(2, counter));

 counter++;

 }

 }

}

Output
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

Advanced Topic 5.2: Event-Controlled while Statement

In the previous section, you have seen the counter-controlled while statement. However,
there are many situations where one may not know the number of repetitions required.
For example, data may be in a fi le and you may want to process all data items in the fi le. In
this case, you cannot use a counter-controlled while statement. However, you can check
for the end of tokens in a fi le. Th e Scanner class has a method hasNext() that returns
true if there are more tokens and returns false when there are no more tokens. Th ere-
fore, assuming the following declaration,

Scanner scannedInfo

 = new Scanner(new File("C:\\Studentdata.txt"));

an event-controlled while statement can be created as follows:

while (scannedInfo.hasNext())

{

 // read next data item and process it

}

//no more tokens left.

To illustrate these concepts, let us consider the following situation. Mr. Grace has just
fi nished grading his fi rst test. He decided to create a fi le in which each line has three

CRC_C6547_CH005.indd 224CRC_C6547_CH005.indd 224 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

The Power of Repetition ■ 225

entries: fi rst name, last name, and test score of the student. It is always good to know the
class average. Th erefore, Mr. Grace decided to write a simple Java program to compute the
class average. Mr. Grace started with the following segment of code:

Scanner scannedInfo

 = new Scanner(new File("C:\\Studentdata.txt"));

while (scannedInfo.hasNext())

{

 // read next data item and process it

}

//no more tokens left.

Mr. Grace noted that the fi rst two tokens on each line are fi rst name and last name, respec-
tively, and as such there is no need to store those values. However, the third value is a
double value and all those double values need to be added to get the sum of test scores
for all students. Mr. Grace modifi ed the above code as follows:

Scanner scannedInfo

 = new Scanner(new File("C:\\Studentdata.txt"));

sum = 0; // initialize sum

while (scannedInfo.hasNext())

{

 scannedInfo.next(); // skip first name

 scannedInfo.next(); // skip last name

 nextValue = scannedInfo.nextDouble();

 sum = sum + nextValue; // add test score

}

To fi nd the average, Mr. Grace needs to count the number of test scores. Th erefore, he
introduced one more variable count. Each time a new value is added to the sum, the
count is incremented by 1. Mr. Grace created the program shown in Example 5.5.

Example 5.5

Mr. Grace’s class average program:

import java.util.*;

import java.io.*;

import java.text.DecimalFormat;

/**

CRC_C6547_CH005.indd 225CRC_C6547_CH005.indd 225 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

226 ■ Java Programming Fundamentals

 Illustration of event-controlled while loop

*/

public class EventControlledWhile

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 double nextValue;

 double sum;

 double averageValue;

 int count;

 DecimalFormat centFormat = new DecimalFormat("0.00");

 Scanner scannedInfo =

 new Scanner(new File("C:\\Studentdata.txt"));

 sum = 0;

 count = 0;

 while (scannedInfo.hasNext())

 {

 scannedInfo.next(); // skip first name

 scannedInfo.next(); // skip last name

 nextValue = scannedInfo.nextDouble();

 sum = sum + nextValue; // add test scores

 count++; // count the number of test scores

 }

 averageValue = sum / count;

 System.out.println("The class average is " +

 centFormat.format(averageValue));

 scannedInfo.close();

 }

}

Input File Content

Kimberly Clarke 98.5

Chris Jones 78.5

Brian Wills 85.0

Bruce Mathew 60.5

Mike Daub 56.6

CRC_C6547_CH005.indd 226CRC_C6547_CH005.indd 226 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

The Power of Repetition ■ 227

Output

The class average is 75.82

Advanced Topic 5.3: Data-Controlled while Statement
Data Validation
Th ere are many situations where you may wish to control the while statement through
input data directly. In this section you will see two such cases.

Let us assume your high school is in the process of updating alumni records. To make
sure that you were a student, they want you to enter your high-school graduation year. How-
ever, if you fail to enter a valid value, program would like to prompt you again and again
until a correct value is entered. In this context, a while statement can be used as follows:

highSchoolYear = 0;

while (highSchoolYear < 1940 || highSchoolYear > 1990)

{

 System.out.print("Enter year of high school graduation ");

 System.out.flush();

 highSchoolYear = scannedInfo.nextInt();

 System.out.println();

}

Sentinel Data

Sometimes, programmers use out of range data values to indicate the end of data. Such a
data value is called sentinel data. For example, if you are dealing with positive values any
negative value can be used as a sentinel data.

To illustrate these concepts, let us consider the following situation. Mr. Grace has just
fi nished grading his fi nal test. His grading policy is that the fi nal grade depends on the
average of all tests attempted by a student. A student need not take all tests. Th erefore,
Mr. Grace decides to write a program, using sentinel data, to compute the fi nal score for a
student. Since all the test scores are nonnegative, Mr. Grace decides to use −1.0 as sentinel
value. A typical input to the program is as follows:

Kate Currin 67.8 89.9 78.0 95.4 −1.0

Mr. Grace notes that fi rst two tokens on each line are fi rst name and last name, respec-
tively. All other values in a line are of type double. Once a negative value is encountered,
no more data needs to be processed. Mr. Grace starts with the following segment of code:

Scanner scannedInfo = new Scanner(System.in);

firstName = scannedInfo.next();

lastName = scannedInfo.next();

nextValue = scannedInfo.nextDouble();

CRC_C6547_CH005.indd 227CRC_C6547_CH005.indd 227 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

228 ■ Java Programming Fundamentals

while (nextValue > -1.0)

{

 // process nextValue

 // increment count

 // read next data item into nextValue

}

In this context, process data involves adding all the grades. Mr. Grace modifi ed the code
as follows:

Scanner scannedInfo = new Scanner(System.in);

sum = 0;

count = 0; // initialize sum

firstName = scannedInfo.next();

lastName = scannedInfo.next();

nextValue = scannedInfo.nextDouble();

while (nextValue > -1.0)

{

 sum = sum + nextValue;

 count++;

 nextValue = scannedInfo.nextDouble();

}

Example 5.6

Mr. Grace’s average score program:

import java.util.*;

import java.text.DecimalFormat;

/**

 Illustration of data-controlled while loop

*/

public class DataControlledWhile

{

 public static void main (String[] args)

 {

 double nextValue;

 double sum;

CRC_C6547_CH005.indd 228CRC_C6547_CH005.indd 228 8/27/2008 4:35:53 PM8/27/2008 4:35:53 PM

Apago PDF Enhancer

The Power of Repetition ■ 229

 double averageScore;

 int count;

 String firstName;

 String lastName;

 DecimalFormat centFormat = new DecimalFormat("0.00");

 Scanner scannedInfo = new Scanner(System.in);

 System.out.println("Enter first name, last name, " +

 "test scores and -1.0");

 sum = 0;

 count = 0; // initialize sum

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 nextValue = scannedInfo.nextDouble();

 while (nextValue > -1.0)

 {

 sum = sum + nextValue;

 count++;

 nextValue = scannedInfo.nextDouble();

 }

 averageScore = sum / count;

 System.out.println(firstName +" "+ lastName +" "+

 centFormat.format(averageScore));

 scannedInfo.close();

 }

}

Output

Enter first name, last name, test scores and -1.0

Kate Currin 67.8 89.9 78.0 95.4 -1.0

Kate Currin 82.78

REPETITION STRUCTURE: for
You have seen three types of while statements: counter-controlled, event-controlled, and
data-controlled. In fact, while statement is general enough to implement any repetition.
Th e for statement introduced in this section can replace any while statement.

Th e general syntax of the for statement is

for (initialStmt; controlExp; updateStmt)

 actionStatement

CRC_C6547_CH005.indd 229CRC_C6547_CH005.indd 229 8/27/2008 4:35:54 PM8/27/2008 4:35:54 PM

Apago PDF Enhancer

230 ■ Java Programming Fundamentals

Note that for is a reserved word in Java. Th e initialStmt can be any Java state-
ment or a sequence of Java statements separated by comma. However, its intended
 purpose is to initialize variables involved in the controlExp. Th e controlExp can
be any logical expression in Java. Th e updateStmt can be any Java statement or a
sequence of Java statements separated by comma. However, its purpose is to modify
variables involved in the controlExp. Th e actionStatement can be either a sin-
gle Java statement or a block statement. Th e semantics of a for statement in Java can be
explained using Figure 5.3.

A better understanding of the while statement and the for statement can be obtained
from Figure 5.4.

controlExp

true

actionStatement

false

initialStmt

updateStmt

FIGURE 5.3 for statement.

for (initStmt; controlExp; updateStmt)
{

actionStmt_1;

}

actionStmt_2;

actionStmt_N;

. . .

while (controlExp)
{

actionStmt_1;

}

actionStmt_2;

actionStmt_N;

. . .

updateStmt;

initStmt;

FIGURE 5.4 while and for statements.

CRC_C6547_CH005.indd 230CRC_C6547_CH005.indd 230 8/27/2008 4:35:54 PM8/27/2008 4:35:54 PM

Apago PDF Enhancer

The Power of Repetition ■ 231

Example 5.7

Th roughout this example, assume the following declarations:

double nextValue;

double sum;

double average;

int counter;

 Now the following segment of code

 sum = 0;

 counter = 1;

 while (counter < 4)

 {

 nextValue = scannedInfo.nextDouble();

 sum = sum + nextValue;

 counter++;

 }

 average = sum / 3;

 can be written in any one of the following forms using the for statement:

 a. sum = 0;
for (counter = 1; counter < 4; counter++)

{

 nextValue = scannedInfo.nextDouble();

 sum = sum + nextValue;

}

average = sum / 3;

b. for (sum = 0,counter = 1; counter < 4; counter++)
{

 nextValue = scannedInfo.nextDouble();

 sum = sum + nextValue;

}

average = sum / 3;

c. for (sum = 0,counter = 1; counter < 4;
 counter++, sum += nextValue)

{

 nextValue = scannedInfo.nextDouble();

}

average = sum / 3;

CRC_C6547_CH005.indd 231CRC_C6547_CH005.indd 231 8/27/2008 4:35:54 PM8/27/2008 4:35:54 PM

Apago PDF Enhancer

232 ■ Java Programming Fundamentals

d. for (sum = 0,counter = 1; counter < 4;
 counter++, sum += scannedInfo.nextDouble());

average = sum / 3;

Even though all four for statements are semantically equivalent, you are
encouraged to use the option a, which is easily understandable and hence easily
maintainable.

Example 5.8

 Consider the following segment of code you have seen in Example 5.4:

 sum = 0;

 counter = 1;

 while (counter < 4)

 {

 System.out.print("Enter a double value : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

 }

 Th e above segment of code can be replaced by the following:

 sum = 0;

 counter = 1;

 for (counter = 1; counter < 4; counter++)

 {

 System.out.print("Enter a double value : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 }

 Th e following points are worth mentioning:

 1. Th e initialStmt, controlExp, updateStmt, and actionStatement are
optional in a for statement. Th e smallest for statement that can be written is

 for (; ;);

 2. Th e pair of left and right parentheses along with two semicolons appearing
inside them is part of the syntax.

 3. A missing controlExp evaluates to true.

CRC_C6547_CH005.indd 232CRC_C6547_CH005.indd 232 8/27/2008 4:35:54 PM8/27/2008 4:35:54 PM

Apago PDF Enhancer

The Power of Repetition ■ 233

 4. If controlExp is false in the beginning, the for statement is never executed.
 5. A semicolon following the right parenthesis is not a syntax error. It simply

amounts to an empty actionStatement.

Segment of Code Comment

for (count = 1;count < 11; count++) No error.
{ Th e actionStatement will be executed 11 − 1 =

10 times. …
}

for (int cnt = 1;cnt < 11; cnt++) No error.
{ Th e actionStatement will be executed 11 − 1 =

10 times. Th e variable cnt does not exist outside
the for statement.

 …
}

for (count = 10;count > 0;
count--)

No error

{ Th e actionStatement will be executed 10 − 0 =
10 times. …

}

for (count = 10;count > 0; count++) Logical error.
{ Th e control expression count > 0 is always true.
 …
}

for (count = 1;count < 11;
count--)

Logical error.

{ Th e control expression count < 11 is always
true. …

}

for (count = 1;count < 11;
count++);

Logical error.

{ Th e actionStatement is empty. Th e block
statement that follows will be executed only once! …

}

for (count = 1;count < 11;) Logical error.
{ Th e count needs to be modifi ed. In other words,

this is an infi nite loop. …
}

for (cnt = 1;cnt < 21;
cnt += 3)

No error.

{ Th e actionStatement will be executed Math.
ceil((21 − 1)/3) = 7 times for the values
1, 4, 7, 10, 13, 16, and 19.

 …
}

for (count = 1; count == 21;
count++)

Logical error.

{ Th e count value is initially 1. Th us, count == 21
evaluates to false. Th e for statement is never
executed.

 …
}

(Continued)

CRC_C6547_CH005.indd 233CRC_C6547_CH005.indd 233 8/27/2008 4:35:54 PM8/27/2008 4:35:54 PM

Apago PDF Enhancer

234 ■ Java Programming Fundamentals

Segment of Code Comment

for (cnt = 1;cnt != 21; cnt += 3) Logical error.
{ Th e cnt value is initially 1. Th us, cnt != 21

evaluates to true. However, cnt value changes as
4, 7, 10, 13, 16, 19, 22, and so on. Th e cnt value
never becomes 21 and hence this is an infi nite loop.

 …
}

for (count = 75; count < 85;
count++)

No error.

{ Th e actionStatement will be executed 85 − 75
=
10 times for the following values of count: 75, 76,
77, 78, 79, 80, 81, 82, 83, and 84.

 …
}

Th e following syntactic template can be used to implement a for statement:

for (cnt = 1; cnt < numberOfRepetitionsPlusOse; cnt++)

{

 …
}

In the above segment of code, numberOfRepetitionsPlusOne can be either
a variable or a literal value equal to 1 more than the number of repetitions
required. For instance, if number of repetitions required is 1000, you can replace
numberOfRepetitionsPlus One by 1001.

Self-Check

 15. Write a for statement in which the count assumes all even number values
between 1 and 99 in ascending order.

 16. Write a for statement in which the count assumes the values 99, 88, 77, 66, 55,
and 44 in descending order.

Advanced Topic 5.4: Use of Counter inside for Statement

Consider the following problem: you want to create a table that has square and cube
of integers 2 through 9. To print the eight lines, you can start with the following for
statement:

for (cnt = 2; cnt < 10; cnt++)

{

 // you need a println statement

}

Now, the following statement

System.out.println("\t" + cnt +"\t" + cnt*cnt + "\t" + cnt*cnt*cnt);

prints a number, its square, and its cube. Th us, we have the following:

CRC_C6547_CH005.indd 234CRC_C6547_CH005.indd 234 8/27/2008 4:35:54 PM8/27/2008 4:35:54 PM

Apago PDF Enhancer

The Power of Repetition ■ 235

for (cnt = 2; cnt < 10; cnt++)

{

 System.out.println("\t" + cnt +"\t" + cnt*cnt +

 "\t" + cnt*cnt*cnt);

}

Th e complete program is as follows:

public class SquareCube

{

 public static void main (String[] args)

 {

 for (cnt = 2; cnt < 10; cnt++)

 {

 System.out.println("\t" + cnt +"\t" + cnt*cnt +

"\t" + cnt*cnt*cnt);

 }

 }

}

Output
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

Advanced Topic 5.5: Repetition Statement : do … while

Th e general syntax of the do … while statement is

do

 actionStatement

while (controlExp);

Note that do and while are reserved words in Java.Th e controlExp can be any logical
expression in Java. Th e actionStatement can be either a single Java statement or a block
statement. Th e semantics of a do … while statement can be explained as follows. Th e action-
Statement is executed once and then the control expression controlExp is evaluated. If
the control expression evaluates to true, the actionStatement is executed once more
and the control expression is evaluated again. However, if the control expression evaluates to
false, the statement following the while statement is executed (see Figure 5.5).

CRC_C6547_CH005.indd 235CRC_C6547_CH005.indd 235 8/27/2008 4:35:55 PM8/27/2008 4:35:55 PM

Apago PDF Enhancer

236 ■ Java Programming Fundamentals

Th e usefulness of a do … while statement in Java can be explained through the fol-
lowing example.

Example 5.9

Consider the following segment of code you have seen previously in the subsection
on data validation:

highSchoolYear = 0;

while (highSchoolYear < 1940 || highSchoolYear > 1990)

{

 System.out.print("Enter year of high school graduation ");

 System.out.flush();

 highSchoolYear = scannedInfo.nextInt();

 System.out.println();

}

In the above segment of code, the variable highSchoolYear is initialized to
zero so that the control expression highSchoolYear < 1940 || highSchool
Year > 1990 evaluates to false. Th e associated action statement is executed at
least once. Since do … while is a posttest structure, control expression is evalu-
ated only aft er the action statement has been executed. Th erefore, there is no need to
initialize the variable highSchoolYear. Th e above segment of code is equivalent
to the following do … while statement:

do

{

 System.out.print("Enter year of high school graduation ");

 System.out.flush();

 highSchoolYear = scannedInfo.nextInt();

actionStatements

controlExp

false

true

FIGURE 5.5 do … while statement.

CRC_C6547_CH005.indd 236CRC_C6547_CH005.indd 236 8/27/2008 4:35:55 PM8/27/2008 4:35:55 PM

Apago PDF Enhancer

The Power of Repetition ■ 237

 System.out.println();

} while (highSchoolYear < 1940 || highSchoolYear > 1990);

Example 5.10

Consider the following segment of code you have seen previously in the subsection
on sentinel data:

nextValue = scannedInfo.nextDouble();

while (nextValue > -1.0)

{

 sum = sum + nextValue;

 count++;

 nextValue = scannedInfo.nextDouble();

}

Th e above code is equivalent to the following:

nextValue = scannedInfo.nextDouble();

if (nextValue > 1.0)

{

 do

 {

 sum = sum + nextValue;

 count++;

 nextValue = scannedInfo.nextDouble();

 } while (nextValue > -1.0);

}

In this case, use while statement for better readability.

Example 5.11

 Consider the following segment of code you have seen in Example 5.4:

 sum = 0;

 counter = 1;

 while (counter < 4)

 {

 System.out.print("Enter a double value : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

CRC_C6547_CH005.indd 237CRC_C6547_CH005.indd 237 8/27/2008 4:35:55 PM8/27/2008 4:35:55 PM

Apago PDF Enhancer

238 ■ Java Programming Fundamentals

 sum = sum + nextValue;

 counter = counter + 1;

 }

 Th e above code is equivalent to the following:

 sum = 0;

 counter = 1;

 do

 {

 System.out.print("Enter a double value : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

 } while (counter < 4)

Th e following points are worth mentioning:

 1. Th e controlExp and actionStatement are optional in a do … while
 statement. Th e smallest do … while statement that can be written is

 do while();

 2. Th e pair of left and right parentheses along with the semicolons appearing aft er
the right parenthesis is part of the syntax.

 3. A missing controlExp evaluates to true.
 4. Th e actionStatement is executed at least once, even if the controlExp is

false in the beginning.

Advanced Topic 5.6: Guidelines for Choosing Repetition Structure

You have learned three ways of implementing a repetition structure. So a natural question
you may have is which one of these structures is the best.

Use the for statement in the case of counter-controlled structure. Th e for statement
has the distinct advantage of keeping all three components of repetition structure,
initialization, control expression, and update statements in one place.
Use the while statement in all other cases and avoid using do … while if possible.
Th e major drawback of a do … while statement is its low visibility. Th at is, it is hard
to locate the beginning and the end of a do … while statement compared to other
two repetition structures.

•

•

CRC_C6547_CH005.indd 238CRC_C6547_CH005.indd 238 8/27/2008 4:35:55 PM8/27/2008 4:35:55 PM

Apago PDF Enhancer

The Power of Repetition ■ 239

NESTING OF CONTROL STRUCTURES
In Chapter 4, you have learned that it is possible to nest various selection structures. In fact
you can always nest various control structures as required by the programming logic. Th is
section will illustrate this fact through examples.

Example 5.12

Consider the segment of code for grade computation presented in Chapter 4. For the
sake of easy reference, the segment of code is listed below:

double wats; // wats: weighted average test score

String gradeAssigned;

if (wats >= 90)

 gradeAssigned = "A" ;

else if (wats >= 85)

 gradeAssigned = "A-" ;

else if (wats >= 80)

 gradeAssigned = "B" ;

else if (wats >= 75)

 gradeAssigned = "B-" ;

else if (wats >= 70)

 gradeAssigned = "C" ;

else if (wats >= 60)

 gradeAssigned = "D" ;

else

 gradeAssigned = "F" ;

Th e data for each student consists of fi rst name, last name, and four test scores. Th e
wats (weighted average test score) is computed by taking the average of all four test
scores. Th e segment of code necessary for wats computation can be adopted from
Example 5.4 as follows:

double nextValue;

double sum;

double wats;

int counter;

String firstName;

String lastName;

Scanner scannedInfo = new Scanner(System.in);

System.out.print("Enter first and last names : ");

System.out.flush();

CRC_C6547_CH005.indd 239CRC_C6547_CH005.indd 239 8/27/2008 4:35:55 PM8/27/2008 4:35:55 PM

Apago PDF Enhancer

240 ■ Java Programming Fundamentals

firstName = scannedInfo.next();

lastName = scannedInfo.next();

System.out.println();

sum = 0;

counter = 1;

while (counter < 5)

{

 System.out.print("Enter grade for test "+ counter + " : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

}

wats = sum / 4;

Putting these two pieces together along with necessary output statements, we have
the following segment of code:

double nextValue;

double sum;

double wats;

int counter;

String firstName;

String lastName;

String gradeAssigned;

Scanner scannedInfo = new Scanner(System.in);

// get data and compute wats

System.out.print("Enter first name and last name : ");

System.out.flush();

firstName = scannedInfo.next();

lastName = scannedInfo.next();

System.out.println();

sum = 0;

counter = 1;

while (counter < 5)

{

 System.out.print("Enter grade for test "+ counter + " : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

CRC_C6547_CH005.indd 240CRC_C6547_CH005.indd 240 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

The Power of Repetition ■ 241

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

}

wats = sum / 4;

// use wats to assign proper grades

if (wats >= 90)

 gradeAssigned = "A" ;

else if (wats >= 85)

 gradeAssigned = "A-" ;

else if (wats >= 80)

 gradeAssigned = "B" ;

else if (wats >= 75)

 gradeAssigned = "B-" ;

else if (wats >= 70)

 gradeAssigned = "C" ;

else if (wats >= 60)

 gradeAssigned = "D" ;

else

 gradeAssigned = "F";

// produce output

System.out.println(firstName + " " + lastName + " \t" +

 gradeAssigned);

Th e above segment of code gets the data of one student and assigns the grade accord-
ing to the grading policy. Suppose the class has 12 students. Th en all you need to do
is repeat the above statements 12 times. Th us, we have the following:

double nextValue;

double sum;

double wats;

int counter;

int StudentCnt;

String firstName;

String lastName;

String gradeAssigned;

Scanner scannedInfo = new Scanner(System.in);

CRC_C6547_CH005.indd 241CRC_C6547_CH005.indd 241 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

242 ■ Java Programming Fundamentals

for (StudentCnt = 1; StudentCnt < 13; StudentCnt++)

{

 // get data and compute wats

 System.out.print("Enter first and last names : ");

 System.out.flush();

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 System.out.println();

 sum = 0;

 counter = 1;

 while (counter < 5)

 {

 System.out.print("Enter grade for test "+

 counter + " : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

 }

 wats = sum / 4;

 // use wats to assign proper grades

 if (wats >= 90)

 gradeAssigned = "A" ;

 else if (wats >= 85)

 gradeAssigned = "A-" ;

 else if (wats >= 80)

 gradeAssigned = "B" ;

 else if (wats >= 75)

 gradeAssigned = "B-" ;

 else if (wats >= 70)

 gradeAssigned = "C" ;

 else if (wats >= 60)

 gradeAssigned = "D" ;

 else

 gradeAssigned = "F" ;

 // produce output

 System.out.println(firstName + " " + lastName +

 " \t" + gradeAssigned);

}

CRC_C6547_CH005.indd 242CRC_C6547_CH005.indd 242 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

The Power of Repetition ■ 243

Th e complete program listing along with sample test runs as follows. Note that
number of students and number of tests are also part of the input.

import java.util.Scanner;

public class StudentGrades

{

 /**

 Illustration of nesting of control structures

 */

 public static void main (String[] args)

 {

 double nextValue;

 double sum;

 double wats;

 int counter;

 int StudentCnt;

 int numStudents;

 int numTests;

 String firstName;

 String lastName;

 String gradeAssigned;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter no. of students &

 tests : ");

 System.out.flush();

 numStudents = scannedInfo.nextInt();

 numTests = scannedInfo.nextInt();

 System.out.println();

 for (StudentCnt = 1; StudentCnt < numStudents + 1;

 StudentCnt++)

 {

 // get data and compute wats

 System.out.print("Enter first and last names : ");

 System.out.flush();

 firstName = scannedInfo.next();

 lastName = scannedInfo.next();

 System.out.println();

 sum = 0;

 counter = 1;

CRC_C6547_CH005.indd 243CRC_C6547_CH005.indd 243 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

244 ■ Java Programming Fundamentals

 while (counter < numTests + 1)

 {

 System.out.print("Enter grade for test "+

 counter + " : ");

 System.out.flush();

 nextValue = scannedInfo.nextDouble();

 System.out.println();

 sum = sum + nextValue;

 counter = counter + 1;

 }

 wats = sum / numTests;

 // use wats to assign proper grades

 if (wats >= 90)

 gradeAssigned = "A";

 else if (wats >= 85)

 gradeAssigned = "A-" ;

 else if (wats >= 80)

 gradeAssigned = "B" ;

 else if (wats >= 75)

 gradeAssigned = "B-" ;

 else if (wats >= 70)

 gradeAssigned = "C";

 else if (wats >= 60)

 gradeAssigned = "D" ;

 else

 gradeAssigned = "F" ;

 // produce output

 System.out.println(firstName + " " + lastName +

 " \t" + gradeAssigned);

 }

 }

}

Output

Enter no. of students & tests : 1 4

Enter first and last names : Kelly Pederson

Enter grade for test 1 : 85.7

CRC_C6547_CH005.indd 244CRC_C6547_CH005.indd 244 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

The Power of Repetition ■ 245

Enter grade for test 2 : 79.3

Enter grade for test 3 : 93.6

Enter grade for test 4 : 94.8

Kelly Pederson A-

Self-Check

 17. If there are 20 students and 4 tests, how many times the flush method will be
invoked?

 18. If there are 20 students and 4 tests, how many times the statement counter =
counter + 1; will be executed?

Advanced Topic 5.7: Statements break and continue

You can use two keywords break and continue to alter the behavior of a repetition
structure. Th e syntax is as follows:

break [label];

continue [label];

Observe that label is optional and most common use of break and continue is with-
out label. Th erefore, use of break and continue without any label is explained fi rst.

A break statement is used to terminate execution of the innermost repetition struc-
ture that contains the break statement.
A continue statement is used to skip execution of the remaining statements in the
innermost repetition structure that contains the continue statement for the cur-
rent iteration.

Recall that a break statement can be used inside a switch statement and the semantics
of the break statement is to stop executing any other statement in the switch statement
and start executing the fi rst statement following the switch statement. Th e semantics of
a break statement inside any repetition structure is identical. Th at is, break statement
transfers the control to the very fi rst statement following the repetition structure as shown
in Figure 5.6.

Note that break causes an immediate exit from the repetition structure. Th e semantics
of a continue statement can be explained through Figure 5.7.

Th e continue statement aff ects only the current iteration of the repetition structure.
More specifi cally, continue statement causes actionStmtsAfter being skipped for
the current iteration.

•

•

CRC_C6547_CH005.indd 245CRC_C6547_CH005.indd 245 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

246 ■ Java Programming Fundamentals

Good Programming Practice 5.1

Th e continue statement appearing inside a while statement or a do … while
statement causes control expression being evaluated next. However, in the case of a
for statement, a continue statement causes the update statement being executed
next, followed by the control expression. Th erefore, if you use continue state-
ment, a for statement is more preferable than other repetition structures. However,
if you use continue inside a while statement or a do … while statement, you
must make sure that the necessary updates are done. Otherwise you may uninten-
tionally create an infi nite repetition structure.

Example 5.13

import java.util.Scanner;

/**

 Illustration of break and continue

*/

public class BreakAndContinue

{

 public static void main (String[] args)

logicalExp

true

false

actionStmtsBefore

actionStmtsAfter

break

FIGURE 5.6 break statement.

logicalExp

true

false

actionStmtsBefore

continue

actionStmtsAfter

FIGURE 5.7 continue statement.

CRC_C6547_CH005.indd 246CRC_C6547_CH005.indd 246 8/27/2008 4:35:56 PM8/27/2008 4:35:56 PM

Apago PDF Enhancer

The Power of Repetition ■ 247

 {

 int valueOne;

 int valueTwo;

 int cntOne;

 int cntTwo;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter two positive integers : ");

 System.out.flush();

 valueOne = scannedInfo.nextInt();

 valueTwo = scannedInfo.nextInt();

 System.out.println();

 for (cntOne = valueOne, cntTwo = valueTwo;

 cntOne + cntTwo > 0; cntOne--, cntTwo--)

 {

 System.out.println("\nFirst value is " + cntOne +
 " and second value is " + cntTwo);

 System.out.println("Statement before Cont. /

 Break");

 if (cntOne == 0 && cntTwo > 0)

 {

 System.out.println("First value is zero.");

 System.out.println("\tB R E A K!");

 break;

 }

 else if (cntOne > 0 && cntTwo == 0)

 {

 System.out.println("Second value is zero.");

 System.out.println("\tC O N T I N U E!");

 continue;

 }

 System.out.println("Statement after Cont./

 Break");

 }

 System.out.println("\n\nExit Loop. Bye now.");

 }

}

Output

Case 1: First value > second value

Enter two positive integers : 5 2

CRC_C6547_CH005.indd 247CRC_C6547_CH005.indd 247 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

248 ■ Java Programming Fundamentals

First value is 5 and second value is 2

Statement before Cont./Break

Statement after Cont./Break

First value is 4 and second value is 1

Statement before Cont./Break

Statement after Cont./Break

First value is 3 and second value is 0

Statement before Cont./Break

Second value is zero.

 C O N T I N U E!

First value is 2 and second value is -1

Statement before Cont./Break

Statement after Cont./Break

Exit Loop. Bye now.

Case 2: First value < second value

Enter two positive integers : 2 5

First value is 2 and second value is 5

Statement before Cont./Break

Statement after Cont./Break

First value is 1 and second value is 4

Statement before Cont./Break

Statement after Cont./Break

First value is 0 and second value is 3

Statement before Cont./Break

First value is zero.

 B R E A K!

Exit Loop. Bye now.

Observe the behavior of continue in case 1 and that of break in case 2,
respectively.

CRC_C6547_CH005.indd 248CRC_C6547_CH005.indd 248 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

The Power of Repetition ■ 249

In case 1, continue statement is executed once. In that particular iteration, all
 statements following the continue statement are skipped. Note that both cntOne
and cntTwo get decremented. Eventually, the control expression cntOne +
cntTwo > 0 becomes false and the repetition structure is exited. In case 2, once
the break statement is executed, the repetition structure is exited.

Statements break and continue with Optional Label

Technically speaking every Java statement can have an optional label. However, the most
common use of a label is in connection with break and continue statements. Th e
break and continue statements without any label aff ect the behavior of the inner-
most repetition structure. Quite oft en, in a nested structure, you may want to break or
 continue to apply to the some outer repetition structure. Such situations can be handled
by identifying a repetition structure by a label and including the label in the break or
continue statement.

Example 5.14

import java.util.Scanner;

/**

 Illustration of break and continue with label

*/

public class BreakAndContinueWithLabel

{

 public static void main (String[] args)

 {

 int valueOne;

 int valueTwo;

 int cntOne;

 int cntTwo;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter two positive integers : ");

 System.out.flush();

 valueOne = scannedInfo.nextInt();

 valueTwo = scannedInfo.nextInt();

 System.out.println();

 outerLoop :

 for (cntOne = valueOne; cntOne > 0; cntOne--)

 {

 System.out.println("Outer loop: Before");

CRC_C6547_CH005.indd 249CRC_C6547_CH005.indd 249 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

250 ■ Java Programming Fundamentals

 for (cntTwo = valueTwo; cntTwo > 0; cntTwo--)

 {

 System.out.println("First value is " +

 cntOne +" and second value is " + cntTwo);

 System.out.println("Before Cont./Break");

 if (cntOne % cntTwo == 0)

 {

 System.out.println("\tB R E A K!\n");

 break outerLoop;

 }

 else if (cntTwo % cntOne == 0)

 {

 System.out.println("\tC O N T I N U E!\n");
 continue outerLoop;

 }

 System.out.println("After Cont./Break");

 }

 System.out.println("Outer loop: After");

 }

 System.out.println("\n\nOutside all loops. Bye now.");

 }

}

Output

First run:

Enter two positive integers : 7 3

Outer loop: Before

First value is 7 and second value is 3

Before Cont./Break

After Cont./Break

First value is 7 and second value is 2

Before Cont./Break

After Cont./Break

First value is 7 and second value is 1

Before Cont./Break

 B R E A K!

Outside all loops. Bye now.

Second run:

CRC_C6547_CH005.indd 250CRC_C6547_CH005.indd 250 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

The Power of Repetition ■ 251

Enter two positive integers : 5 10

Outer loop: Before

First value is 5 and second value is 10

Before Cont./Break

 C O N T I N U E!

Outer loop: Before

First value is 4 and second value is 10

Before Cont./Break

After Cont./Break

First value is 4 and second value is 9

Before Cont./Break

After Cont./Break

First value is 4 and second value is 8

Before Cont./Break

 C O N T I N U E!

Outer loop: Before

First value is 3 and second value is 10

Before Cont./Break

After Cont./Break

First value is 3 and second value is 9

Before Cont./Break

 C O N T I N U E!

Outer loop: Before

First value is 2 and second value is 10

Before Cont./Break

 C O N T I N U E!

Outer loop: Before

First value is 1 and second value is 10

Before Cont./Break

 C O N T I N U E!

Outside all loops. Bye now.

Note the behavior of break in case 1 and that of continue in case 2, respec-
tively. In case 1, break statement is executed once and the control is transferred
to the fi rst statement outside the outer repetition structure. In case 2, as soon as
continue statement is executed, the control is transferred to the beginning of the
outer repetition structure.

CRC_C6547_CH005.indd 251CRC_C6547_CH005.indd 251 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

252 ■ Java Programming Fundamentals

CASE STUDY 5.1: PAYROLL FOR SMALL BUSINESS: REVISITED
Specifi cation

Mr. Jones currently has 30 employees. Ms. Smart decided to keep employee data in a fi le
and print payroll information fi rst into a fi le. Ms. Smart decided to rewrite the payroll
program.

Input
Data is in a fi le C:\employee.dat. Other details are as before.

Output
Print the pay stub for every employee into a fi le C:\payroll.dat.

Th ere is no change in classes. Th e only change is in the application program.

Application Program

Th e application program needs to be modifi ed to refl ect the changes. Th e changes to be
made can be listed as follows:

Read information from a fi le and not from standard input. Th erefore, you need to
declare exceptions in the method main’s heading and change the way Scanner
object is created. Th us,

public static void main (String[] args)

is replaced by

public static void main (String[] args) throws

 FileNotFoundException, IOException

and

Scanner scannedInfo = new Scanner(System.in);

is replaced by

Scanner scannedInfo = new Scanner

 (new File("C:\\employee.dat"));

Output is written into a fi le. Th erefore, a PrintWriter object is created.

PrintWriter outFile = new PrintWriter

 (new FileWriter("C:\\payroll.dat"));

All output statements of the form

System.out.print(…);

System.out.println(…);

•

•

CRC_C6547_CH005.indd 252CRC_C6547_CH005.indd 252 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

The Power of Repetition ■ 253

are, respectively, replaced by output statements of the form

outFile.print(…);

outFile.println(…);

Remove all prompt statements. Th e program is now executing in batch mode and not
in an interactive mode. Th erefore, there is no need for any prompt statements.
Introduce a repetition structure. So long as there are more employees, the program must
read the data from the input fi le and output the payroll information into the output fi le.

import java.util.*;

import java.io.*;

/**

 Modified program for Heartland Cars of America

 Each modified Java statement is kept as a comment

 To observe the difference.

*/

public class HeartlandCarsOfAmericaPayRollFileVersion

{

 //public static void main (String[] args)

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 //Create reference variable of all three employee

 types

 FullTimeEmp fullTimeEmployee;

 PartTimeEmp partTimeEmployee;

 SalesEmp salesEmployee;

 //Declare variables to input

 char inputEmplyeeType;

 String inputFirstName;

 String inputLastName;

 double inputBaseSalary;

 double inputPayPerHour;

 int inputSalesVolume;

 int inputHoursWorked;

 //Get two input values

 // Scanner scannedInfo = new Scanner(System.in);

 Scanner scannedInfo = new Scanner

 (new File("C:\\employee.dat"));

•

•

CRC_C6547_CH005.indd 253CRC_C6547_CH005.indd 253 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

254 ■ Java Programming Fundamentals

 PrintWriter outFile = new PrintWriter

 (new FileWriter("C:\\payroll.dat"));

 // System.out.print("Enter Employee Type : ");

 // System.out.flush();

 inputEmplyeeType = scannedInfo.next().charAt(0);

 // System.out.println();

 while (scannedInfo.hasNext())

 {

 switch (inputEmplyeeType)

 {

 case 'F' :

 case 'f' :

 //get necessary values as input

 //System.out.print("Enter First Name, " +

 //"Last Name, Base Salary, Hours : ");

 //System.out.flush();

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputBaseSalary = scannedInfo.nextDouble();

 inputHoursWorked = scannedInfo nextInt();

 //System.out.println();

 //create an object and initialize data

members

 fullTimeEmployee = new FullTimeEmp();

 fullTimeEmployee.setFirstName(inputFirstName);

 fullTimeEmployee.setLastName(inputLastName);

 fullTimeEmployee.setBaseSalary

(inputBaseSalary);

 fullTimeEmployee.setHoursWorked

 (inputHoursWorked);

 //invoke the printPayStub method

 outFile.print (fullTimeEmployee.

createPayStub());

 break;

 case 'P' :

 case 'p' :

 //get necessary values as input

 //System.out.print("Enter First Name, Last

Name, "+

CRC_C6547_CH005.indd 254CRC_C6547_CH005.indd 254 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

The Power of Repetition ■ 255

 //"Pay per hour, Hours : ");

 //System.out.flush();

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputPayPerHour = scannedInfo.nextDouble();

 inputHoursWorked = scannedInfo.nextInt();

 //System.out.println();

 //create an object and initialize data

members

 partTimeEmployee = new PartTimeEmp();

 partTimeEmployee.

setFirstName(inputFirstName);

 partTimeEmployee.setLastName(inputLastName);

 partTimeEmployee.setPayPerHour

(inputPayPerHour);

 partTimeEmployee.setHoursWorked

(inputHoursWorked);

 //invoke the printPayStub method

 outFile.print(partTimeEmployee

createPayStub());

 break;

 case 'S' :

 case 's' :

 //get necessary values as input

 //System.out.print("Enter First Name, Last

Name, "+

 //"Base Salary, Sales Volume : ");

 //System.out.flush();

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputBaseSalary = scannedInfo.nextDouble();

 inputSalesVolume = scannedInfo.nextInt();

 //System.out.println();

 //create an object and initialize data

members

 salesEmployee = new SalesEmp();

 salesEmployee.setFirstName(inputFirstName);

 salesEmployee.setLastName(inputLastName);

 salesEmployee.setBaseSalary(inputBaseSalary);

 salesEmployee.setSalesVolume

(inputSalesVolume);

CRC_C6547_CH005.indd 255CRC_C6547_CH005.indd 255 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

256 ■ Java Programming Fundamentals

 //invoke the printPayStub method

 outFile.print(salesEmployee. createPayStub());

 break;

 } // End of switch

 } // End of while

 } // End of main

} // End of class

Testing

Left as an exercise to the reader.

Output
Quite similar to the output shown at the end of Chapter 3.

REVIEW
 1. Repetition structure allows you to repeat a certain code again and again.
 2. If the data is in a fi le C:\myfile.dat, you can create a scanner object scannedInfo

through the following statement:

 Scanner scannedInfo = new

 Scanner(new File("C:\\myfile.dat"));

 3. In Java, to create an output fi le C:\myfile.out, you need a statement similar to
 PrintWriter output = new

 PrintWriter(new FileWriter("C:\\myfile.out"));

 4. An IOException occurs whenever a mismatch in data type happens during an I/O
operation.

 5. Th e close method, in particular, will fl ush any data remaining in the output buff er
to the output fi le.

 6. Generally speaking, there are three types of while statements: counter-controlled,
event-controlled, and data-controlled.

 7. Th e counter variable must be initialized before executing the control expression of
the while statement.

 8. In the case of a while statement, the pair of left and right parentheses is part of the
syntax.

 9. In the case of a for statement, the pair of left and right parentheses along with two
semicolons appearing inside them is part of the syntax.

 10. In the following while statement, the actionStatement will be executed 11 − 1
= 10 times:
cnt = 1;

while (cnt < 11)

CRC_C6547_CH005.indd 256CRC_C6547_CH005.indd 256 8/27/2008 4:35:57 PM8/27/2008 4:35:57 PM

Apago PDF Enhancer

The Power of Repetition ■ 257

{

 …
 cnt++

}

 11. In the following for statement, the actionStatement will be executed 11 − 1 =
10 times:
for (cnt = 1; cnt < 11; cnt++)

{

 …
}

 12. In a repetition structure, an empty control expression evaluates to true.
 13. In a repetition structure, the control expression must evaluate to false eventually

to avoid infi nite looping.
 14. A do … while statement is executed at least once.
 15. A break statement is used to terminate execution of the innermost repetition struc-

ture that contains the break statement.
 16. A continue statement is used to skip execution of the remaining statements in the

innermost repetition structure that contains the continue statement for the cur-
rent iteration.

EXERCISES
 1. Mark the following statements as true or false:
 a. In a while statement the control expression is initially false.
 b. In a do … while statement the control expression is always false.
 c. To have a fi nite while loop, control expression should evaluate to true during

execution.
 d. It is possible to write a repetition structure such that it terminates for certain

input values only.
 e. In the case of a counter-controlled while statement, the counter value cannot

be changed.
 f. An empty control expression in a while statement always evaluates to false.
 g. Both while and do … while statements are executed at least once irrespective

of the initial value of the control expression.
 h. In a counter-controlled while statement, the counter needs to be incremented

by 1, and not by any other value.
 i. Every for statement can be replaced by a while statement.
 j. Within a repetition structure, you cannot have more than one break statement.
 k. It is legal to use both break and continue within a repetition structure.

CRC_C6547_CH005.indd 257CRC_C6547_CH005.indd 257 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

258 ■ Java Programming Fundamentals

 2. What is the output produced by the following segment of code. In the case of infi nite
loop, write “infi nite loop” and give fi rst 10 iteration outputs. If there is a syntax error,
write syntax error and explain the reason.

 a. int counter = 2;

int x = 10;

while (counter < x)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

 counter = counter + 2;

};

 b. int counter = 2;

int x = 10;

while (counter < x)

 System.out.println("x = " + x + " ,counter = " + counter);

 c. int counter = 2;

int x = 10;

while (counter++ < --x)

 System.out.println("x = " + x + " ,counter = " + counter);

 d. int counter = 2;

int x = 10;

while ()

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

 counter = counter + 2;

 if (x == 20) break;

};

 e. int counter = 2;

int x = 10;

while (true)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

 counter = counter + 2;

 if (x == 20) continue;

};

 f. int counter = 2;

int x = 10;

while (x + counter < 20)

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

CRC_C6547_CH005.indd 258CRC_C6547_CH005.indd 258 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

The Power of Repetition ■ 259

 counter = counter + 2;

 if (x == 20) continue;

 g. int counter = 2;

 int x = 10;

 while (x – counter < 20);

 System.out.println("x = " + x + " ,counter = " + counter);

x++;

counter = counter + 2;

if (x == 20) break;

 3. What is the output produced by the following segment of code. In the case of infi nite
loop, write “infi nite loop” and give fi rst 10 iteration outputs. If there is a syntax error,
write syntax error and explain the reason.

 a. int counter;

int x = 10;

for (counter = 0; counter < x; counter++)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x--;

};

 b. int counter;

int x = 10;

for (counter = 0; counter < x;)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x--;

};

 c. int counter;

int x = 10;

for (counter = 0; counter < x; counter++)

 System.out.println("x = " + x + " ,counter = " + counter);

 d. int counter = 2;

int x = 10;

for (;;)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

 counter = counter + 2;

};

 e. int counter;

int x = 10;

for(counter = 2; true ;)

CRC_C6547_CH005.indd 259CRC_C6547_CH005.indd 259 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

260 ■ Java Programming Fundamentals

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

 counter = counter + 2;

 if (x == 20) continue;

};

 f. int counter;

int x = 10;

for (counter = 0; counter < x; counter++)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 x++;

 counter = counter + 2;

 if (x == 20) break;

}

 g. int counter = 2;

int x = 30;

for (counter = 0; counter < x; counter++)

{

 System.out.println("x = " + x + " ,counter = " + counter);

 X = x – 3;

 counter = counter + 2;

 if (x == 21) break;

}

 4. If the data values are student grade points, suggest a sentinel value.
 5. If the data values are student names, suggest a sentinel value.
 6. Write a segment of code to sum 10 int values read from the standard input.
 a. Use while statement
 b. Use for statement
 c. Use do … while statement
 7. Redo Exercise 6 so that all positive values are added together and all negative values

are added together.
 8. What is the output produced by the following segment of code. In the case of infi nite

loop, write “infi nite loop” and give fi rst 10 outputs. If there is a syntax error, write
syntax error and explain the reason.

 a. int counter = 1;

int x = 1;

while (counter < 10)

{

 System.out.println("x = " + counter+ " , counter = " +

counter);

CRC_C6547_CH005.indd 260CRC_C6547_CH005.indd 260 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

The Power of Repetition ■ 261

 while (counter < 5)

 {

 System.out.println("x = " + x + " , counter = " +

 counter);

 x++;

 }

 counter++;

};

 b. int counter = 1;

int x = 8;

while (counter < 8)

{

 System.out.println("x = " + x + " , counter = " + counter);

 for (x = 0; x < 7; x = x + 2)

 {

 System.out.println("x = " + x + " , counter = " +

counter);

 }

 counter++;

};

 c. int x = 1;

int counter;

for (counter = -5, counter < 6; counter = counter + 2)

{

 System.out.println("x = " + x + " , counter = " + counter);

 while (x < 9)

 {

 System.out.println("x = " + x + " , counter = " +

counter);

 x++;

 }

};

 d. int x;

for (counter = -5; counter < 6; counter = counter + 2)

{

 System.out.println("x = " + x + " , counter = " +

 counter);

 x = 1;

 while (x < 9)

 {

 System.out.println("x = " + x + " , counter = " +

 counter);

CRC_C6547_CH005.indd 261CRC_C6547_CH005.indd 261 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

262 ■ Java Programming Fundamentals

 x++;

 }

};

 e. int x = 1;

int counter = 8;

for (counter = -5; counter < 6; counter = counter + 2)

{

 System.out.println("x = " + x + " , counter = " +

counter);

 for (x = 2; x > -5; x--)

 {

 System.out.println("x = " + x + " , counter = " +

counter);

 }

};

 f. int x = 1;

int counter = 8;

for (counter = -5; counter < 6; counter++)

{

 System.out.println("x = " + x + " , counter = " +

 counter);

 for (x = 2; x > -5; x--)

 {

 if (counter == x) continue;

 System.out.println("x = " + x + " , counter = " +

counter);

 }

};

 g. int x = 1;

int counter = 8;

for (counter = -5; counter < 6; counter++)

{

 System.out.println("x = " + x + " , counter = " +

 counter);

 for (x = 2; x > -5; x--)

 {

 if (counter == x) break;

 System.out.println("x = " + x + " , counter =

 " + counter);

 }

};

CRC_C6547_CH005.indd 262CRC_C6547_CH005.indd 262 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

The Power of Repetition ■ 263

 9. Calculate the number of iterations involved in each of the following repetition
structures:

 a. for (int counter = 0; counter < 100; counter++)
{

 …
};

 b. for (int counter = -50; counter < 50; counter++)

{

 …
};

 c. for (int counter = 0; counter < 100; counter = counter + 3)
 {

 …
 };

 d. for (int counter = 100; counter > -100; counter = counter - 7)

 {

 …
 };

 e. for (int counter = 1; counter < 100; counter = counter * 2)
 {

 …
 };

 f. for (int counter = 40; counter < 10; counter = counter + 3)
 {

 …
 };

 g. for (int counter = 10; counter < 40; counter = counter--)
 {

 …
 };

PROGRAMMING EXERCISES
 1. Write a program that prompts the user to input a digit. Th e program should then output a

square of that size using the digit. For example, if input is 5, then the output is as follows:

55555

55555

55555

55555

55555

CRC_C6547_CH005.indd 263CRC_C6547_CH005.indd 263 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

264 ■ Java Programming Fundamentals

 2. Write a program that prompts the user to input an odd digit. Th e program should
then output a rhombus of that size using the digit. For example, if input is 5, then the
output is as follows:

5

555

55555

555

5

 3. Write a program that prompts the user to input an odd digit. Th e program should
then output a hollow rhombus of that size using the digit. For example, if input is 5,
then the output is as follows:

5

5 5

5 5

5 5

5

 4. Write a program to check the divisibility of an integer by 3. Your program must
make use of the fact that an integer is divisible by 3 if and only if the sum of its digits
is divisible by 3. You must use this fact repeatedly, till the sum reduces to a single
digit. For example, 123456789 is divisible by 3 if and only if 1 + 2 + 3 + 4 + 5 + 6 +
7 + 8 + 9 = 45 is divisible by 3. Now, 45 is divisible by 3 if and only if 4 + 5 = 9 is
divisible by 3. Observe that 9 is a single digit and is divisible by 3. Th erefore, your
program concludes that 123456789 is divisible by 3.

 5. Write a program to check the divisibility of an integer by 11. Your program must
make use of the fact that an integer is divisible by 11 if and only if the diff erence of the
sum of odd digits and the sum of even digits is divisible by 11. You must use this fact
repeatedly, till the sum reduces to a single digit. For example, 123456789 is divisible
by 11 if and only if (1 + 3 + 5 + 7 + 9) − (2 + 4 + 6 + 8) = 25 − 20 = 5 is divisible
by 11. Now 5 is a single digit other than 0 and therefore the program concludes that
123456789 is not divisible by 11.

 6. Write a program to create a tip table. Th e table has fi ve columns. First column has dollar
values 5, 10, 15, 20, 25, 30, and so on and the largest multiple of 5 is determined through
the user input. Next four columns contain tips at 10, 15, 20, and 25%, respectively.

 7. Heartland Cars of America keeps the record of each sold car in a fi le. Once a car is
sold, the model of the car, year of the car, cost basis, and sale price are entered into a
fi le. At the end of each month, the fi le is processed to obtain the monthly sales volume
and the profi t made. Write a program to accomplish these tasks.

 8. Heartland Cars of America sells three categories of cars: new, pre-owned, and used.
A car is considered pre-owned if it is relatively new and in fairly good condition.
Otherwise, it is classifi ed as used. Th e cost basis does not include the sales commis-
sion. Th e sales commission is 10% of profi t for the new, 15% for the pre-owned, and

CRC_C6547_CH005.indd 264CRC_C6547_CH005.indd 264 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

The Power of Repetition ■ 265

20% for the used cars. Once a car is sold, category, the model of the car, year of the
car, cost basis, and sale price are entered into a fi le. At the end of each month, the
fi le is processed to obtain the monthly sales volume and the net profi t made (aft er
the sales commission) in each of the three categories. Design four classes, NewCar,
PreOwnedCar, UsedCar, and ReportGenerator, to accomplish the task.

 9. Physician’s Clinic Inc. tracks its earnings on a weekly basis. Th ere are four diff erent
revenue streams: patient consultation, patient procedure, and patient lab. Th e net
earning in each of these categories is estimated to be 90, 80, and 60%, respectively.
Physician’s Clinic Inc. keeps an entry for each patient service as follows: Th e fi rst
 letter C, P, or L indicates the type of service performed. Next are the last four digits of
social security number of the patient followed by the amount charged by Physician’s
Clinic Inc. Write a program to generate a weekly report that indicates the revenue
from each of the three streams as well as the total revenue.

 10. Create a digital dice with six values 1, 2, 3, 4, 5, and 6. A dice is said to be fair if no face
turns up more than 10% of any other face. Write a program to check whether or not
your digital dice is fair. As an optional challenge, design your program so that there
is a class Dice that has a method roll and a class Experiment that has a method
isFair. Th ere is a third class that allows you to input the number of rolls you would
like to perform before you test the fairness.

 11. Write a program to compute ex, using the following power series up to a given preci-
sion. Th e power series expansion of ex = 1 + x/1! + x2/2! + x3/3! + x4/4! + … .

 12. Write a program to compute sin(x), using the following power series up to a given preci-
sion. Th e power series expansion of sin(x) = −x/1! + x3/3! − x5/5! + x7/7! − … .

 13. Design and implement an object-oriented Java program that can convert a string to cor-
responding telephone number. If it is an uppercase letter or a lower case letter, the pro-
gram will substitute it with the corresponding digit. If it is already a digit, no substitution
is done. Th us, “GOODCAR”, “gooDCar”, and “go6DC2r” will be translated to 4663227.

 14. Write a program that prompts the user to input a digit. Th e program should then
output a square of that size using the digit as shown in the examples. Example 1: If
the input is 5, then the output is
55555

53335

53135

53335

55555

 Example 2: If the input is 6, then the output is

666666

644446

642246

642246

666666

CRC_C6547_CH005.indd 265CRC_C6547_CH005.indd 265 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

266 ■ Java Programming Fundamentals

ANSWERS TO SELF-CHECK
 1. sequence, selection, repetition
 2. repetition
 3. import java.io.*;
 4. Scanner scannedInfo
 = new Scanner(new File("C:\\testData.txt"));

 5. False
 6. 123
 7. import java.io.*;
 8. PrintWriter output
 = new PrintWriter(new FileWriter("C:\\info.txt"));

 9. False
 10. True
 11. True
 12. True
 13. count = 2;
 while (count < 100)

 {

 //statements

 count = count + 2;

 }

 14. count = 99;

 while (count > 40)

 {

 //statements

 count = count - 11;

 }

 15. for (count = 2; count < 100; count = count + 2)
{

 //statements

 }

 16. for (count = 99; count > 40; count = count - 11)
 {

 //statements

 }

 17. 100
 18. 80

CRC_C6547_CH005.indd 266CRC_C6547_CH005.indd 266 8/27/2008 4:35:58 PM8/27/2008 4:35:58 PM

Apago PDF Enhancer

267

C H A P T E R 6

Methods and Constructors

In this chapter you learn

Object-oriented concepts
Service, message passing, static variables and methods, method overloading, and
role of constructors.

Java concepts
Constructors, signature, method overloading, static and nonstatic methods, class
variable, self-reference, and parameter passing.

Programming skills
Use predefi ned methods, and create and use constructors and user-defi ned meth-
ods with any number of parameters.

Methods play a very important role in Java. In Chapter 3, you created new methods. Th is
chapter provides an in-depth look into various aspects of method invocation and method
creation.

CLASSIFICATION OF METHODS
Consider a DVD player. Every DVD player has play button, pause button, and a stop but-
ton. As you press any one of these buttons, you are in fact passing a message to the DVD
player. For instance, as you press the play button, you are sending the message “play” to
the DVD player. Th e DVD player receives the message and it responds by providing the
“play” service. Similarly, as you press the button pause or stop, you are sending a message
to the DVD player requesting a “pause” or “stop” service from the DVD player. Th us, your
interaction with your DVD player can be viewed as you make a request for a certain service
from the DVD player by sending the appropriate message.

•
•

•
•

•
•

CRC_C6547_CH006.indd 267CRC_C6547_CH006.indd 267 10/3/2008 12:54:42 PM10/3/2008 12:54:42 PM

Apago PDF Enhancer

268 ■ Java Programming Fundamentals

Each of these buttons “play,” “pause,” and “stop” is a public method of the class DVD
player. A public method can be invoked as long as you have access to the object involved.
For instance, you can play a DVD on your DVD player. However, you cannot play a DVD
on Mr. Jones DVD player. Th us, to “play” a movie on a DVD player two conditions need
to be satisfi ed:

 1. Th e DVD player must have a button play that is accessible.
 2. Th e DVD player must be accessible.

As a general rule, in order for an object X to invoke a method M (or to request a service)
of another object Y, two conditions need to be met:

 1. Th e method M must be accessible to the requesting object X.
 2. Th e object capable of providing the service (i.e., Y) must be accessible to the requesting

object X.

In the case of a DVD player, you may be aware of the fact that there is an internal motor
that rotates the DVD at a certain speed during the play. Methods associated with the motor
are hidden (have private access) from the user of a DVD player. Th erefore, condition 1
is not met and consequently, even though you own the DVD player and as such have com-
plete access to your DVD player, you cannot control the speed of the motor. All private
methods of a DVD player are hidden from the user of the DVD player and all public
methods of a DVD player are available to the user of the DVD player. Methods you have
encountered so far are public methods. As a general rule, methods are public. Th ere
are two more options of access control: protected and default. Th ese concepts are dis-
cussed in Chapter 7.

From Chapter 3, you know that methods can be classifi ed into two categories: methods
with no parameter and methods with parameters. For example, methods next, nextInt,
nextDouble, and nextLine of the class Scanner has no parameter and method pow of
the class Math has two parameters. Again from Chapter 3, you know that methods can also
be classifi ed into two categories: void methods and value returning methods. Methods such
as next, nextInt, and nextDouble of the class Scanner are value returning methods.
Method println you have invoked many times is a good example of a void method.

Methods can be marked static. Technically speaking, a static method does not
depend on the state of an object. In other words, a static method does not require
an implicit parameter. A method, as you have seen quite oft en, manipulates or retrieves
instance variables of an object. However, there are methods that perform some useful ser-
vice in such a way that there is no need for the existence of an object itself. For instance,
consider the method pow of the class Math. Th e pow method has two parameters of type
double and returns a double value. Th us,

Math.pow(2.0, 5.0);

CRC_C6547_CH006.indd 268CRC_C6547_CH006.indd 268 10/3/2008 12:54:45 PM10/3/2008 12:54:45 PM

Apago PDF Enhancer

Methods and Constructors ■ 269

returns 2.05.0 = 32.0. Note that to compute 2.05.0 there is no need for an object. Th us,
no implicit argument is required. Th erefore, pow method is created as a static method.
In contrast, the method charAt returns a character at a specifi ed position in the implicit
parameter. For example,

str.charAt(4);

returns the fi ft h character of the implicit parameter str. In this case, charAt method
requires a String object. Consequently, charAt needs an implicit parameter and as
such cannot be a static method. Th roughout this book, a static method is always
invoked using the syntax

ClassName.methodName([actualParameters])

and methods that are not marked as static are invoked using the syntax

objectReference.methodName([actualParameters])

Note 6.1 It is a syntax error to invoke a method using the syntax ClassName.meth
odName([actualParameters]) unless it is static. Although Java lets you invoke
a static method using the syntax objectReference.methodName([actual-
Parameters]), throughout this book we use the syntax template ClassName.
methodName([actualParameters]).

To completely understand the concept of static methods, you need to know about
class variables. Th erefore, these ideas are further explored later in this chapter.

Methods can also be classifi ed as predefi ned or user-defi ned. Java language has a large
collection of predefi ned classes to help application program development. All these classes
in turn have predefi ned methods. As an application program developer you can use these
classes and methods in your program. Th e collection of all predefi ned classes is called the
Java application program interface (Java API). Java API is grouped under diff erent units
called packages. If you need to use a predefi ned method, you need to import the class
containing the method. Recall that, you have the option of importing just a class or the
package containing the class. Recall from Chapter 2 that there is a package in Java called
java.lang. Th is package contains classes such as System and String. Almost any
Java program may require this package. Th erefore, the package java.lang is always
imported by the Java compiler. Th us, you need not include a statement such as

import java.lang.*;

in your programs. You can also create your own packages and is discussed later in this
 chapter. Next, you will be introduced to some of the methods in classes Math, Character,
and String of the package java.lang.

CRC_C6547_CH006.indd 269CRC_C6547_CH006.indd 269 10/3/2008 12:54:45 PM10/3/2008 12:54:45 PM

Apago PDF Enhancer

270 ■ Java Programming Fundamentals

Self-Check

 1. In str.charAt(4), str is the , charAt is the , and 4 is
the actual parameter.

 2. A method is invoked using the syntax

ClassName.methodName([actualParameters])

Math Class

In Java, all mathematical functions are static methods of the Math class in the pack-
age java.lang. Table 6.1 summarizes some of the mathematical methods of the class
Math of the package java.lang.

TABLE 6.1 Selected Methods of the Math Class

java.lang.Math

Method Invocation
Argument

Type(s) Return Value
Return

Type Example

Math.abs(x) int Absolute value of
x

int Math.abs(45)
returns 45,long long

float float Math.abs(–45)
returns 45,double double
Math.abs(–2.1)
returns 2.1.

Math.acos(x) double Arc cosine of
angle in the
range 0.0
to π

double Math.acos(0.0)
returns pi/2,
Math.acos(1.0)
returns 0.0.

Math.asin(x) double Arc sine of angle
in the range –
π/2 to π/2

double Math.asin(0.0)
returns 0.0,
Math.asin(1.0)
returns pi/2.

Math.atan(x) double Arc tangent of
angle in the
range –π/2 to
π/2

double Math.atan(-1.0)
returns –pi/4,
Math.atan(1.0)
returns pi/4.

Math.ceil(x) double Numerically
equivalent to
next higher
integer value

double Math.ceil(61.3)
returns 62.0,
Math.ceil(-61.3)
returns –61.0.

Math.cos(x) double Cosine value
of x

double Math.cos(pi/2)
returns 0.0,
Math.cos(0.0)
returns 1.0.

Math.exp(x) double ex; where e is the
Euler’s constant,
approx.
2.7183

double Math.exp(2.0)returns
7.38905609893065,
Math.exp(–1.5)returns
.22313016014842982.

CRC_C6547_CH006.indd 270CRC_C6547_CH006.indd 270 10/3/2008 12:54:45 PM10/3/2008 12:54:45 PM

Apago PDF Enhancer

Methods and Constructors ■ 271

TABLE 6.1 Continued

java.lang.Math

Method Invocation
Argument

Type(s) Return Value
Return

Type Example

Math.floor(x) double Numerically
equivalent to
next lower
integer value

double Math.floor(61.3)
returns 61.0,
Math.floor(-61.3)
returns -62.0.

Math.log(x) double Natural
logarithm
of x

double Math.log(2.0)returns
0.6931471805599453,
Math.log(–1.5)
returns NaN (Not a Number).

Math.max(x,y) int,int Maximum of x
and y

int Math.max(2, 7)
returns 7, long,long long

float,float float Math.max(1.5,-0.7)
returns 1.5.double,

double
double

Math.min(x,y) int,int Minimum of x
and y

int Math.min(2, 7)
returns 2, long,long long

float,float float Math.min(1.5,-0.7)
returns -0.7.double,double double

Math.pow
(x, y)

double,
double

xy double Math.pow(2.0, 5.0)
returns 32.0 ,
Math.pow(16.0, 0.5)
returns 4.0.

Math.random() Random value
between 0.0
and 1.0

double Math.random()returns
0.9786309615836947,
Math.random()returns
0.6752079313199223.

Math.round(x) float Closest value of
return type

int Math.round(2.499)
returns 2.0, double long
Math.round(2.50)
returns 3.0.

Math.
toDegrees(x)

double Degree
equivalent of x
in radians

double Math.toDegrees(1.5)
returns
85.94366926962348.

Math.
toRadians(x)

double Radian
equivalent of x
in degrees

double Math.toRadians(60)
returns pi/3 =
1.0471975511965976

Math.sin(x) double Sine value
of x

double Math.sin(pi/2)
returns 1.0,
Math.sin(0.0)
returns 0.0.

Math.tan(x) double Tangent value
of x

double Math.tan(pi/2)
returns 1.0,
Math.tan(–pi/2)
returns –1.0.

CRC_C6547_CH006.indd 271CRC_C6547_CH006.indd 271 10/3/2008 12:54:45 PM10/3/2008 12:54:45 PM

Apago PDF Enhancer

272 ■ Java Programming Fundamentals

Character Class

Table 6.2 lists some of the methods of the Character class.

String Class

Table 6.3 summarizes the methods of the class String.

TABLE 6.2 Selected Methods of the Character Class

java.lang.Character

Method
Invocation

Argument
Type Return Value

Return
Type Example

Character.
isDigit(ch)

char true if ch is a digit boolean Character.isDigit(‘6’)
returns true

false otherwise Character.isDigit(‘<’)
returns false

Character.
isLetter(ch)

char true if ch is a letter boolean Character.
isLetter(‘J’) returns true

false otherwise Character.isLetter(‘<’)
returns false

Character.
isLetterOr-
Digit (ch)

char true if ch is a letter
or digit

boolean Character.isLetterOr
Digit (‘J’) returns true

false otherwise Character.isLetterOr
Digit (‘<’) returns false

Character.
isLower-
Case(ch)

char true if ch is a
lowercase letter.

boolean Character.isLowerCase
(‘j’) returns true

false otherwise Character.isLowerCase
(‘J’) returns false

Character.
isSpace-
Char(ch)

char true if ch is the
space character.

boolean Character.isSpaceChar
(‘ ‘) returns true

false otherwise Character.isSpaceChar
(‘J’) returns false

Character.
isUpper-
Case(ch)

char true if ch is an
uppercase letter.

boolean Character.isUpperCase
(‘J’) returns true

false otherwise Character.isUpperCase
(‘<’) returns false

Character.
isWhite-
space(ch)

char true if ch is a
whitespace. Th at is,
space, new line, tab or
return character

boolean Character.isUpperCase
(‘\t’) returns true

false otherwise Character.isUpperCase
(‘<’) returns false

Character.
toLower-
Case(ch)

char Th e corresponding
lowercase letter if ch
is a letter.

char Character.toLowerCase
(‘J’) returns ‘j’,

ch otherwise Character.isLowerCase
(‘<’) returns ‘<’

Character.
toUpper-
Case(ch)

char Th e corresponding
uppercase letter if ch
is a letter.

char Character.toUpperCase
(‘j’) returns ‘J’

ch otherwise Character.toUpperCase
(‘<’) returns ‘<’

CRC_C6547_CH006.indd 272CRC_C6547_CH006.indd 272 10/3/2008 12:54:46 PM10/3/2008 12:54:46 PM

A
p
a
g
o

P
D
F

E
n
h
a
n
c
e
r

M
ethods and C

onstructors ■ 273
TABLE 6.3 Selected Methods of the String Class

java.lang.String

Method Invocation
Argument

Type(s) Return Value
Return

Type Example

str1. int Character at index position char strOne.charAt(3) returns ‘t’,

charAt(index) First character is at index position 0 strOne.charAt(4) returns ‘ ’,
strOne.charAt(5) returns ‘a’.

str1.compareTo
(str2)

String A negative integer if str1 is less than str2 int strOne.compareTo(“What’s”) returns negative integer,
A positive integer if str1 is greater than str2 strOne.compareTo(“WHat”) returns positive integer.
Zero if str1 and str2 are equal

str1. String true if str1 and str2 are equal
false otherwise

boolean strOne.equals(strTwo) returns false.
equals
(str2)

str1.
indexOf(chs)

char
String

Index of the fi rst occurrence of chs in the
String Str1

int strOne.indexOf(‘a’) returns 2,
strOne.indexOf(‘b’) returns –1.
strOne.indexOf(“wor”) returns 17,–1 if chs not in String str1 int

str1.
indexOf(chs, st)

char, int Index of the fi rst occurrence of chs starting
from index st

int strOne.indexOf(‘a’,5) returns 5,
strOne.indexOf(‘a’,6) returns –1.
strOne.indexOf(“wo”, 10) returns 17,String, int –1 if chs not in String str1 from index st int

str1.length() Length or number of characters int strOne.length() returns 23.

str1.replace
(ch, newCh)

char, char A new String in which every occurrence of
ch in str1 is replaced by newCh

String strTwo.replace(‘R’, ‘T’) returns “Tunner”,
strTwo.replace(‘n’, ‘d’) returns “Rudder”.

str1.substring
(st, end)

int, int A new string String at st and ending at end-1 of str1 String strOne.substring(0,4) returns “What”.
strOne.substring(1,4) returns “hat”.

str1.toLower-
Case()

A new String in which all uppercase letters of str1 are
changed to corresponding lowercase letter

String strTwo.toLowerCase() returns “runner”.

str1.toUpper-
Case()

A new String in which all lowercase letters of str1 are
changed to corresponding uppercase letter

String strTwo.toUpperCase() returns “RUNNER”.

str1.trim() A new String in which all leading and trailing
whitespace characters are removed from str1

String strThree.trim() returns “J \ta \tv \ta”.

Assume the following declarations and assignments:
String str1, str2;
String strOne = “What a wonderful world!”;
String strTwo = “Runner”, strThree = “\t J \ta \tv \ta\r”;

C
R

C
_C

6547_C
H

006.indd 273
C

R
C

_C
6547_C

H
006.indd 273

10/3/2008 12:54:46 P
M

10/3/2008 12:54:46 P
M

Apago PDF Enhancer

274 ■ Java Programming Fundamentals

METHOD INVOCATION
All the methods introduced in this chapter are public, value returning, and predefi ned.
Th erefore, possible classifi cations are based on whether methods have parameters and are
static. Th us, the methods can be classifi ed as follows:

 1. static methods that have no parameters.
 2. static methods that have parameters.
 3. Methods that are not marked as static and have no parameters.
 4. Methods that are not marked as static and have parameters.

Observe that all these methods are value returning methods. Th erefore, method can be
invoked as part of an expression on the right-hand side of an assignment statement or can
be invoked inside an output statement such as System.out.print or System.out.
println. Recall that if the value returned by a method is not stored in a variable, it will
be lost.

Examples 6.1 through 6.4 will in turn illustrate the invocation of methods belonging to
the above four categories. Th ese examples are presented in this context to serve two diff er-
ent purposes:

 1. To illustrate methods belonging to the above four categories
 2. To learn some of the predefi ned methods

Example 6.1

Th is example illustrates the invocation of a static method with no parameter.
Th e method random fi ts the bill. Th e method random returns a double value
between 0 and 1. It is possible to use random method to generate a random number
in any given range of values. For example, if you want to generate random values
between 1 and 10, all you need to do is use the following expression:

1 + (int) (10 * Math.random())

Recall that random being a static method with no parameters, the method is
invoked as Math.random(). Th e syntax template for invoking a static method
without parameter is

ClassName.methodName()

Th e expression 10 * Math.random() is a double value between 0 and 10.
Due to truncation, (int) (10 * Math.random()) is an int value between
0 and 9. Th us 1 + (int) (10 * Math.random()) is an int value between 1
and 10.

CRC_C6547_CH006.indd 274CRC_C6547_CH006.indd 274 10/3/2008 12:54:46 PM10/3/2008 12:54:46 PM

Apago PDF Enhancer

Methods and Constructors ■ 275

/**

 Illustration of static methods, no parameters

*/

public class StaticNoArguments

{

 public static void main (String[] args)

 {

 double nextValue;

 int number;

 int count;

 //method is part of an expression

 number = 1 + (int) (10 * Math.random());

 System.out.println(number +

 "random numbers are as follows\n");

 for (count = 1; count < number + 1; count++)

 {

 //method in an assignment statement

 nextValue = Math.random();

 System.out.println(nextValue);

 }

 //method in output statement

 System.out.println("\nNext random number is"

 + Math.random());

 }

}

Output

10 random numbers are as follows:

0.9289086794637926

0.3623358184620312

0.18000213009794308

0.9325904849148384

0.009517094960630912

0.3019646502636888

0.4163229469179339

0.22850462123014104

0.6847559715976199

0.7281384727994286

Next random number is 0.5995440858527961

CRC_C6547_CH006.indd 275CRC_C6547_CH006.indd 275 10/3/2008 12:54:46 PM10/3/2008 12:54:46 PM

Apago PDF Enhancer

276 ■ Java Programming Fundamentals

Example 6.2

Note that the actual parameters in a method invocation can be a literal, variable,
or an expression. Th is example illustrates the invocation of static methods
having parameters. Methods used for illustration are ceil, round, floor,
and pow.

/**

 Illustration of static methods having parameters

*/

public class StaticArguments

{

 public static void main (String[] args)

 {

 double valueFive = 5;

 double value = 17.5;

 double valueThree = 3.0;

 int number;

 //method is part of an expression

 number = 10 * (int) Math.ceil(17.4999);

 System.out.println("Math.ceil(17.4999) times 10 is " +

 number);

 number = 10 * (int) Math.round(17.4999);

 System.out.println("Math.round(17.4999) times 10 is " +

 number);

 number = 10 * (int) Math.floor(17.4999);

 System.out.println("Math.floor(17.4999) times 10 is " +

 number);

 System.out.println();

 //parameter can be a variable

 number = 10 * (int) Math.ceil(value);

 System.out.println("Math.ceil(value) times 10 is " +

 number);

 number = 10 * (int) Math.round(value);

 System.out.println("Math.round(value) times 10 is " +

 number);

 number = 10 * (int) Math.floor(value);

 System.out.println("Math.floor(value) times 10 is " +

 number);

CRC_C6547_CH006.indd 276CRC_C6547_CH006.indd 276 10/3/2008 12:54:46 PM10/3/2008 12:54:46 PM

Apago PDF Enhancer

Methods and Constructors ■ 277

 System.out.println();

 //method in output statement

 System.out.println("Math. ceil(-17.5001) is " +

 Math.ceil(-17.5001));

 System.out.println("Math.round(-17.5001) is " +

 Math.round(-17.5001));

 System.out.println("Math.floor(-17.5001) is " +

 Math.floor(-17.5001));

 System.out.println();

 System.out.println("Math. ceil(-17.5) is " +

Math.ceil(-17.5));

 System.out.println("Math.round(-17.5) is " +

 Math.round(-17.5));

 System.out.println("Math.floor(-17.5) is " +

 Math.floor(-17.5));

 System.out.println();

 //arguments can be literals, expression or variables

 System.out.println("Math.pow(5, valueThree) is " +

 Math.pow(5, valueThree));

 System.out.println("Math.pow(2*2+1, 3) is " +

 Math.pow(2*2+1, 3));

 System.out.println("M ath.pow(valueFive, valueThree) is " +

 Math.pow(valueFive, valueThree));

 }

}

Output

Math.ceil(17.4999) times 10 is 180

Math.round(17.4999) times 10 is 170

Math.floor(17.4999) times 10 is 170

Math.ceil(value) times 10 is 180

Math.round(value) times 10 is 180

Math.floor(value) times 10 is 170

Math.ceil(-17.5001) is -17.0

Math.round(-17.5001) is -18

Math.floor(-17.5001) is -18.0

CRC_C6547_CH006.indd 277CRC_C6547_CH006.indd 277 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

278 ■ Java Programming Fundamentals

Math.ceil(-17.5) is -17.0

Math.round(-17.5) is -17

Math.floor(-17.5) is -18.0

Math.pow(5, valueThree) is 125.0

Math.pow(2*2+1, 3) is 125.0

Math.pow(valueFive, valueThree) is 125.0

Note 6.2
If x is such that 17 ≤ x < 17.5 then

Math.round(x) = 17 and Math.floor(x) = 17.0

If x is such that 17.5 ≤ x ≤ 18 then

Math.round(x) = 18 and Math.ceil(x) = 18.0

If x is such that −18 ≤ x < –17.5 then

Math.round(x)= –18 and Math.floor(x) = –18.0

If x is such that −17.5 ≤ x ≤ −17 then

Math.round(x) = -17 and Math.ceil(x) = –17.0

Example 6.3

Th is example illustrates the invocation of methods that are not marked as static
and have no parameter. Th e methods chosen for the illustration are from the class
String. Recall that the syntax for the invocation of a method that is not marked as
static and without parameters is

 objectReference.methodName()

/**

 Illustration of methods not marked as stati c having no

 parameters

*/

public class NonStaticNoArguments

{

 public static void main (String[] args)

 {

 int number;

 String strOne = "What a wonderful world!";

 String strThree = "\r\t\t\tJ \ta \tv \ta\n\n\t";

 String strFour = "What a wonderful world";

 String str;

 //method is part of an expression

 number = 10 * strOne.length();

 System.out.println("strOne.length() times 10 is " +

 number);

CRC_C6547_CH006.indd 278CRC_C6547_CH006.indd 278 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

Methods and Constructors ■ 279

 number = 10 * strFour.length();

 System.out.println("strFour.length() times 10 is " +

 number);

 System.out.println();

 str = strOne.toLowerCase();

 System.out.println("strOne.toLowerCase() returns " +

 str);

 str = strOne.toUpperCase();

 System.out.println("strOne.toUpperCase() returns " +

 str);

 //method in output statement

 System.out.println("strThree :" + strThree + ":");

 System.out.println("strThree.trim() returns :" +

 strThree.trim()+ ":");

 }

}

Output

strOne.length() times 10 is 230

strFour.length() times 10 is 220

strOne.toLowerCase() returns what a wonderful world!

strOne.toUpperCase() returns WHAT A WONDERFUL WORLD!

 J a v a

 :

strThree.trim() returns :J a v a:

Note 6.3 Th e method trim removes all whitespace characters appearing at the
 beginning and the end of a String. Th us in the above program, strThree.trim()
returns the String "J \ta \tv \ta".

Example 6.4

Th is example illustrates the invocation of methods that are not marked as static
and have parameters. Th e methods chosen for illustration are from the class
String of the package java.lang. Recall that the syntax for the invocation of
a method that is not marked as static and with parameters is

 objectReference.methodName(actualParameters)

/**

 Methods that are not marked stati c and having

 parameters.

CRC_C6547_CH006.indd 279CRC_C6547_CH006.indd 279 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

280 ■ Java Programming Fundamentals

*/

public class NonStaticArguments

{

 public static void main (String[] args)

 {

 char ch;

 int number;

 boolean theSame;

 String strOne = "What a wonderful world!";

 String strFour = "What a wonderful world";

 //method is part of an expression

 ch = strOne.charAt(3);

 System.out.println("strOne.charAt(3) is " + ch);

 number = 10 * strOne.indexOf(‘a’);

 System.out.println("strOne.indexOf(‘a’) times 10 is " +

 number);

 number = 10 * strOne.indexOf(‘a’,6);

 System.out.println("strOne.indexOf(‘a’,6) times 10 is " +

 number);

 System.out.println();

 //parameter can be a variable

 number = strOne.compareTo(strFour);

 System.out.println("strOne.compareTo(strFour) is " +

number);

 number = strFour.compareTo(strOne);

 System.out.println("strFour.compareTo(strOn e) is " +

 number);

 theSame = strOne.equals(strFour);

 System.out.println("strOne.equals(strFo ur) is " +

 theSame);

 theSame = strOne.equals(strOne);

 System.out.println("strOne.equals(str One) is " +

 theSame);

 System.out.println();

 //method in output statement

 System.out.println("strOne.substring(0,4) returns " +

strOne.substring(0,4));

 System.out.println("strOne.substring(5,16) returns " +

 strOne.substring(5,16));

 }

}

CRC_C6547_CH006.indd 280CRC_C6547_CH006.indd 280 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

Methods and Constructors ■ 281

Output

strOne.charAt(3) is t

strOne.indexOf(‘a’) times 10 is 20

strOne.indexOf(‘a’,6) times 10 is -10

strOne.compareTo(strFour) is 1

strFour.compareTo(strOne) is -1

strOne.equals(strFour) is false

strOne.equals(strOne) is true

strOne.substring(0,4) returns What

strOne.substring(5,16) returns a wonderful

USER-DEFINED METHODS
Th e user-defi ned methods were fi rst introduced in Chapter 3. In this section, we have a
closer look at user-defi ned public methods. User-defi ned static methods are dis-
cussed later in this chapter. Th erefore, we classify user-defi ned methods based on whether
they have parameters and are value returning. Th us, there are four diff erent cases to con-
sider. Th ey are as follows:

 1. Value returning methods having no parameters
 2. Value returning methods having parameters
 3. void methods having no parameters
 4. void methods having parameters

Chapter 3 explains in detail cases 1 and 3. Further, Chapter 3 also covered cases 2 and
4 with single parameter. Th erefore, in this chapter we discuss the general cases of 2 and 4.
Th e syntax template of a method is as follows:

[accessModifier] [abstract|final][static] return Type methodName

 ([formalParam])

{

 [statements]

}

where the access modifi er is one of the following: public, private, or protected.
You are already familiar with access modifi ers public and private. Th e term
 protected will be explained in Chapter 7. Keywords abstract and final are also
covered in Chapter 7. Th e vertical bar between abstract and final in the syntax
 template indicates that both abstract and final cannot appear simultaneously. Aft er
the method name, all the formal parameters of the method are listed inside a pair of left
and right parentheses.

CRC_C6547_CH006.indd 281CRC_C6547_CH006.indd 281 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

282 ■ Java Programming Fundamentals

Self-Check

 3. Every method must have a return type.
 4. If a method does not return a value, it is a method.

Formal Parameter List

Th e syntax of the formal parameter list is as follows:

dataType1 arg1[, dataType2 arg2, ..., dataTypeN argN]

In the given syntax template, dataType1, ..., dataTypeN can be any primitive
data type or a class name and arg1, ..., argN are identifi ers. Note that in a list of items,
comma is used to separate individual members. Th us in the case of a formal parameter list,
each item consists of a data type followed by an identifi er separated by at least one white-
space character.

Self-Check

 5. In Java, items in a list are separated by .
 6. Every formal parameter must be preceded by its .

Signature of a Method

Th e signature of a method consists of the name of the method along with the list of all
data types in the order they appear in the formal parameter list of the method. Th us, the
signature of a method with the heading

public returnType methodName(dataType1 arg1, ..., dataTypeN argN)

is

methodName(dataType1, ..., dataTypeN).

Example 6.5

Consider the method compareTo of the String class. Th e heading of the method
is

public int compareTo(String str)

Th e formal parameter list is String str and the signature of the method is
compareTo(String).

Example 6.6

Consider the method indexOf of the String class. Note that there are four diff erent
methods in the String class, all having the name indexOf. Th e headings, formal
parameter list, and signatures of all four indexOf methods are shown in Table 6.4.

CRC_C6547_CH006.indd 282CRC_C6547_CH006.indd 282 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

Methods and Constructors ■ 283

In Java, method name need not be unique. Th ere can be many methods all having
the same name. You may be wondering if there are many methods all having the
same name how would the compiler decide which method to execute? Th e answer
is quite simple. It is not the name that distinguishes one method from the other.
Rather, it is the signature of the method that distinguishes one method from the
other. Th erefore, it is possible to have many methods with identical names so long
as no two of them have identical signatures. Observe that there are four diff erent
methods in the class String with the name indexOf. However, no two of them
have identical signature. Th e programming language feature that allows the pro-
grammer to create more than one method within a class having the same name is
known as method overloading. Java allows method overloading.

Method overloading. Th e programming language feature that allows the program-
mer to create more than one method within a class having the same name.

 Th e following example further illustrates method overloading.

Example 6.7

Consider the method abs of Math class. Th ere are four diff erent methods, all having
the same name abs. Th e headings, formal parameter list, and signatures of all four
abs methods are shown in Table 6.5. Observe that the signatures are all diff erent.

Note 6.4 Let classOne and classTwo be two classes. Let xyz be a method in
both classes. Th is is not an example of method overloading.

Note 6.5 It is a compilation error to have two methods within a class having iden-
tical signatures.

Note 6.6 Return type is not part of the signature.

TABLE 6.4 Method Overloading and indexOf

Method Heading Formal Parameter List Signature

public int indexOf(char ch) char ch indexOf(char)
public int indexOf(String
str)

String str indexOf(String)

public int indexOf(char ch,
int s)

char ch, int s indexOf(char,int)

public int indexOf(String
str, int s)

String str, int s indexOf(String, int)

TABLE 6.5 Method Overloading and abs

Method Heading Formal Parameter List Signature

public int abs(int x) int x abs(int)
public long abs(long x) long x abs(long)
public float abs(float x) float x abs(float)
public double abs(double x) double x abs(double)

CRC_C6547_CH006.indd 283CRC_C6547_CH006.indd 283 10/3/2008 12:54:47 PM10/3/2008 12:54:47 PM

Apago PDF Enhancer

284 ■ Java Programming Fundamentals

During the method invocation, the data type of each of the actual parame-
ters must agree with corresponding formal parameter. For example, if the actual
parameter is int and the corresponding formal parameter is double, the com-
piler will not issue any error message. In this case, int is implicitly promoted to
double; and thus the actual parameter matches with the formal parameter. As an
example, consider the method pow of the Math class. Th e method pow has two
 parameters, both double. However, Math.pow(5, 6) will not result in a compi-
lation error. Due to implicit conversion, Math.pow(5, 6) is equivalent to Math.
pow(5.0, 6.0).

In contrast, consider the method invocation strOne.charAt(3) shown in
 Example 6.4. Th e method charAt has one formal parameter of type int. Th ere-
fore, strOne.charAt(3.0) results in type mismatch. Note that in this case, the
actual parameter is of the type double and the formal parameter is of the type int.
Further, a double value cannot be implicitly promoted to an int value. Th erefore,
strOne.charAt(3.0) results in a compilation error.

Self-Check

 7. True or false: Return type is part of the signature of a method.
 8. True or false: Signature of two overloaded methods cannot be identical.

Parameter Passing

Parameter passing mechanism in Java is known as call by value. Th at is, at the beginning
of a method invocation, actual parameters are copied to formal parameters. A change in
the formal parameter value during method execution has no impact on the value of the
actual parameter. In fact, one could think that at the beginning of a method invocation,
each actual parameter is assigned to the corresponding formal parameter. For this reason,
let us review the concepts involved in an assignment statement.

Consider an assignment statement of the form

leftHandSide = RightHandSide;

where leftHandSide and RightHandSide are variables. Th en we have the following:

Assignment is a onetime operation. During its execution, the value at rightHand
Side is copied to leftHandSide.
Any change in the value of leftHandSide has no impact on rightHandSide
and vice versa.

Assume the following declarations:

int number, index;

double valueOne, valueTwo;

boolean allDone, found;

•

•

CRC_C6547_CH006.indd 284CRC_C6547_CH006.indd 284 10/3/2008 12:54:48 PM10/3/2008 12:54:48 PM

Apago PDF Enhancer

Methods and Constructors ■ 285

Now, consider the following assignment statement:

number = index; // Right hand side is a variable of the same type.

In this case, number and index are of the same data type. Th erefore, the current value
of index is copied to the memory location labeled as number. Th e behavior of the follow-
ing assignment statements is similar:

number = 71; // Right hand side is a literal of the same type.

number = 2*index + 1 // Right hand side is an expression

 // of the same type.

Now consider the following assignment statement:

valueOne = number; // Right hand side is a variable of diff erent

 type.

 // However, there exists implicit conv ersion

 rules.

Observe that data type of number is int and that of valueOne is double. Since an
int can be implicitly promoted to double, the above statement will not result in a com-
pilation error. Similar comments apply to the following statements:

valueOne = 71; // Right hand side is a literal.

valueOne = 2 * index + 1; // Right hand side is an expression.

However, the following assignment statement will result in a compilation error:

number = valueOne; // Right hand side is a variable of different

 type.

 // There exists no implicit conversion rules.

In this case, double value on right-hand side cannot be implicitly converted into int,
the data type of the variable on the left -hand side. Similar comments apply to the following
assignment statements:

number = 71.234; // Right hand side is a literal.

index = 2 * valueOne + 1.3; // Right hand side is an expression.

Further, recall that the compilation error can be avoided by explicit conversion using
cast operators. Th us, the following statements are legal in Java:

number = (int) valueOne;

number = (int) 71.234;

number = (int) (2 * valueOne + 1.3);

CRC_C6547_CH006.indd 285CRC_C6547_CH006.indd 285 10/3/2008 12:54:48 PM10/3/2008 12:54:48 PM

Apago PDF Enhancer

286 ■ Java Programming Fundamentals

Note that there exists no implicit or explicit rule to convert a boolean value to an int
value. As a consequence, the following three assignment statements cannot be modifi ed to
make them legal:

number = allDone; // Right hand side is a variable

number = true; // Right hand side is a literal

number = allDone && found; // Right hand side is an expression

In the case of parameter passing, actual parameters play the role similar to the expres-
sion on the right-hand side of an assignment statement, and formal parameters play the
role of the variable on the left -hand side of an assignment statement. In particular, actual
parameter can be a variable, a literal, or an expression. Th e formal parameter must be a
variable.

For instance, consider the method indexOf. Th e heading of the method is

public int indexOf(char ch, int start)

Note that the fi rst actual parameter has to be a char and the second actual parameter
has to be an int. However, you can also use other data types as long as there is an implicit
conversion rule. For example, you can invoke the method with fi rst actual parameter a
char and second actual parameter a short data type. As the method is invoked, the
actual parameters are “assigned” to corresponding formal parameters. Th us, if indexOf
is invoked as

strOne.indexOf(‘a’, 7);

where strOne is String reference variable. Th e fi rst formal parameter ch gets the
value ‘a’ and the second formal parameter start gets the value 7.

Example 6.8

Th is example illustrates call by value of primitive data types. Th ere are two classes
in this example. Th e class ParameterPassing has one method setAll
Data with two formal parameters of type int and double, respectively. Th e
class ParameterPassingIllustration invokes setAllData method with
actual parameters year and amount, respectively.

/**

 Method illustrating parameter passing; primitive data types

*/

public class ParameterPassing

{

 private int number;

 private double value;

CRC_C6547_CH006.indd 286CRC_C6547_CH006.indd 286 10/3/2008 12:54:48 PM10/3/2008 12:54:48 PM

Apago PDF Enhancer

Methods and Constructors ■ 287

 public double setAllData(int num, double val)

 {

 System.out.println("\t\t\tInside setAllData method");

 System.out.println("("\t\t\tFirst formal pa rameter is

 " + num);

 System.out.println("("\t\t\tSecond formal parameter

is " + val);

 number = num;

 value = val;

 num = 2 * num + 1;

 System.out.println("\n");

 System.out.println("("\t\t\tFirst formal parameter is

 " + num);

 System.out.println("("\t\t\tSecond for mal parameter

is " + val);

 System.out.println("("\t\t\tExit : setAllData

 method");

 return num * val;

 }

}

import java.util.Scanner;

/**

 Application illustrating parameter passing; primitive

 data types

*/

public class ParameterPassingIllustration

{

 public static void main (String[] args)

 {

 double amount = 12.34;

 int years = 10;

 double valueReturned;

 ParameterPassing ppRef = new ParameterPassing();

 System.out.println("Just before entering setAllData

 method");

CRC_C6547_CH006.indd 287CRC_C6547_CH006.indd 287 10/3/2008 12:54:48 PM10/3/2008 12:54:48 PM

Apago PDF Enhancer

288 ■ Java Programming Fundamentals

 System.out.println("First actual paramete r is " +

 amount);

 System.out.println("Second actual parame ter is " +

 years);

 System.out.println("\n");

 valueReturned = ppRef.setAllData(years, amount);

 System.out.println("\n");

 System.out.println("Just after exiting s etAllData

 method");

 System.out.println("First actual paramete r is " +

 amount);

 System.out.println("Second actual parameter is " +

 years);

 System.out.println("The val ue returned is " +

 valueReturned);

 }
}

Output

Just before entering setAllData method

First actual parameter is 12.34

Second actual parameter is 10

 Inside setAllData method

 First formal parameter is 10

 Second formal parameter is 12.34

 First formal parameter is 21

 Second formal parameter is 12.34

 Exit : setAllData method

Just after exiting setAllData method

First actual parameter is 12.34

Second actual parameter is 10

The value returned is 259.14

Th e actual parameters just before the method invocation can be visualized as
follows:

years 10 amount 12.34

CRC_C6547_CH006.indd 288CRC_C6547_CH006.indd 288 10/3/2008 12:54:48 PM10/3/2008 12:54:48 PM

Apago PDF Enhancer

Methods and Constructors ■ 289

During the method invocation, the actual parameter values are copied to formal
parameters.

years 10 amount 12.34

num 10 val 12.34

From the output statements observe that value of years and amount are copied
to formal parameters num and val, respectively. Further, num changes to 21 inside
the method. Th is situation can be visualized as follows:

years 10 amount 12.34

num 21 val 12.34

However, the variable years is unaff ected. Upon completion of the method,
 variables num and val do not exist any more; however, instance variables years
and amount do exist. Th us, we have the following:

years 10 amount 12.34

Th e call by value of a reference variable is exactly the same. Th e value of an
object reference in the actual parameter is copied to formal parameter during the
parameter passing. Note that the object reference alone is copied and the object
is not copied. Th erefore during the method execution, both the actual parameter
and the formal parameter refer to the same object. Consequently, any changes
made in the object by the method are persistent. Th ese ideas are illustrated in the
next example.

Example 6.9

/**

 Method illustrating parameter passing; object reference

*/

public class ParameterPassingObjectRef

{

 private int number;

 private double value;

 public int replace(ParameterPassingObjectRef pa ram, int

 factor)

CRC_C6547_CH006.indd 289CRC_C6547_CH006.indd 289 10/3/2008 12:54:48 PM10/3/2008 12:54:48 PM

Apago PDF Enhancer

290 ■ Java Programming Fundamentals

 {

 System.out.println("\t\t\tInside replace method");

 System.out.println("\t\t\tObject informa tion: " +

 param);

 System.out.println("\t\t\tThe factor valu e is " +

 factor);

 param.number = factor;

 factor = 4;

 System.out.println("\n");

 System.out.println("\t\t\tObject informati on: " +

 param);

 System.out.println("\t\t\tThe factor v al ue is " +

 factor);

 System.out.println("\t\t\tExit : replace method");

 return factor;

 }

 public void setData(int inNumber, double inValue)

 {

 number = inNumber;

 value = inValue;

 }

 public String toString()

 {

 String str;

 str = "(number = " + number + ", value = " +

 value + ")";

 return str;

 }

}

import java.util.Scanner;

/**

 Application illustrating parameter passing; object reference

*/

public class ParameterPassingObjectRefIllustration

CRC_C6547_CH006.indd 290CRC_C6547_CH006.indd 290 10/3/2008 12:54:49 PM10/3/2008 12:54:49 PM

Apago PDF Enhancer

Methods and Constructors ■ 291

{

 public static void main (String[] args)

 {

 int multiplier = 10;

 double valueReturned;

 ParameterPassingObjectRef objectOne = new

 ParameterPassingObjectRef();

 ParameterPassingObjectRef objectTwo = new

 ParameterPassingObjectRef();

 objectOne.setData(10, 25.5);

 objectTwo.setData(30, 45.8);

 System.out.println("Just before enteri ng replace

 method");

 System.out.println("Object info rmation: " +

 objectTwo);

 System.out.println("The factor value is " + multiplier);

 System.out.println("\n");

 valueReturned = objectOne.repl ace(objectTwo,

 multiplier);

 System.out.println("\n");

 System.out.println("Just after exiting replace method");

 System.out.println("Object information: " + objectTwo);

 System.out.println("The factor value is " +

 multiplier);

 }

}

Output

Just before entering replace method

Object information: (number = 30, value = 45.8)

The factor value is 10

 Inside replace method

 Object information: (number = 30, value = 45.8)

 The factor value is 10

 Object information: (number = 10, value = 45.8)

 The factor value is 4

 Exit : replace method

 Just after exiting replace method

 Object information: (number = 10, value = 45.8)

 The factor value is 10

CRC_C6547_CH006.indd 291CRC_C6547_CH006.indd 291 10/3/2008 12:54:49 PM10/3/2008 12:54:49 PM

Apago PDF Enhancer

292 ■ Java Programming Fundamentals

In the above example, ParameterPassingObjectRef class has two attri-
butes: number and value. Th us, aft er executing the following two statements

ParameterPassingObjectRef objectTwo = new

 ParameterPassingObjectRef();

objectTwo.setData(30, 45.8);

we have the following:

30

45.8

number

value

objectTwo

Th e actual parameters before the replace method invocation can be visualized
as follows:

30

45.8

number

value

objectTwo multiplier 10

Passing objectTwo as an actual parameter results in copying the object reference
in the variable objectTwo into the actual parameter param. Th us, both variables
objectTwo and param contain the same object reference. Th e value contained in
the primitive data type multiplier is copied to factor. Th us during method
invocation, we have the following situation:

30

45.8

number

value

objectTwo multiplier 10

param factor 10

Th e execution of the statement

param.number = factor;

in the method replace results in the following change:

10

45.8

number

value

objectTwo multiplier 10

param factor 10

CRC_C6547_CH006.indd 292CRC_C6547_CH006.indd 292 10/3/2008 12:54:49 PM10/3/2008 12:54:49 PM

Apago PDF Enhancer

Methods and Constructors ■ 293

Th e statement

factor = 4;

changes factor to 4. Note that multiplier still contains 10.

10

45.8

number

value

objectTwo multiplier 10

param factor 4

Once the method execution is completed, both variables param and factor do
not exist and thus we have the following:

10

45.8

number

value

objectTwo multiplier 10

Th is shows that changes made to the instance variables of an object is persistent
aft er the method invocation.

Th e following example illustrates the fact that since in Java, parameter passing is
call by value, while it is possible to make persistent changes to the instance variables
of an object during method execution, it is impossible to make persistent changes
to the reference variable itself. In particular, observe that in the Example 6.8, no
attempt was made to change the value of the actual parameter objectTwo.

Example 6.10

/**

 Method; parameter passing; object reference don’t change

*/

public class ParameterPassingRef

{

 private int number;

 private double value;

 public int reAssign(ParameterPassingRef pRef)

 {

 System.out.println("\t\t\tInside reAssign method");

 System.out.println("\t\t\tObject information: " + pRef);

 pRef = new ParameterPassingRef();

 pRef.setData(100, 124.8);

CRC_C6547_CH006.indd 293CRC_C6547_CH006.indd 293 10/3/2008 12:54:49 PM10/3/2008 12:54:49 PM

Apago PDF Enhancer

294 ■ Java Programming Fundamentals

 System.out.println("\n");

 System.out.println("\t\t\tObject information: " + pRef);

 System.out.println("\t\t\tExit : reAssign method");

 return 1;

 }

 public void setData(int inNumber, double inValue)

 {

 number = inNumber;

 value = inValue;

 }

 public String toString()

 {

 String str;

 str = "(number = " + number + ", value = " +

 value + ")";

 return str;

 }

}

/**

 Application; parameter passing; object referenc e don’t

 change

*/

public class ParameterPassingRefIllustration

{

 public static void main (String[] args)

 {

 int multiplier = 10;

 double valueReturned;

 ParameterPassingRef objectOne = new

 ParameterPassingRef();

 ParameterPassingRef objectTwo = new

 ParameterPassingRef();

 objectOne.setData(8, 12.2);

CRC_C6547_CH006.indd 294CRC_C6547_CH006.indd 294 10/3/2008 12:54:50 PM10/3/2008 12:54:50 PM

Apago PDF Enhancer

Methods and Constructors ■ 295

 objectTwo.setData(15, 37.8);

 System.out.println("Just before enterin g reAssign

 method");

 System.out.println("Object information: " + objectTwo);

 System.out.println("\n");

 valueReturned = objectOne.reAssign(objectTwo);

 System.out.println("\n");

 System.out.println("Just after exitin g reAssign

 method");

 System.out.println("Object information: " + objectTwo);

 }

}

Output

Just before entering reAssign method

Object information: (number = 15, value = 37.8)

 Inside reAssign method

 Object information: (number = 15, value = 37.8)

 Object information: (number = 100, value = 124.8)

 Exit : reAssign method

Just after exiting reAssign method

Object information: (number = 15, value = 37.8)

Th e actual parameter objectTwo before the reAssign method invocation
can be visualized as follows:

15

37.8

number

value

objectTwo

Now, passing objectTwo as an actual parameter results in copying the object
reference in the variable objectTwo into the actual parameter pRef. Th us, both

CRC_C6547_CH006.indd 295CRC_C6547_CH006.indd 295 10/3/2008 12:54:50 PM10/3/2008 12:54:50 PM

Apago PDF Enhancer

296 ■ Java Programming Fundamentals

objectTwo and pRef variables contain the same object reference. Th us at the
beginning of the method invocation, we have the following situation:

15

37.8

number

value

objectTwo

pRef

Now, the statement

pRef = new ParameterPassingRef();

creates a new object and its address is placed in the variable pRef.

15

37.8

number

value

objectTwo

number

value

pRef

Further, the statement

pRef.setData(100, 124.8);

has the following eff ect. Note that aft er method invocation, a change in the refer-
ence variable pRef has no impact on the reference variable objectTwo.

15

37.8

number

value

objectTwo

100

124.8

number

value

pRef

CRC_C6547_CH006.indd 296CRC_C6547_CH006.indd 296 10/3/2008 12:54:50 PM10/3/2008 12:54:50 PM

Apago PDF Enhancer

Methods and Constructors ■ 297

Upon completion of the method, the reference variable pRef does not exist and the
reference variable objectTwo remains unaff ected by the method invocation.

15

37.8

number

value

objectTwo

Self-Check

 9. Th e parameter passing in Java is known as .
 10. If the formal parameter is a primitive data type, during method invocation,

the of the actual parameter is copied to the formal parameter.

CONSTRUCTORS
Constructors you have seen so far are default constructors. Java automatically provides a
default constructor if no constructor is included as part of the class defi nition; hence the
name, default constructor. Note that the default constructor has no formal parameters.

In Java, constructor overloading is allowed. Th us, a class may have many constructors
with diff erent signatures. Further, once at least one constructor is included as part of the
class defi nition, the compiler does not provide the default constructor. A constructor with
no parameters is quite useful in various situations as you will see in subsequent chapters.
Th erefore, it is quite important that once a constructor is included as part of the class defi -
nition, there must be a constructor with no parameters as well.

Th e following facts on constructors are worth mentioning:

Th e name of the constructor is the same as the class name.
A constructor must not have a return type.
A constructor can have an optional return statement.
It is legal to overload a constructor. Th e compiler selects a constructor based on the
signature (as is the case of a method).
Th e constructors are invoked using the new operator.
Th e Java compiler, by default, will provide a constructor if no constructor is included
in the class defi nition. Such a constructor is known as default constructor. Th e default
constructor has no parameters.
Once a constructor is included as part of the class defi nition, Java compiler does
not provide the default constructor. Th erefore, it is quite important that once a
 constructor is included as part of the class defi nition, there must be a constructor
with no parameter as well.
One of the intended purposes of a constructor is the proper initialization of the
 attributes of a class.

•
•
•
•

•
•

•

•

CRC_C6547_CH006.indd 297CRC_C6547_CH006.indd 297 10/3/2008 12:54:50 PM10/3/2008 12:54:50 PM

Apago PDF Enhancer

298 ■ Java Programming Fundamentals

Th e syntax template of a constructor is as follows:

accessModifier ClassName([formalParameterList])

{

 [statements]

}

Th e next example illustrates the overloading of constructors.

Example 6.11

In this example, we revisit the class Stock introduced in Chapter 3. Th e class has
three attributes:

private int numberOfShares;

private String tickerSymbol;

private double dividend;

It is a good programming practice to start with a constructor with no parameters.
In this case, you have to decide on possible default values for each of the attributes.
In this example, number of shares can be initialized to 0. Th e ticker symbol may
be initialized to the string "[UA]" to indicate that the ticker symbol is unassigned.
Th e attribute dividend can be initialized to 0.0. Th us, we have the following
constructor:

/**

 Constructor with no parameters

*/

public Stock()

{

 numberOfShares = 0;

 tickerSymbol = "[UA]";

 dividend = 0.0;

}

Next we create three more constructors as follows:.

/**

 Constructor that initializes all attributes

*/

public Stock(int inNumberOfShares,S tring inTickerSymbol,

 double inDividend)

{

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

CRC_C6547_CH006.indd 298CRC_C6547_CH006.indd 298 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

Methods and Constructors ■ 299

 dividend = inDividend;

}

/**

 Constructor; initializes no. of shares and ticker

 symbol

*/

public Stock(int inNumberOfShares,String inTickerSymbol)

{

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

 dividend = 0.0;

}

/**

 Constructor that initializes ticker symbol, no. of

 shares

*/

public Stock(String inTickerSymbol, int inNumberOfShares)

{

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

 dividend = 0.0;

}

Th us, there are four constructors in the class Stock with the following signatures:

Stock()

Stock(int, String, double)

Stock(int, String)

Stock(String, int)

Th e complete program listing along with the output follows. Additional println
statements are included in constructors that appear in the complete listing for the
purpose of identifying the constructor invoked in each of the cases.

Consider the following statement:

stockFour = new Stock("JKL", 400);

Note that in this case, the constructor with signature Stock(String, int)
matches Stock("JKL", 400) and the corresponding code is being executed. Th e
other constructor invocations can be understood in a similar manner.

class Stock

{

 private int numberOfShares;

CRC_C6547_CH006.indd 299CRC_C6547_CH006.indd 299 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

300 ■ Java Programming Fundamentals

 private String tickerSymbol;

 private double dividend;

 /**

 Constructor with no parameters

 */

 public Stock()

 {

 System.out.println("signature of t he constructor

 invoked is");

 System.out.println("\t\tStock()");

 numberOfShares = 0;

 tickerSymbol = "[UA]";

 dividend = 0.0;

 }

 /**

 Constructor that initializes all attributes

 */

 public Stock(int inNumberOfShares,String

 inTickerSymbol,double inDividend)

 {

 System.out.println("signature of the constructor

 invoked is");

 System.out.println("\t\tStock(i nt, String,

 double)");

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

 dividend = inDividend;

 }

 /**

 Constructor; initializes no. of shares an d ticker

 symbol

 */

 public Stock(int inNumberOfShares,String inTickerSymbol)

 {

 System.out.println("signature of t h e constructor

 invoked is");

 System.out.println("\t\tStock(int, String)");

 numberOfShares = inNumberOfShares;

CRC_C6547_CH006.indd 300CRC_C6547_CH006.indd 300 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

Methods and Constructors ■ 301

 tickerSymbol = inTickerSymbol;

 dividend = 0.0;

 }

 /**

 Constructor that initializes ticker symbol, no. of

 shares

 */

 public Stock(String inTickerSymbol, int inNumberOfShares)

 {

 System.out.println("signature of t he constructor

 invoked is");

 System.out.println("\t\tStock(String, int)");

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

 dividend = 0.0;

 }

 /**

 Computes and returns yearly dividend

 @return the yearly dividend

 */

 public double yearlyDividend()

 {

 double totalDividend;

 totalDividend = numberOfShares * dividend;

 return totalDividend;

 }

 /**

 Accessor method for the number of shares

 @return the number of shares

 */

 public int getNumberOfShares()

 {

 return numberOfShares;

 }

 /**

 Accessor method for the ticker symbol

 @return the ticker symbol

 */

 public String getTickerSymbol()

CRC_C6547_CH006.indd 301CRC_C6547_CH006.indd 301 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

302 ■ Java Programming Fundamentals

 {

 return tickerSymbol;

 }

 /**

 Accessor method for the dividend

 @return the dividend

 */

 public double getDividend()

 {

 return dividend;

 }

 /**

 Mutator method to set the number of shares

 @param inNumberOfShares the number of shares

 */

 public void setNumberOfShares(int inNumberOfShares)

 {

 numberOfShares = inNumberOfShares;

 }

 /**

 Mutator method to set the ticker symbol

 @param inTickerSymbol the ticker symbol

 */

 public void setTickerSymbol(String inTickerSymbol)

 {

 tickerSymbol = inTickerSymbol;

 }

 /**

 Mutator method to set the dividend

 @param inDividend the dividend

 */

 public void setDividend(double inDividend)

 {

 dividend = inDividend;

 }

 /**

 The toString method

CRC_C6547_CH006.indd 302CRC_C6547_CH006.indd 302 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

Methods and Constructors ■ 303

 @return number of shares and ticker symbol

 */

 public String toString()

 {

 String str;

 str = numberOfShares + " " + tickerSymbol;

 return str;

 }

}

/**

 Application program to test constructors of Stock class

*/

public class StockTesting

{

 public static void main (String[] args)

 {

 Stock stockOne;

 Stock stockTwo;

 Stock stockThree;

 Stock stockFour;

 //Invoke the constructor with no parameters

 System.out.println("Constructor : Stock()");

 stockOne = new Stock();

 System.out.println(stockOne);

 System.out.println("\n");

 //Invoke the constructor with int, String, double

 System.out.println

 ("Constructor : Stock(200,\"ABC\", 1.60)");

 stockTwo = new Stock(200, "ABC", 1.60);

 System.out.println(stockTwo);

 System.out.println("\n");

 //Invoke the constructor with int, String

 System.out.println

 ("Constructor : Stock(300, \"XYZ\", 1.60)");

 stockThree = new Stock(300, "XYZ");

 System.out.println(stockThree);

 System.out.println("\n");

CRC_C6547_CH006.indd 303CRC_C6547_CH006.indd 303 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

304 ■ Java Programming Fundamentals

 //Invoke the constructor with int, String, double

 System.out.println("Constructor : Stock(\"JKL\", 400)");

 stockFour = new Stock("JKL", 400);

 System.out.println(stockFour);

 System.out.println("\n");

 }

}

Output

Constructor : Stock()

signature of the constructor invoked is

 Stock()

0 [UA] 0.0

Constructor : Stock(200, "ABC", 1.60)

signature of the constructor invoked is

 Stock(int, String, double)

200 ABC 1.6

Constructor : Stock(300, "XYZ", 1.60)

signature of the constructor invoked is

 Stock(int, String)

300 XYZ 0.0

Constructor : Stock("JKL", 400)

signature of the constructor invoked is

 Stock(String, int)

400 JKL 0.0

Example 6.12

Recall that a constructor can have return statement optionally. Th us, the follow-
ing two constructors of the class Stock are semantically equivalent:

 public Stock(int inNumberOfShares,String inTickerSymbol,

 double inDividend)

 {

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

CRC_C6547_CH006.indd 304CRC_C6547_CH006.indd 304 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

Methods and Constructors ■ 305

 dividend = inDividend;

 }

 //constructor with explicit return statement

 public Stock(int inNumberOfShares,String inTickerSymbol,

 double inDividend)

 {

 numberOfShares = inNumberOfShares;

 tickerSymbol = inTickerSymbol;

 dividend = inDividend;

 return;

 }

Self-Check

 11. True or false: A class can have only one constructor with no formal parameters.
 12. Th e name of the constructor is the same as the .

Copy Constructor

Th ere is one special type of constructor that is worth discussing in this context. A copy
constructor is a constructor that creates a copy of an existing object. Th us, a copy construc-
tor has one formal parameter that is a reference variable of the class type. As in the case of
other constructors, a copy constructor also creates a new object. Further, the newly created
object is an exact replica of the object referenced by the formal parameter.

Consider the following:

ClassName inObject, copyObject;

where ClassName is the name of a class. Assume that inObject has been instantiated.
Th at is, inObject references an object of the class ClassName. Now a Java statement of
the form

copyObject = new ClassName(inObject);

creates a new object of the class ClassName and instantiates copyObject. Further,
objects referenced by variables inObject, copyObject are diff erent, whereas their cor-
responding instance variables have identical values.

Th e syntax template of a copy constructor is

public ClassName(ClassName obj)

{

 [statements]

}

Note 6.7 Java has a clone method that is quite diffi cult to implement for a beginner.
Th erefore, this book has intentionally avoided using the clone method.

CRC_C6547_CH006.indd 305CRC_C6547_CH006.indd 305 10/3/2008 12:54:51 PM10/3/2008 12:54:51 PM

Apago PDF Enhancer

306 ■ Java Programming Fundamentals

Example 6.13

In this example, we continue with the class Stock. Th e copy constructor of the
Stock class can be written as follows:

public Stock(Stock obj)

{

 numberOfShares = obj.numberOfShares;

 //primitive data type; copy value

 tickerSymbol = new String(obj.tickerSymbol);

 //object reference; use copy constructor

 dividend = obj.dividend;

 //primitive data type; copy value

}

Note that numberOfShares and dividend are primitive data types.
Th erefore, assignment statements can copy data from the formal parameter to
the new object. However, if the attribute is an object reference as in the case of
tickerSymbol, a copy constructor of the appropriate class (in this example,
String) must be invoked.

Assuming the following statements

Stock stockOne, stockTwo;

stockOne = new Stock(200, "ABC", 1.60);

the situation at this point can be shown as follows:

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

CRC_C6547_CH006.indd 306CRC_C6547_CH006.indd 306 10/3/2008 12:54:52 PM10/3/2008 12:54:52 PM

Apago PDF Enhancer

Methods and Constructors ■ 307

Th e invocation of the copy constructor in the statement

stockTwo = new Stock(stockOne);

results in creating a new stock object as shown in the following fi gure.

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

200

1.6

numberOfShares

tickerSymbol

dividend

ABC

However, if the copy constructor was defi ned as follows:

public Stock(Stock obj)

{

 numberOfShares = obj.numberOfShares;

 tickerSymbol = obj.tickerSymbol;

 dividend = obj.dividend;

}

Th e result would have been quite diff erent. Note that both stackOne.ticker
Symbol and stackTwo.tickerSymbol reference the same String object.

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

200

1.6

numberOfShares

tickerSymbol

dividend

CRC_C6547_CH006.indd 307CRC_C6547_CH006.indd 307 10/3/2008 12:54:52 PM10/3/2008 12:54:52 PM

Apago PDF Enhancer

308 ■ Java Programming Fundamentals

Self-Check

 13. True or false: A class can have many copy constructors.
 14. Th e copy constructor has formal parameter(s).

Self-Reference

Consider the copy constructor presented in the previous subsection. A copy constructor
creates a new object and initializes the newly created object using another object of the
same class. For instance,

numberOfShares = obj.numberOfShares;

assigns attribute numberOfShares of the parameter obj to the attribute numberOf
Shares of the newly created object. Th e above statement is equivalent to the following:

this.numberOfShares = obj.numberOfShares;

During the program execution, if the copy constructor is invoked as

stockOne = new stock(stockTwo);

then this contains the reference of the implicit parameter stockOne and the formal
parameter obj contains the reference of explicit parameter stockTwo. Th us, this
is a reference variable maintained by the compiler. As a programmer, you can access it;
 however, you cannot change it. Th e reference variable this is quite commonly known as
the self-reference.

Example 6.14

Th e copy constructor of the previous subsection can be written as follows:

public Stock(Stock obj)

{

 this.numberOfShares = obj.numberOfShares;

 this.tickerSymbol = new String(obj.tickerSymbol);

 this.dividend = obj.dividend;

}

In the case of a method that is not marked as static, the self-reference this
contains the reference of the implicit parameter. Th us, for example, the following
method of the Stock class

public void setTickerSymbol(String inTickerSymbol)

{

 tickerSymbol = inTickerSymbol;

}

CRC_C6547_CH006.indd 308CRC_C6547_CH006.indd 308 10/3/2008 12:54:52 PM10/3/2008 12:54:52 PM

Apago PDF Enhancer

Methods and Constructors ■ 309

can also be written as follows:

public void setTickerSymbol(String inTickerSymbol)

{

 this.tickerSymbol = inTickerSymbol;

}

Self-Check

 15. Th e self-reference this contains the reference of the parameter.
 16. During the method invocation myStock.setTickerSymbol("ABC"), the

self-reference this contains the reference of .

Advanced Topic 6.1: Common Methods

In this section we present two quite useful common methods: copy and equals.

copy Method

An assignment operator copies the reference variable only. For example, if StockOne and
StockTwo are two reference variables of the type Stock, the assignment statement

StockTwo = StockOne;

does not create another copy of the object referenced by StockOne. Rather, the refer-
ence variable StockTwo references the object referenced by StockOne. This type of
copying is known as shallow copying. Quite often you may want to copy each attribute
of StockOne to corresponding attribute of StockTwo. Such a copying is known
as deep copying. The purpose of the copy method is to provide deep copying of the
explicit argument to the implicit argument. For example, if stockOne and Stock-
Two are as shown

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

300

4.2

numberOfShares

tickerSymbol

dividend

XYZ

CRC_C6547_CH006.indd 309CRC_C6547_CH006.indd 309 10/3/2008 12:54:52 PM10/3/2008 12:54:52 PM

Apago PDF Enhancer

310 ■ Java Programming Fundamentals

then the assignment statement

StockTwo = StockOne;

or shallow copying has the following eff ect

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

300

4.2

numberOfShares

tickerSymbol

dividend

XYZ

Unused object

whereas deep copying has the following eff ect

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

200

1.6

numberOfShares

tickerSymbol

dividend

XYZ

ABC

Unused String object

Newly created String object

Ideally, we would even like deep copy String "ABC" onto String "XYZ". However,
Java does not have a deep copy method in the String class. Th erefore, we are forced to
use the copy constructor.

Table 6.6 summarizes the diff erences between a copy constructor and the copy method.
Th e general syntax of the copy method is

public void copy(ClassName obj)

{

 [statements]

}

CRC_C6547_CH006.indd 310CRC_C6547_CH006.indd 310 10/3/2008 12:54:53 PM10/3/2008 12:54:53 PM

Apago PDF Enhancer

Methods and Constructors ■ 311

and the copy method is invoked similar to other void methods. Th us if objectOne and
objectTwo are two references of the type ClassName, the following statement

objectOne.copy(objectTwo);

copies objectTwo to objectOne. Note that there is no need to copy objectTwo to
objectOne if both of them are already referencing the same object. Th erefore, fi rst you
need to compare the references themselves. Observe that inside the method copy, the
object reference objectTwo is available in the reference variable obj and the object
reference of the implicit parameter objectOne is available in the self-reference this.
Th erefore, to compare the references objectOne to objectTwo, we need to compare
this and obj inside the copy method. Th us we have the following:

if (this != obj)

{

 //perform copy.

}

Th e following example provides the copy method for the Stock class.

Example 6.15

Th e copy method of the Stock class can be written as follows:

/**

 Copy method

*/

public void copy(Stock obj)

{

 if (this != obj)

 {

 numberOfShares = obj.numberOfShares;

 // primitive data type, copy value

TABLE 6.6 Copy Constructor versus Copy Method

Copy Constructor Copy Method

A new object is created No new object is created

Th e name, as in the case of any other
constructor, is the same as the name
of the class

Th e name, as in the case of any other method, is not the
same as the name of the class. Th roughout this book we
use the name copy

Th ere is no return type specifi cation Return type is void

Invoked using the new operator Invoked as any other void method

Th e heading has the following syntax: Th e heading has the following syntax:

public ClassName
(ClassName obj)

public void methodName(ClassName obj)
In this book, we use copy as the method name

CRC_C6547_CH006.indd 311CRC_C6547_CH006.indd 311 10/3/2008 12:54:53 PM10/3/2008 12:54:53 PM

Apago PDF Enhancer

312 ■ Java Programming Fundamentals

 tickerSymbol = new String(obj.tickerSymbol);

 //object reference,

 //use copy method if available

 //otherwise use copy constructor

 dividend = obj.dividend;

 //primitive data type, copy value

 }

}

Note that numberOfShares and dividend are primitive data types. Th ere-
fore, assignment statements are suffi cient. However, if the attribute is an object
reference as in the case of tickerSymbol, a copy method (if available) or a
copy constructor of the appropriate class (in this example, String) must be
invoked.

Consider the following statements:

Stock stockOne, stockTwo;

stockOne = new Stock(200, "ABC", 1.60);

stockTwo = new Stock(300, "XYZ", 4.20);

Th e situation at this point can be visualized as follows:

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

300

4.2

numberOfShares

tickerSymbol

dividend

XYZ

Th e invocation of the copy constructor in the following statement

stockTwo = new Stock(stockOne);

CRC_C6547_CH006.indd 312CRC_C6547_CH006.indd 312 10/3/2008 12:54:53 PM10/3/2008 12:54:53 PM

Apago PDF Enhancer

Methods and Constructors ■ 313

results in creating a new Stock object and leaving previously allocated memory of
the object referenced by stockTwo as unused, as shown in the following fi gure:

200

1.6

numberOfShares

tickerSymbol

dividend

ABC

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

300

4.2

numberOfShares

tickerSymbol

dividend

XYZ

Unused object

Newly created object

However, invoking the copy method as follows:

stockTwo.copy(stockOne);

results in the following:

stockTwo

stockOne 200

1.6

numberOfShares

tickerSymbol

dividend

ABC

200

1.6

numberOfShares

tickerSymbol

dividend

XYZ

ABC

Unused String object

Newly created String object

Note 6.8 A slightly different variation of the copy method is addressed in
Exercise 10e.

equals Method

Th e equals method can be explained through the following pseudo code:

if (two objects have identical instance variable values)

 return true;

CRC_C6547_CH006.indd 313CRC_C6547_CH006.indd 313 10/3/2008 12:54:53 PM10/3/2008 12:54:53 PM

Apago PDF Enhancer

314 ■ Java Programming Fundamentals

else

 return false;

The syntax template of the equals method is

public boolean equals(ClassName obj)

{

 [statements]

}

Observe that if stockOne and stockTwo are two objects of the class Stock and
match is a boolean variable then the equals method is invoked as follows:

match = stockOne.equals(stockTwo);

If stockOne and stockTwo references are identical, then they both refer the same
object and there is no need to compare individual instance variables. Th us, we have the
following:

if (this != obj)

{

 //compare individual attributes

}

As in the case of copy constructor, you need to treat attributes diff erently based
on whether or not they are of primitive data types. In the case of primitive data types,
 attributes can be compared using == operator. However, reference variables need to be
compared using equals method of the appropriate class.

Example 6.16

Th e equals method of the Stock class can be written as follows:

public boolean equals(Stock obj)

{

 boolean theSame = true;

 if (this != obj)

{

 theSame

 = theSame && (numberOfShares == obj.

 numberOfShares);

 theSame

 = theSame && (tickerSymbol.equals(obj.

 tickerSymbol));

CRC_C6547_CH006.indd 314CRC_C6547_CH006.indd 314 10/3/2008 12:54:54 PM10/3/2008 12:54:54 PM

Apago PDF Enhancer

Methods and Constructors ■ 315

 theSame = theSame && (dividend == obj.dividend);

}

 return theSame;

}

Recall that numberOfShares and dividend are primitive data types. Th us ==
operator is used to compare data values for equality. Since tickerSymbol is a
reference variable, the method equals of the corresponding class (in this example,
String) is used to compare data values for equality.

Consider the following segment of code:

Stock stockOne;

Stock stockTwo;

stockOne = new Stock(200, "ABC", 1.60);

stockTwo = new Stock(stockOne);

In this case, we have the following:

stockOne.equals(stockTwo);

returns true and

(stockOne == stockTwo)

returns false.

You can test both copy constructor and the equals method using the following
application. Note that you need to add both copy constructor and equals method
to the class Stock.

public class StockTestingTwo

{

 public static void main (String[] args)

 {

 boolean tempBool;

 Stock stockOne;

 Stock stockTwo;

 //Invoke the constructor with int, String, double

 stockOne = new Stock(200, "ABC", 1.60);

 System.out.println("The stockOne is " + stockOne);

 System.out.println("\n");

CRC_C6547_CH006.indd 315CRC_C6547_CH006.indd 315 10/3/2008 12:54:54 PM10/3/2008 12:54:54 PM

Apago PDF Enhancer

316 ■ Java Programming Fundamentals

 //Invoke the copy constructor with stockOne

 System.out.println

 ("Copy Constructor: Stock(stockOne)");

 stockTwo = new Stock(stockOne);

 System.out.println("The stockTwo is " + stockTwo);

 System.out.println("\n");

 //Invoke the equals method

 System.out.print("stockOne.equals(stockTwo) returns");

 tempBool = stockOne.equals(stockTwo);

 System.out.println(tempBool);

 System.out.println("\n");

 //Invoke the == operator

 System.out.print("(stockOne == stockTwo) is");

 tempBool = (stockOne == stockTwo);

 System.out.println(tempBool);

 System.out.println("\n");

 }

}

Output

The stockOne is 200 ABC 1.6

Copy Constructor : Stock(stockOne)

The stockTwo is 200 ABC 1.6

stockOne.equals(stockTwo) returns true

(stockOne == stockTwo) is false

Note 6.9 A slightly diff erent variation of the equals method is addressed in
Exercise 11e.

Advanced Topic 6.2: Finalizer and Garbage Collection

In Java, there is a method for performing the fi nal cleaning up before the object goes out
of scope. By cleaning up, what we really mean is releasing the resources held by the class.
Th e most common resource is memory used by the object. Each class can have only one

CRC_C6547_CH006.indd 316CRC_C6547_CH006.indd 316 10/3/2008 12:54:54 PM10/3/2008 12:54:54 PM

Apago PDF Enhancer

Methods and Constructors ■ 317

fi nalizer and its syntax template is as follows:

public void finalize()

{

 [statements]

}

Note that unlike the constructor, fi nalizer is a void method and the name of the fi nal-
izer is finalize. It is a common practice among Java programmers not to include the
fi nalizer in the class defi nition. Instead, Java programmers rely on the garbage collection
service provided by Java.

Th ere is a simple way to mark an object as “garbage” or not useful, and make a request
to the system to perform the necessary memory reclaiming. To release the memory used by
an object, all that is required is to assign the keyword null to all reference variables that
reference the object. As long as at least one variable references an object, the object is not
released. In Java, null is a keyword.

Periodically, Java system reclaims all memory used by objects no longer referenced,
through a system method gc. You can make a request for immediate garbage collection by
invoking the gc method in your program. Th e syntax for invoking gc is

System.gc();

Example 6.17

Assume the following statements:

Stock stockOne; //stockOne is a reference variable

stockOne = new Stock(); //a new Stock object is created

...

stockOne = null; //The object referenced by stockOne

 //is marked as garbage.

System.gc() //Garbage collection method is

 //explicitly requested.

Example 6.18

Assume the following statements:

Stock stockOne;

Stock stockTwo;

stockOne = new Stock(); // a new Stock object is created

...

stockTwo = stockOne

CRC_C6547_CH006.indd 317CRC_C6547_CH006.indd 317 10/3/2008 12:54:54 PM10/3/2008 12:54:54 PM

Apago PDF Enhancer

318 ■ Java Programming Fundamentals

stockOne = null; // The object referenced by stockOne

 // is marked as garbage.

Th e situation at this point can be visualized as follows:

stockTwo

stockOne null

0

[UA]

0.0

numberOfShares

tickerSymbol

dividend

Since stockTwo references the object previously referenced by stockOne, the
object will not be reclaimed by the system garbage collection method gc.

Advanced Topic 6.3: Class Variable

Recall that each object has its own copy of instance variables. However, there are many sit-
uations where it is worthwhile to have an attribute common to all instances of a class. For
example, all humans have 23 chromosomes. Th is information is common to all humans
unlike fi rst name, last name that are instance specifi c. An attribute that is shared by all
instances is called a class variable.

Th ese are some of the facts on class variable:

A class variable is shared by all instances of the class.
A class variable exists even if there is no instance of the class ever created using a new
operator.
A class variable is initialized along with its declaration.
A class variable can be modifi ed inside the constructor.
A class variable is marked static. Th erefore, a class variable is also known as
static variable or static fi eld.

Example 6.19

For certain application, it is worth knowing the average salary of all employ-
ees. Such information is class specifi c and is not instance specifi c. So there is no

•
•

•
•
•

CRC_C6547_CH006.indd 318CRC_C6547_CH006.indd 318 10/3/2008 12:54:54 PM10/3/2008 12:54:54 PM

Apago PDF Enhancer

Methods and Constructors ■ 319

need to assign an attribute for each employee. It makes perfect sense to keep an
attribute for the entire class. Th us, we have the following attributes for the class
Employee:

private static double averageSalary = 1265.43;

private String firstName;

private char middleInitial;

private String lastName;

private double salary;

Assume that Employee class has a constructor with the following header:

public Employee(String fName, char mIni, String lName, double

 sal)

that creates an instance of Employee and assigns fName, mIni, lName, and
sal as firstName, middleInitial, lastName, and salary, respectively.
Note that even before creating any object of the class Employee, the class variable
averageSalary exists and is initialized to 1265.43.

averageSalary
Employee

1265.43

Consider the following declarations:

Employee empOne;

Employee empTwo;

Th ese declarations create two reference variables of type Employee.

empTwo

empOne

averageSalary
Employee

1265.43

Aft er executing the statement

empOne = new Employee("Chris", ‘R’, "Cox", 2468.57)

CRC_C6547_CH006.indd 319CRC_C6547_CH006.indd 319 10/3/2008 12:54:55 PM10/3/2008 12:54:55 PM

Apago PDF Enhancer

320 ■ Java Programming Fundamentals

we have the following:

empTwo

empOne

averageSalary
Employee

1265.43

R

2468.57

firstName

middleInitial

lastName

salary

Chris

Cox

Note that the constructor has not allocated any memory location for the class
variable averageSalary. Similarly, an assignment statement that assigns an
object reference to another object reference has no impact on the class variable
averageSalary either. Th us, aft er executing the assignment statement

empTwo = empOne;

the situation can be visualized as follows:

empTwo

empOne

averageSalary
Employee

1265.43

R

2468.57

firstName

middleInitial

lastName

salary

Chris

Cox

Observe that if you execute the following statements:

empOne = null;

empTwo = null;

CRC_C6547_CH006.indd 320CRC_C6547_CH006.indd 320 10/3/2008 12:54:55 PM10/3/2008 12:54:55 PM

Apago PDF Enhancer

Methods and Constructors ■ 321

the system will reclaim the memory used by the object. However, memory allocated
to any class variable is not reclaimed.

empTwo

empOne

averageSalary
Employee

1265.43

static Methods

As mentioned before, a static method can be invoked using the class name or using
a reference variable as implicit parameter. Th is is illustrated in Example 6.20. In this
book, except in Example 6.20, we consistently invoke a static method using the class
name.

Th ere are two categories of static methods. Th e fi rst category of static method deals
with static variables. In Java, it is perfectly legal to write a method without marking it
as static that modifi es or accesses a class variable. Further, it is perfectly legal to modify
a class variable within a constructor. Although a static method can only access other
static methods or class variables, there is a defi nite advantage in marking a method
static. In particular, it is possible to access and modify the static attribute even when
there is no instance of the class. Th erefore, throughout this book, any method that modi-
fi es or accesses a static attribute is maintained as a static method. We illustrate a
static method that deals with class attributes in Example 6.20.

Th e second category of static methods is utility methods. Th ey do not depend on
any attribute of the class or an instance of the class. For instance, you have seen the class
Math of the java.language package with a collection of utility methods. All those
 methods are defi ned as static methods and they do not depend on any attribute of the
class or on any object of the class. Consider the method pow of the Math class. Th e method
pow invoked as Math.pow(x, y) returns xy. Th e method does not depend on any other
information explicit or implicit. Th erefore, such methods must be marked static. We
illustrate static method that fall under this category in Example 6.21.

In contrast, consider the computeSalary method you have encountered in Chap-
ter 4. Observe that computeSalary method needs the values of instance variables and
thus an implicit parameter is essential. Th erefore, such a method cannot be marked as
static.

Example 6.20

In this example, we continue with Example 6.19. Note that averageSalary is a
static attribute of the class. Th erefore, we mark both accessor and mutator meth-
ods as static.

CRC_C6547_CH006.indd 321CRC_C6547_CH006.indd 321 10/3/2008 12:54:55 PM10/3/2008 12:54:55 PM

Apago PDF Enhancer

322 ■ Java Programming Fundamentals

public class Employee

{

 private static double averageSalary = 1265.43;

 private String firstName;

 private char middleInitial;

 private String lastName;

 private double salary;

 //constructor

 public Employee(String inFirstName, char inMiddleInitial,

 String inLastName, double inSalary)

 {

 firstName = inFirstName;

 middleInitial = inMiddleInitial;

 lastName = inLastName;

 salary = inSalary;

 }

 public static double getAverageSalary()

 {

 return averageSalary;

 }

 public static void setAverageSalary(double inAverageSalary)

 {

 averageSalary = inAverageSalary;

 }

 //toString method

 public String toString()

 {

 String str;

 str = firstName + " " + middleInitial + "." +

 lastName + " " + salary + "\nAverage Salary is " +

 averageSalary;

 return str;

 }

}

CRC_C6547_CH006.indd 322CRC_C6547_CH006.indd 322 10/3/2008 12:54:55 PM10/3/2008 12:54:55 PM

Apago PDF Enhancer

Methods and Constructors ■ 323

public class EmployeeTesting

{

 public static void main (String[] args)

 {

 Employee empOne;

 System.out.print("Averag e Salary before any objects

 are" + "instantiated is");

 System.out.println(Employee.getAverageSalary());

 empOne = new Employee("Jack", ‘E’, "Smith", 3256.45);

 System.out.print("empOne.getAverageSalary() returns");

 System.out.println(empOne.getAverageSalary());

 System.out.println("empOne is " + empOne);

 Employee.setAverageSalary(2010.78);

 System.out.println("\n\nInvoked:"+

 "Employee.setAverageSalary(2010.78)");

 System.out.print("Employee.getAverageSalary() returns");

 System.out.println(Employee.getAverageSalary());

 System.out.print("empOne.getAverageSalary() returns");

 System.out.println(empOne.getAverageSalary());

 System.out.println("empOne is " + empOne);

 empOne.setAverageSalary(2546.99);

 System.out.println("\n\nInvoked: empOne.

 setAverageSalary(2010.78)");

 System.out.print("Employee.getAverageSalary() returns");

 System.out.println(Employee.getAverageSalary());

 System.out.print("empOne.getAverageSalary() returns");

 System.out.println(empOne.getAverageSalary());

 System.out.println("empOne is " + empOne);

 empOne = null;

 System.out.println("\n\nNo objects of the type

 Employee exists");

 System.out.print("Employee.getAverageSalary() returns");

 System.out.println(Employee.getAverageSalary());

 }

}

CRC_C6547_CH006.indd 323CRC_C6547_CH006.indd 323 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

324 ■ Java Programming Fundamentals

Output

Average Salary before any objects are instantiated is 1265.43

empOne.getAverageSalary() returns 1265.43

empOne is Jack E. Smith 3256.45

Average Salary is 1265.43

Invoked: Employee.setAverageSalary(2010.78)

Employee.getAverageSalary() returns 2010.78

empOne.getAverageSalary() returns 2010.78

empOne is Jack E. Smith 3256.45

Average Salary is 2010.78

Invoked: empOne.setAverageSalary(2010.78)

Employee.getAverageSalary() returns 2546.99

empOne.getAverageSalary() returns 2546.99

empOne is Jack E. Smith 3256.45

Average Salary is 2546.99

No objects of the type Employee exists

Employee.getAverageSalary() returns 2546.99

Example 6.21

In this example, we create a class with a static method and illustrate its usage.
Th e static method returns the greatest common divisor (gcd) of two integers.
Since the gcd depends only on two integers, gcd must be defi ned as a static
method.

Some of you may not remember the gcd and Euclid’s algorithm to compute
gcd. Here is a quick overview. Consider the integers 24 and 30. Th e divisors of 24
are 1, 2, 3, 4, 6, 8, and 12. Similarly, the divisors of 30 are 1, 2, 3, 5, 6, 10, and 15.
Th erefore, 6 is the gcd of 24 and 30.

An algorithm is a specifi c set of instructions to be performed to solve a problem
with the requirement that it terminates for every set of data values that satisfi es all
preconditions. Th ere is a simple algorithm to compute the gcd that appeared in
300 BC in Euclid’s Elements. Probably this algorithm may be the oldest one still in
use. Th e Euclid’s algorithm proceeds as follows. Between 30 and 24, 30 is the larger
one. So divide 30 by 24. Note that it yields a remainder 6. Th e main observation
behind Euclid’s algorithm is the fact that gcd of 30 and 24 is the same as the gcd of

CRC_C6547_CH006.indd 324CRC_C6547_CH006.indd 324 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

Methods and Constructors ■ 325

24 and 6. Th erefore, next you attempt to determine the gcd of 24 and 6. Note that 6
divides 24. Th erefore, remainder is 0. Th us, gcd(30, 24) = gcd(24, 6) = gcd(6, 0). Now,
gcd of 6 and 0 is 6. Th e algorithm terminates by determining 6 as the gcd of 30 and
24. Th ese steps can be formally stated as follows:

Euclid’s Algorithm (version 1)

Step 1: Take larger number as firstNumber;

Step 2: Take smaller number as secondNumber;

Step 3: If secondNumber is zero then

 return firstNumber;

 else

 {

 thirdNumber = firstNumber % secondNumber;

 firstNumber = secondNumber;

 secondNumber = thirdNumber;

 repeat Step 3

 }

From Step 3, it may be observed that you need to repeat certain steps as long as
the secondNumber is not zero. Th erefore, a while loop is required to implement
the algorithm. Eventually, as the secondNumber becomes zero, the firstNumber
is the gcd. Th us, we can rewrite the above algorithm as follows:

Euclid’s Algorithm (version 2)

Input: a, b ; two integers.

Step 1: Preprocessing

 1.1 if (a < 0) then a = -a; // make number positive

 1.2 if (b < 0) then b = -b; // make number positive

Step 2: Initialization

 if (a > b) then

 {

 firstNumber = a; // firstNumber > secondNumber

 secondNumber = b;

 }

 else

 {

 firstNumber = b; // firstNumber > secondNumber

 secondNumber = a;

 }

CRC_C6547_CH006.indd 325CRC_C6547_CH006.indd 325 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

326 ■ Java Programming Fundamentals

Step 3: Find gcd

 while (secondNumber > 0)

 {

 thirdNumber = firstNumber % secondNumber;

 firstNumber = secondNumber;

 secondNumber = thirdNumber;

 }

Step 4: Return gcd

 return firstNumber;

Th e gcd is implemented as a static method of the class Utility.

/**

 A set of common utility static methods

 The list of method(s): gcd

*/

public class Utility

{

 /**

 Computes gcd of two integers

 @param a one of the integers

 @param b the second integer

 @return gcd of a and b

 */

 public static int gcd(int a, int b)

 {

 int firstNumber;

 int secondNumber;

 int thirdNumber;

 if (a < 0)

 a = -a;

 if (b < 0)

 b = -b;

 if (a > b)

 {

 firstNumber = a;

 secondNumber = b;

 }

 else

 {

 firstNumber = b;

 secondNumber = a;

 }

CRC_C6547_CH006.indd 326CRC_C6547_CH006.indd 326 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

Methods and Constructors ■ 327

 while (secondNumber > 0)

 {

 thirdNumber = firstNumber % secondNumber;

 firstNumber = secondNumber;

 secondNumber = thirdNumber;

 }

 return firstNumber;

 }

}

/**

 An application to test the gcd method

*/

public class GcdTesting

{

 public static void main (String[] args)

 {

 int numOne;

 int numTwo;

 int numThree;

 numOne = 91;

 numTwo = 98;

 numThree = Utility.gcd(numOne, numTwo);

 System.out.println("numOne = " + numOne);

 System.out.println("numTwo = " + numTwo);

 System.out.println("numThree = Utility .gcd(numOne,

 numTwo)");

 System.out.println("numThree = " + numThree);

 numTwo = 48;

 numThree = Utility.gcd(74, -numTwo);

 System.out.println("\nnumTwo = " + numTwo);

 System.out.println

 ("numThree = Utility.gcd(74, -numTwo)");

 System.out.println("numThree = " + numThree);

 numOne = -48;

 numThree = Utility.gcd(numOne, 21);

CRC_C6547_CH006.indd 327CRC_C6547_CH006.indd 327 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

328 ■ Java Programming Fundamentals

 System.out.println("\nnumOne = " + numOne);

 System.out.println("numThree = Utility.gcd(numOne, 21)");

 System.out.println("numThree = " + numThree);

 numThree = Utility.gcd(0, 17 + 8);

 System.out.println

 ("\nnumThree = Utility.gcd(0, 17 + 8)");

 System.out.println("numThree = " + numThree);

 numThree = Utility.gcd(-73, 0);

 System.out.println("\nnumThree = Utility.gcd(-73, 0)");

 System.out.println("numThree = " + numThree);

 }

}

Output

numOne = 91

numTwo = 98

numThree = Utility.gcd(numOne, numTwo)

numThree = 7

numTwo = 48

numThree = Utility.gcd(74, -numTwo)

numThree = 2

numOne = -48

numThree = Utility.gcd(numOne, 21)

numThree = 3

numThree = Utility.gcd(0, 17 + 8)

numThree = 25

numThree = Utility.gcd(-73, 0)

numThree = 73

Advanced Topic 6.4: Creating and Using Packages

Th is section explains the creation and usage of user-defi ned classes and packages. Th ere
are two ways to use a class.

Option 1
Th e simplest way is to keep the class you want to use in the same directory as the appli-
cation program. In this case, you need not import the class. In fact you have been using
classes created by you this way.

CRC_C6547_CH006.indd 328CRC_C6547_CH006.indd 328 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

Methods and Constructors ■ 329

Option 2
Th is is the most general option. In this case, you create a package. Once the package is
created, you can import the classes in various applications. However, creating and using a
package involves fi ve distinct steps. Th e formal description of each of these fi ve steps along
with illustrative examples are presented next.

Step 1
In this step you specify the package name you would like to use. For example, the package
name chosen for the package created for this chapter is given the following name:

edu.creighton.cs1.ch06

In this package name, edu.creighton is in fact the author’s domain name
 creighton.edu written backward. Even though you can choose any name, it is a well-
accepted practice among Java programmers to start their package name with domain
name written backward. Next cs1 stands for Java book for CS 1 course, that is, this book
itself and fi nally, ch06 represents chapter 6 of the book. Th is convention allows the author
to group the classes based on book and chapters of the book.

Th e general syntax for specifying the package is as follows:

package packageName;

//class definition

Example 6.22

Th is example illustrates the specifi cation of the package name edu.creighton.
cs1.ch06 in the java fi le Utility.java.

package edu.creighton.cs1.ch06;

public class Utility

{

 public static int gcd(int a, int b)

 {

 int firstNumber;

 int secondNumber;

 int thirdNumber;

 if (a < 0)

 a = -a;

 if (b < 0)

 b = -b;

 if (a > b)

CRC_C6547_CH006.indd 329CRC_C6547_CH006.indd 329 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

330 ■ Java Programming Fundamentals

 {

 firstNumber = a;

 secondNumber = b;

 }

 else

 {

 firstNumber = b;

 secondNumber = a;

 }

 while (secondNumber > 0)

 {

 thirdNumber = firstNumber % secondNumber;

 firstNumber = secondNumber;

 secondNumber = thirdNumber;

 }

 return firstNumber;

 }

}

Step 2
In this step, you will actually create a package and place it in a directory of your choice. In
the author’s computer, the following directory

C:\Program Files\Java\j2sdk1.6.0_02\jre\lib

exists. Assume that we want to put all packages in the following directory:

C:\Program Files\Java\j2sdk1.6.0_02\jre\lib\classes

Th en, you must create the subdirectory classes fi rst. Once the directory is created, you can
create the package using the following command:

javac -d C:\Progra~1\Java\j2sdk1.6.0 _ 02\jre\lib\classes Utility.java

Step 3
Th e purpose of this step is to update the CLASSPATH environment variable. Your
 CLASSPATH must include the following:

.;C:\Progra~1\Java\j2sdk1.6.0_02\jre\lib\classes

Items in the CLASSPATH are separated by semicolons (for windows and colons
for unix). Th e very fi rst period stands for current directory. Th us, the above String
indicates the fact that classes can be found either in the current directory or in
C:\Progra~1\Java\j2sdk1.6.0 _ 02\jre\lib\classes.

CRC_C6547_CH006.indd 330CRC_C6547_CH006.indd 330 10/3/2008 12:54:56 PM10/3/2008 12:54:56 PM

Apago PDF Enhancer

Methods and Constructors ■ 331

Step 4
To use a class in one of the packages created, you must use appropriate import statement.
For instance, to use class Utility of the package edu.creighton.cs1.ch06, you may
use either of the following import statements:

import edu.creighton.cs1.ch06.Utility;

import edu.creighton.cs1.ch06.*;

Step 5
In this step you compile your application specifying location of the package. For instance,
to compile a Java fi le GcdTesting.java you need the following command:

javac -classpath C:\Progra~1\Java\j2sdk1.6.0_02\jre\lib\classes

 GcdTesting.java

Note that the above statement can be replaced by

javac GcdTesting.java

provided, in Step 4, you have the following import statement

import edu.creighton.cs1.ch06.Utility;

that explicitly identifi es the class.

CASE STUDY 6.1: FRACTION CALCULATOR
In this section we present a fraction calculator to illustrate the various concepts presented
in this text book so far. Th e fraction calculator depends on the Fraction class that main-
tains a fraction as a pair of integers with gcd value 1.

Th e fraction calculator program has two menus. Th e top-level menu takes you to either
fi rst or second operand set and display menu. Th e top-level menu also allows you to per-
form basic calculations such as add, subtract, multiply, and divide. Th e second-level menu
allows you to set an operand and display it.

In the case study in Chapter 5, reader is challenged to create the test program. In this
case study, the reader is challenged to read and understand the code written by someone
else. Although you would like to write the code yourself, more oft en than not, you may
be forced to read, understand, and maintain the code written by someone else. Th erefore,
the code in this section is intentionally left with minimum comments. Further, the UML 2
diagrams are also not presented for the same reason. In fact, we do not even provide a
sample run to simulate the real life situation. Of course, an interested reader can easily
perform a test run and learn about the program.

import java.util.Scanner;

/**

 Maintains a fraction as pair of integers

CRC_C6547_CH006.indd 331CRC_C6547_CH006.indd 331 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

332 ■ Java Programming Fundamentals

*/

public class Fraction

{

 private int numer;

 private int denom;

 /**

 Constructor with no arguments; creates a 0

 */

 public Fraction()

 {

 setFraction(0, 1);

 }

 /**

 Constructor that initializes numerator and denominator

 @param numerator

 @param denominator

 */

 public Fraction(int inNumer, int inDenom)

 {

 setFraction(inNumer, inDenom);

 }

 /**

 Constructor; integer to fraction

 @param numerator; denominator is set to 1

 */

 public Fraction(int inNumer)

 {

 setFraction(inNumer);

 }

 /**

 Constructor; real to fraction

 @param a real number

 */

 public Fraction(double inWholeNumber)

 {

 setFraction(inWholeNumber);

 }

CRC_C6547_CH006.indd 332CRC_C6547_CH006.indd 332 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

Methods and Constructors ■ 333

 /**

 Adds implicit and explicit parameters

 @param fraction to be added

 @return the sum of implicit and explicit parameters

 */

 public Fraction add(Fraction inFraction)

 {

 Fraction returnValue = new Fraction(0,1);

 returnValue.numer = numer * inFraction.denom

 + denom * inFraction.numer;

 returnValue.denom = denom * inFraction.denom;

 returnValue.normalize();

 return returnValue;

 }

 /**

 Subtracts explicit parameter from t he implicit

 parameter

 @param fraction to subtract

 @return the difference of implicit a nd explicit

 parameters

 */

 public Fraction sub(Fraction inFraction)

 {

 Fraction returnValue = new Fraction(0,1);

 returnValue.numer = numer * in Fr action.denom - denom *

 inFraction.numer;

 returnValue.denom = denom * inFraction.denom;

 returnValue.normalize();

 return returnValue;

 }

 /**

 Multiplies implicit and explicit parameters

 @param multiplier

 @return the product of implicit and explicit

 parameters

 */

 public Fraction mul(Fraction inFraction)

 {

 Fraction returnValue = new Fraction(0,1);

CRC_C6547_CH006.indd 333CRC_C6547_CH006.indd 333 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

334 ■ Java Programming Fundamentals

 returnValue.numer = numer * inFraction.numer;

 returnValue.denom = denom * inFraction.denom;

 returnValue.normalize();

 return returnValue;

 }

 /**

 Divides implicit parameter by explicit parameter

 @param divisor

 @return implicit divided by explicit parameter

 */

 public Fraction div(Fraction inFraction)

 {

 Fraction returnValue = new Fraction(0, 1);

 returnValue.numer = numer * inFraction.denom;

 returnValue.denom = denom * inFraction.numer;

 returnValue.normalize();

 return returnValue;

 }

 /**

 Computes the additive inverse of t he implicit

 parameter

 */

 public Fraction minus()

 {

 Fraction returnValue = new Fraction(0, 1);

 returnValue.numer = - numer;

 returnValue.denom = denom;

 return returnValue;

 }

 /**

 Computes the multiplicative inverse of t he implicit

 parameter

 */

CRC_C6547_CH006.indd 334CRC_C6547_CH006.indd 334 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

Methods and Constructors ■ 335

 public Fraction inverse()

 {

 Fraction returnValue = new Fraction(0, 1);

 if (numer > 0)

 {

 returnValue.denom = numer;

 returnValue.numer = denom;

 }

 else

 {

 returnValue.denom = - numer;

 returnValue.numer = - denom;

 }

 return returnValue;

 }

 /**

 Checks whether or not the explicit parameter is an

 integer value.

 */

 private boolean isInteger(double inValue)

 {

 if (Math.round(inValue) * 10 == Math.round(10 *

 inValue))

 return true;

 else

 return false;

 }

 /**

 Normalize the implicit parameter

 */

 private void normalize()

 {

 int gcdValue;

 if (denom < 0)

CRC_C6547_CH006.indd 335CRC_C6547_CH006.indd 335 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

336 ■ Java Programming Fundamentals

 {

 numer = -numer;

 denom = -denom;

 }

 gcdValue = Utility.gcd(Math.abs(numer), denom);

 numer = numer/gcdValue;

 denom = denom/gcdValue;

 }

 /**

 Copy method

 */

 public void setFraction(Fraction inFraction)

 {

 numer = inFraction.numer;

 denom = inFraction.denom;

 }

 /**

 Sets both numerator and denominator

 @param numerator

 @param denominator

 */

 public void setFraction(int inNumer, int inDenom)

 {

 int gcdValue;

 numer = inNumer;

 denom = inDenom;

 if (denom == 0)

 denom = 1;

 this.normalize();

 }

 /**

 Sets both numerator; denominator is 1.

 @param numerator an integer

 */

 public void setFraction(int inNumer)

CRC_C6547_CH006.indd 336CRC_C6547_CH006.indd 336 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

Methods and Constructors ■ 337

 {

 numer = inNumer;

 denom = 1;

 }

 /**

 Sets both numerator and denominator

 @param a real value; get the best approximat e fraction

 possible

 */

 public void setFraction(double inWholeNumber)

 {

 double tempNumer;

 int tempDenom;

 tempNumer = inWholeNumber;

 tempDenom = 1;

 while (!isInteger(tempNumer))

 {

 tempNumer = tempNumer * 10;

 tempDenom = tempDenom * 10;

 }

 numer = (int) tempNumer;

 denom = tempDenom;

 this.normalize();

 }

 /**

 Returns the real value

 @return real value obtained by division.

 */

 public double valueOf()

 {

 return numer/denom;

 }

 /**

 Accessor method for numerator

 @return numerator

 */

 public double getNumer()

CRC_C6547_CH006.indd 337CRC_C6547_CH006.indd 337 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

338 ■ Java Programming Fundamentals

 {

 return numer;

 }

 /**

 Accessor method for denominator

 @return denominator

 */

 public double getDenom()

 {

 return denom;

 }

 /**

 toString method for neat printing

 @return string representation

 */

 public String toString()

 {

 String returnStr;

 int wholeNum;

 int tempNumer;

 boolean negative;

 if (numer < 0)

 {

 tempNumer = -numer;

 negative = true;

 }

 else

 {

 tempNumer = numer;

 negative = false;

 }

 wholeNum = tempNumer/denom;

 tempNumer = tempNumer % denom;

 if (negative)

 {

 if (wholeNum == 0)

 tempNumer = -tempNumer;

CRC_C6547_CH006.indd 338CRC_C6547_CH006.indd 338 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

Methods and Constructors ■ 339

 else

 wholeNum = -wholeNum;

 }

 if (tempNumer == 0)

 returnStr = wholeNum + " ";

 else if (wholeNum == 0)

 returnStr = " [" + tempNum er + " / " +

 denom + "]";

 else

 returnStr = wholeNum + "[" + tempNum er + " / " +

denom + "]";

 return returnStr;

 }

}

import java.io.*;

import java.util.*;

//import edu.creighton.cs1.ch06.*;

/**

 Fraction Calculator

*/

public class FractionCalculator

{

 static Scanner scannedInfo = new Scanner(System.in);

 public static void main(String[] args) throws IOException

 {

 Fraction firstOp, secondOp, result;

 firstOp = new Fraction(0,1);

 secondOp = new Fraction(0,1);

 result = new Fraction(0,1);

 int topSelection; //holds top level the selection

CRC_C6547_CH006.indd 339CRC_C6547_CH006.indd 339 10/3/2008 12:54:57 PM10/3/2008 12:54:57 PM

Apago PDF Enhancer

340 ■ Java Programming Fundamentals

 System.out.println("Welcome to Fraction Calculator\n");

 displayTopMenu();

 topSelection = scannedInfo.nextInt();

 while(topSelection != 10)

 {

 switch(topSelection)

 {

 case 0:

 System.out.println("\n\n\ t\t\tDisplay or Set

 1st Operand\n\n");

 setOperand(firstOp,result);

 break;

 case 1:

 System.out.println ("\n\n\t\t\tDisplay or

 Set 2nd Operand\n\n");

 setOperand(secondOp, result);

 break;

 case 2:

 result = firstOp.minus();

 System.out.println("The result is " + result);

 break;

 case 3:

 result = secondOp.minus();

 System.out.println("The result is " + result);

 break;

 case 4:

 result = firstOp.inverse();

 System.out.println("The result is " + result);

 break;

 case 5:

 result = secondOp.inverse();

 System.out.println("The result is " + result);

 break;

 case 6:

 result = firstOp.add(secondOp);

 System.out.println("The result is " + result);

 break;

 case 7:

 result = firstOp.sub(secondOp);

 System.out.println("The result is " + result);

 break;

CRC_C6547_CH006.indd 340CRC_C6547_CH006.indd 340 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

Methods and Constructors ■ 341

 case 8:

 result = firstOp.mul(secondOp);

 System.out.println("The result is " + result);

 break;

 case 9:

 result = firstOp.div(secondOp);

 System.out.println("The result is " + result);

 break;

 case 10:

 System.out.println("Good Bye");

 return;

 default:

 System.out.println("Select a num ber between 0

 and 10");

 }//end switch

 displayTopMenu();

 topSelection = scannedInfo.nextInt();

 }//end while (choice != 10)

 }//end main

 /**

 Displays the top menu

 */

 private static void displayTopMenu()

 {

 System.out.println("\t\t\tThe Main menu");

 System.out.println("Set the operands and specify the

 operation\n");

 System.out.println("Enter 0 to set or displa y the first

 operand");

 System.out.println("Enter 1 to set or display the

 second operand");

 System.out.println("Enter 2 to compute neg ative first

 operand");

 System.out.println("Enter 3 to compute nega tive second

 operand");

 System.out.println("Enter 4 to inverse first operand");

 System.out.println("Enter 5 to invers e the second

 operand");

 System.out.println("Enter 6 add : operand o ne + operand

 two");

CRC_C6547_CH006.indd 341CRC_C6547_CH006.indd 341 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

342 ■ Java Programming Fundamentals

 System.out.println("Enter 7 subtr a ct : operand one -

 operand two");

 System.out.println("Enter 8 multipl y : operand one *

 operand two");

 System.out.println("Enter 9 divi de : operand one /

 operand two");

 System.out.println("Enter 10 to exit");

 }//end displayTopMenu

 /**

 Displays operand display and set menu

 */

 private static void displayOpMenu()

 {

 System.out.println("Operand display and set menu");

 System.out.println("Enter 0 Whole number");

 System.out.println("Enter 1 Numerator, Denominator");

 System.out.println("Enter 2 Decimal value");

 System.out.println("Enter 3 Use the result of last

 operation");

 System.out.println("Enter 4 Display the result of last

 operation");

 System.out.println("Enter 5 Display the operand");

 System.out.println("Enter 6 Exit this menu");

 }//end displayFirstOpMenu

 /**

 Helper method to set an operand

 @param a new fraction

 @param result of the last computation

 */

 private static void setOperand(Fraction operand, Fraction

 lastResult)

 {

 int wholeNumber, numerator, denominator;

 double value;

 int secondLevelSelection;//holds top level the selection

 displayOpMenu();

 secondLevelSelection = scannedInfo.nextInt();

CRC_C6547_CH006.indd 342CRC_C6547_CH006.indd 342 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

Methods and Constructors ■ 343

 while(secondLevelSelection != 6)

 {

 switch(secondLevelSelection)

 {

 case 0:

 System.out.println("Enter the whole number");

 wholeNumber = scannedInfo.nextInt();

 operand.setFraction(wholeNumber);

 return;

 case 1:

 System.out.println("Enter Numerator, Denominator");

 numerator = scannedInfo.nextInt();

 denominator = scannedInfo.nextInt();

 operand.setFraction(numerator,denominator);

 return;

 case 2:

 System.out.println("Enter a decimal value");

 value = scannedInfo.nextDouble();

 operand.setFraction(value);

 return;

 case 3:

 operand.setFraction(lastResult);

 return;

 case 4:

 System.out.println("The last result is " +

 lastResult);

 break;

 case 5:

 System.out.println("The operand is " + operand);

 break;

 case 6:

 return;

 default:

 System.out.println("Select a number between 0

 and 6");

 }//end switch

 displayOpMenu();

 secondLevelSelection = scannedInfo.nextInt();

 }//end while(secondLevelSelection != 5)

 }// end setOperand

}

CRC_C6547_CH006.indd 343CRC_C6547_CH006.indd 343 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

344 ■ Java Programming Fundamentals

REVIEW
 1. In order for an object X to invoke a method (or to request a service) of another object

Y, two conditions need to be met: Th e method must be public; the object Y must be
accessible to the object X.

 2. Methods can be classifi ed into two categories: methods with no parameter and
 methods with parameters.

 3. Methods can be classifi ed into two categories: void methods and value returning
methods.

 4. It is a syntax error to invoke a method using the syntax ClassName.method
Name unless it is static.

 5. Java API is grouped under diff erent units called packages.
 6. Th e signature of a method consists of the name of the method along with the list of

all data types in the order they appear in the formal parameter list of the method.
 7. Th e signature of a method distinguishes one method from the other.
 8. Th e programming language feature that allows the programmer to create more than

one method within a class having the same name is known as method overloading.
Java allows method overloading.

 9. It is a compilation error to have two methods within a class having identical signatures.
 10. Th e return type is not part of the signature.
 11. Parameter passing mechanism in Java is known as call by value. Th at is, at the begin-

ning of a method invocation, actual parameters are copied to formal parameters.
 12. A change in the formal parameter value during method execution has no impact on

the value of the actual parameter.
 13. In the case of parameter passing, actual parameters play the role similar to the expres-

sion on the right-hand side and formal parameters play the role of the variable on the
left -hand side of an assignment statement.

 14. Th e call by value of a reference variable is exactly the same. Th e value of an object
reference in the actual parameter is copied to formal parameter during the parameter
passing. Th us, the object reference alone is copied and any changes made in the object
by the method are persistent.

 15. Th e name of the constructor is the same as the class name.
 16. It is legal to overload a constructor. Th e compiler selects a constructor based on the

signature (as is the case for a method).
 17. Th e Java compiler, by default, will provide a constructor if no constructor is included

in the class defi nition. Such a constructor is known as default constructor. Th e default
constructor has no parameters.

 18. Once a constructor is included as part of the class defi nition, Java compiler does not
provide the default constructor.

CRC_C6547_CH006.indd 344CRC_C6547_CH006.indd 344 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

Methods and Constructors ■ 345

 19. Th e self-reference this is maintained by the compiler. As a programmer, you can
access it; however, you cannot change it.

 20. A class variable is shared by all instances of the class and exists even if there is no
instance of the class ever created.

 21. A class variable is initialized along with its declaration and can be modifi ed inside
the constructor.

 22. A class variable is marked static.
 23. A static method can be invoked using the class name or using a reference variable

as implicit parameter.
 24. It is perfectly legal to write a method without marking it as static that modifi es or

accesses a class variable.

EXERCISES
 1. Mark the following statements as true or false.
 a. A static method has no explicit parameter.
 b. A static method must be invoked using the class name.
 c. Only a static method can modify a class variable.
 d. Only a static method can access a class variable.
 e. Every method need not be public.
 f. In order for a class variable to exist there need not be any instances.
 g. Every method has a signature.
 h. Th e return type is part of the signature.
 i. Method overloading refers to the use of the same method name in two diff erent

classes.
 j. It is not an error to have two methods with identical signature in two diff erent

classes.
 k. During the execution of a method, any change in formal parameter will be

refl ected in the actual parameter.
 l. A constructor has void as its return type.
 m. A constructor can have return statement.
 n. A default constructor has no formal parameters.
 o. Th roughout the execution of a method the self-reference remains the same.
 p. If == returns true, then equals will also return true.
 q. If == returns false, then equals will also return false.
 r. If equals returns true, then == will also return true.
 s. If equals returns false, then == will also return false.

CRC_C6547_CH006.indd 345CRC_C6547_CH006.indd 345 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

346 ■ Java Programming Fundamentals

 t. A class variable can be initialized in a constructor.
 u. A class variable can be updated in a constructor.
 v. Since random method of the class Math is invoked as Math.random(), it is a

static method.
 w. A class can have two methods that are identical in there heading except in their

return type specifi cation.
 2. Check whether or not the signatures match. If not, explain. Assume the following

declarations: short sh, sp; int i, j; long lone, ltwo; double x, y;
char c1; String str1;

 a. void trial(int x, int y) and trial(sh, 5)
 b. void trial(int x, int y) and trial(sh, lone)
 c. void try(int x, double y, char c) and try(10, 2.5, c1)
 d. void try(int x, double y, char c) and try(10.0, 2, str1)
 e. void try(int x, double y, char c) and try(10.0, 2)
 f. void try(int x, double y, char c) and try(i,j, ‘<’)
 g. void try(int x, double y, char c) and try(i,j, q)
 h. void try(int x, double y, char c) and try(ltwo,j, ‘<’)
 i. void try(int x, double y, char c) and try(2, 17.5, "J")
 j. void try(int x, double y, char c1) and try(x, y, c1)
 k. double track() and track(10.5)
 l. double track() and track(7)
 m. long trace(String s, int i) and trace("r", sh)
 n. long trace(String s, int i) and trace(, 4)
 o. long trace(String s, int i) and trace("Q", 8)
 p. long trace(String s, int i) and trace(8)
 q. long trace(String s, int i) and trace("Take a look")
 r. long trace(String s, int i) and trace("Take "+ "a look", 7)
 s. long trace(String s, int i) and trace("Hello ", 7 - 3)
 t. long trace(String s, int i) and trace("Welcome ", sh * 5 + sp)
 3. Write a method or a constructor heading as specifi ed:
 a. A method named cashflow that returns a double and has three formal param-

eters of the following types: int, double, char.
 b. A method named isFull that returns a boolean and has three formal param-

eters of the following types: boolean, double, String.
 c. A method named countVal that returns an int and has three formal param-

eters of the following types: boolean, long, String.

CRC_C6547_CH006.indd 346CRC_C6547_CH006.indd 346 10/3/2008 12:54:58 PM10/3/2008 12:54:58 PM

Apago PDF Enhancer

Methods and Constructors ■ 347

 d. A method named displayInfo that returns nothing and has two formal
parameters of the following types: int, String.

 e. A method named getStatus that returns a boolean and has no formal
parameters.

 f. A method named getVal that returns nothing and has no formal parameters.
 g. A default constructor for the class Student.
 h. A constructor for the class Student having three formal parameters of the fol-

lowing types: boolean, double, String.
 i. A copy constructor for the Student class.
 j. An equals method for the Student class.
 4. Consider the following method:

 public static int modify(int a, b)

 {

 int one, two;

 one = a + b;

 two = a – b;

 if (one > two)

 {

 a = one;

 b = two;

 }

 else

 {

 a = two;

 b = one;

 }

 return a/b;

 }

 a. Correct any syntax errors. For the rest of this question, assume that syntax errors
are corrected.

 b. What will be value returned if the fi rst actual parameter is 7 and second actual
parameter is 12.

 c. What will be value returned if the fi rst actual parameter is 12.0 and second actual
 parameter is 7.

 d. If the static method is a member of the class DataValues, how will you invoke
it with the fi rst actual parameter 7 and the second actual parameter 12.

CRC_C6547_CH006.indd 347CRC_C6547_CH006.indd 347 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

348 ■ Java Programming Fundamentals

 e. Assuming the declarations int x = 20, y = 40; if modify is invoked with the
fi rst actual parameter x and second actual parameter y, what will be the values of
x and y once modify is completed.

 5. Consider the following method:

 static public trial(int a, b; double c);

 {

 if (a > b)

 c = a + b / c;

 else

 c = a – b / c;

 return c;

 }

 a. Correct any syntax errors. For the rest of this question, assume that syntax errors
are corrected.

 b. What will be the value returned if the fi rst actual parameter is 1, the second actual
 parameter is 2, and the third actual parameter is 3, respectively.

 c. What will be the value returned if the fi rst actual parameter is 7, the second actual
 parameter is 3, and the third actual parameter is 4.0, respectively.

 d. If the static method is a member of the class Useful, how will you invoke it
with the fi rst actual parameter 9, the second actual parameter 4, and the third
actual parameter 12.5.

 e. Assuming the declarations int x = 20, y = 40; double z = 18.2; if trial is
invoked with the fi rst actual parameter x, the second actual parameter y and the
third actual parameter z, what will be the values of x, y, and z once the trial is
completed.

 6. Consider the following method:

 public static double testing(int a; int b)

 {

 int one, two, three;

 one = a + b - c;

 two = one + 10;

 if (a + b < c)

 {

 c = one + 7;

 return c;

 }

 else

CRC_C6547_CH006.indd 348CRC_C6547_CH006.indd 348 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

Methods and Constructors ■ 349

 {

 c = two + 7;

 return c;

 }

 }

 a. Can the data member c and the method testing be members of the same class?
If such a c is not allowed, assume that the heading

public static double testing(int a; int b)

is replaced by
public static double testing(int a; int b; int c)

 If such a c is allowed, clearly explain if there are any restrictions. In either case,
assume c is 0.

 b. Correct any syntax errors. For the rest of this question, assume that syntax errors
are corrected.

 c. What will be the value returned if actual parameters are 1 and 3?
 d. What will be the value returned if the fi rst actual parameters are 3 and 2?
 e. If the static method is a member of the class DataValues, how will you

invoke it with the fi rst actual parameter 4 and the third actual parameter 5?
 f. Assuming the declarations int x = 2, y = 6, if testing is invoked with the fi rst

actual parameter x and the second actual parameter y, what will be the value of
c once the method is completed.

 7. Consider the following method with no formal parameters:

 public void int nextValue()

 {

 if (n % == 2)

 {

 n = n/2;

 }

 else

 {

 n = 3 * n + 1;

 }

 }

 a. Observe that n is an instance variable of the class that has nextValue as a
method. Correct any syntax errors. For the rest of this question, assume that
syntax errors are corrected.

CRC_C6547_CH006.indd 349CRC_C6547_CH006.indd 349 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

350 ■ Java Programming Fundamentals

 b. What will be the value returned by the method nextValue (assuming that
method returned n), if n is 10?

 c. What will be the value returned by the method nextValue (assuming that
method returned n), if n is 7?

 8. Consider a class Name with two instance variables fName and lName of the type
String.

 a. List the signatures of at least four diff erent constructors.
 b. Is it possible to have two diff erent constructors, each with exactly one formal

parameter of the type String such that one of them sets fName as the actual
parameter and the other constructor sets lName as the actual parameter.

 c. Write a copy constructor.
 d. Write an equals method.
 e. Write a compareTo method similar to the compareTo method of the String

class.
 9. Write Java statements that accomplish the following tasks for a class Item:
 a. Declare two instance variables height and weight of type double.
 b. Write at least three diff erent constructors.
 c. Write a copy constructor.
 d. Write an equals method.
 e. Write a compareTo method (assume that Item objects are ordered based on the

value of height times weight).
 10. Consider the copy method presented in this book.
 a. Identify the header of the method.
 b. Identify the body.
 c. What are the explicit parameters?
 d. What is the signature of the method?
 e. If the copy method presented in this book is modifi ed by changing the return

type to Stock, what other changes you need to make so that the copy method
will compile error-free.

 11. Consider the equals method presented in this book.
 a. Identify the header of the method.
 b. Identify the body.
 c. What are explicit parameters?
 d. What is the signature of the method?
 e. Rewrite the equals method without any local variables.

CRC_C6547_CH006.indd 350CRC_C6547_CH006.indd 350 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

Methods and Constructors ■ 351

 12. Consider the class Utility presented in this book. What will be the gcd produced
according to the code in the Utility class

 a. numOne is 225 and numTwo is 45?
 b. numOne is 220 and numTwo is 25?
 c. numOne is –100 and numTwo is 8?
 d. numOne is –13 and numTwo is –17?
 e. numOne is 0 and numTwo is 21?
 f. numOne is 38 and numTwo is 0?
 g. numOne is 0 and numTwo is 0?

PROGRAMMING EXERCISES
 1. Create an Employee class and test it. Th e instance variables are used to store fi rst

name, last name, annual salary, and number of dependents. Th ere are three construc-
tors: the default constructor, a constructor with fi rst name and last name as param-
eters, and a constructor with fi rst name, last name, salary, and number of dependents
as parameters. Th ere are two application-specifi c methods. Th e fi rst returns the
monthly salary. Th e second returns bonus calculated as the maximum of percentage
of the annual salary or the minimum bonus for the year. Th e percentage and mini-
mum bonus for the year are explicit parameters of this method.

 2. Write a program to estimate the profi t from a particular product for a month. Infor-
mation such as product name, unit cost, sale price, and average number of items sold
per month are available. Note that product name may consist of many words such as
“Hunter Miller 56in Ceiling Fan.” Provide at least four constructors.

 3. Design a class Student with six data members to store fi rst name, last name, and
four test scores. Provide three constructors: the default constructor, a constructor with
fi rst name and last name as formal parameters, and a constructor with fi rst name, last
name, and four test scores as formal parameters. Create a method validateTest
Score with one formal parameter that returns the formal parameter if it is between
0 and 100 and 0 otherwise. Use validateTestScore method in all mutator meth-
ods that deal with a test score. Create another method setAllData that sets all
attributes and has six formal parameters. Use setAllData in all constructors.
Provide a method getLetterGrade() that returns the letter grade based on the
policy outlined in Example 4.21.

 4. Create and test a class Vehicle with attributes to store information on model, year,
cost basis and sale price, and used. Th e attribute used indicates whether or not it is
a used vehicle. Create a method validateCost with one formal parameter that
returns the formal parameter if it is greater than or equal to 1000.00 and 0 other-
wise. Use validateCost method in all mutator methods that deal with a cost.

CRC_C6547_CH006.indd 351CRC_C6547_CH006.indd 351 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

352 ■ Java Programming Fundamentals

Create another method validatePrice with one formal parameter that returns
the formal parameter if it is greater than 10% the cost of the vehicle and 10% cost of
the vehicle otherwise. Also include a method setAllData that sets all attributes.
Use setAllData in all constructors. Provide at least four diff erent constructors.

 5. Create a class Order with three static methods: max, middle, and min. All three
methods have three formal parameters and they return maximum, middle, and min-
imum values, respectively.

 6. Create a class Conversion with two static methods: toCentigrade and
toFahrenheit.

 7. Create a class Name with two static methods: toShorter and toInitials. Th e
toShorter returns a shorter version of the name and toInitials returns ini-
tials from the full name. For example, a name such as Meera S. Nair will have a
shorter name M.S.Nair and MSN as initial.

 8. Write a static method to convert a String into corresponding telephone number. If
it is a uppercase letter or a lowercase letter, the program will substitute it with the cor-
responding digit. If it is already a digit, no substitution is done. Th us, “GOODCAR,”
“gooDCar,” and “go6DC2r” will be translated to 4663227.

 9. Consider the following sequence:
 1, 1, 2, 3, 5, 8, 13, 21, …

 In this sequence, from the third number onward, next number in the sequence is the
sum of the previous two numbers. For example, 2 = 1 + 1; 3 = 2 + 1; 5 = 3 + 2; and
8 = 5 + 3. Th is sequence is known as Fibonnaci sequence. In fact, you can start a
Fibonacci sequence with any two values. As an example, Fibonacci sequence starting
with 3 and 4 is as follows:

 3, 4, 7, 11, 18, 29, … .
 Create a static method fibonacci having three formal parameters. Th e fi rst two

integer parameters correspond to the fi rst and the second values of the sequence and
the third parameter specifi es the requested term in the sequence. Th us, we have the
following:

fibonacci(3, 4, 1) returns 3
fibonacci(3, 4, 2) returns 4
fibonacci(3, 4, 3) returns 7
fibonacci(3, 4, 4) returns 11

 10. Modify the Employee class of the Programming Exercise 1 so that it has a static
data member noOfEmployees to keep track of the total number of employees.

 11. Modify the Product class of Programming Exercise 2 so that it has a static data
member noOfProducts to keep track of the total number of products.

 12. Redo Programming Exercise 3 by introducing an additional static variable to keep
track of the number of students.

CRC_C6547_CH006.indd 352CRC_C6547_CH006.indd 352 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

Methods and Constructors ■ 353

 13. Redo Programming Exercise 4 by introducing an additional static variable to
maintain the number of vehicles.

 14. Modify the Employee class of Programming Exercise 1 or 10 by adding a copy
constructor, a copy method, and an equals method.

 15. Modify the Product class of Programming Exercise 2 or 11 by adding a copy
constructor, a copy method, and an equals method.

 16. Modify the Student class of Programming Exercise 3 or 12 by adding a copy
constructor, a copy method, and an equals method.

 17. Modify the Car class of Programming Exercise 4 or 13 by adding a copy construc-
tor, a copy method, and an equals method.

ANSWERS TO SELF-CHECK
 1. object reference, method name
 2. static
 3. value returning
 4. void
 5. comma
 6. data type
 7. False
 8. True
 9. call by value
 10. value
 11. True
 12. name of the class
 13. False
 14. one
 15. implicit
 16. myStock

CRC_C6547_CH006.indd 353CRC_C6547_CH006.indd 353 10/3/2008 12:54:59 PM10/3/2008 12:54:59 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

355

C H A P T E R 7

Object-Oriented
Software Design

In this chapter you learn

Object-oriented concepts
Encapsulation, information hiding, interface, service, message passing, responsibil-
ity, delegation, late binding, inheritance hierarchy, composition, and abstract class

Java concepts
Subclass, superclass, reference super, access modifi ers, fi nal class, abstract method,
abstract class, and interface

Programming skills
Design, create, execute, and test Java programs having many classes related through
superclass/subclass relationship or composition

Reliable, error-free, maintainable, and fl exible soft ware is very diffi cult to produce. Today’s
soft ware systems are quite complex and no level of abstraction can eliminate the complexity
completely. However, certain abstractions are more natural to human thinking compared
to other forms of abstractions. In the case of object-oriented paradigm, real-world entities
are modeled as objects. Th is form of abstraction enables the soft ware developer to divide
the soft ware into a collection of mutually collaborating objects working toward achieving a
common goal of solving the problem. In this chapter, you will explore object-oriented para-
digm in a more comprehensive fashion. Further, examples and analogies presented in this
chapter will help you understand the object-oriented way of developing Java programs.

OBJECTS
Th e most fundamental concept of the object-oriented paradigm is that of an object. An
object can be perceived in three diff erent ways. In fact, these are not contradictory views;
rather, they complement each other to enhance our ability to model the real world.

•
•

•
•

•
•

CRC_C6547_CH007.indd 355CRC_C6547_CH007.indd 355 10/3/2008 12:51:56 PM10/3/2008 12:51:56 PM

Apago PDF Enhancer

356 ■ Java Programming Fundamentals

Th ree perspectives of an object are

Data-centric view
Client–server view
Soft ware design view

Data-Centric View

From a data-centric perspective, an object is a collection of attributes and operations that
manipulate the data. In Chapter 1, you have seen that a computer is a general-purpose
information-processing machine. Th us, every task performed by a computer is based on
some information. So it is natural to view an application as a collection of data items that
needs to be processed to produce the desired output.

Practically anything can be modeled as an object. You could model your e-mail system
as an object. Your cable service provider can be an object. Th e local public library can be
modeled as an object. You could also model a geometric shape as an object. In Chapter 6
you have seen how fractions can be modeled as objects. In data-centric view, a class is a
template of objects with identical attributes and operations.

Self-Check

 1. Practically anything can be modeled as an .
 2. A class is a of objects with identical attributes and operations.

Attribute
An attribute is an internal variable that captures some characteristics of the object.
Th erefore, an attribute has a name, a data type, and a value. For instance, in the case
of an Employee, employeeName can be an attribute of type String. Th e attribute
employeeName can have a value such as James Smith. Similarly, monthlySalary
can be another attribute of Employee. It is of the type double and keeps the present
monthly salary of the employee.

Self-Check

 3. are used to keep data of the object.
 4. Th e data type of monthlySalary is .

Operation
In an object, an attribute is kept private. Th erefore, to manipulate an attribute, there
must be public operations. Without such operations, a class is not useful.

Th us, from a data-centric view, an object is a collection of closely related attributes
along with operations on them. In other words, closely related attributes and operations
on those attributes are bundled together as one semantic entity. For example, if you need
to manipulate hours, minutes, and seconds, you can group all three attributes together
into one semantic entity called clock. Next, you include necessary operations such as

•
•
•

CRC_C6547_CH007.indd 356CRC_C6547_CH007.indd 356 10/3/2008 12:51:58 PM10/3/2008 12:51:58 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 357

increment hour, increment minute, and increment second. Th is process of grouping data
and operations on data is called encapsulation. In addition to encapsulation, all attributes
of an object are hidden from the user. In fact, how the operations are implemented is also
completely hidden from the user. Th e fact that implementation is hidden from the user is
known as information hiding.

Encapsulation combined with information hiding helps reduce the complexity both at
the user and at the designer level. To better understand the impact, consider the primitive
data type int. Suppose you want to use the int data type. You know the valid data values
that can be represented as int. You also know the set of operations that can be performed
on an int. However, you need not know how an int value is stored in a memory location.
Further, you need not know how each of the valid operations is implemented. Th erefore,
you, as a user of int data type, need to be concerned with the complexities associated
with integer representations and integer operations. Now let us look from the designer’s
perspective. If you are responsible for implementing int data type, you have complete
freedom to choose the representation scheme and methods to implement various opera-
tions on int. Whether you use binary system or decimal system to represent the integers
is completely hidden from the user. Th us, as a designer, you can focus on effi cient imple-
mentation under the current technology.

Self-Check

 5. As a general rule, attributes are maintained as and operations are
maintained as .

 6. True or false: Information hiding reduces the complexity of the system.

Client–Server View

From a client–server perspective, attributes are not the most important part of an object.
Rather, the focus is on the services an object could provide for other objects. For example,
in the case of a public library, as a user or client you are interested in the services such as
borrowing a book, reserving a book, and searching the catalog for a book. In fact, the pri-
mary mission of the library is to provide these services to its patrons. In this case, you are
a client and the service provider, your local public library, is the server.

Every object in the application provides some service. It is the service that makes them
relevant to the program. Similar to human behavior, objects communicate with each other
by sending messages. Th ese messages are in fact requests for service. In this view, if the cli-
ent object needs the service of a server object, it sends a message to the server. Th e server
object, upon receiving a valid service request from a client, performs the requested service.
In this model of computation, a Java program is a collection of cooperating objects carry-
ing out various service requests made by other objects.

Th us, each object is a server or provider of some service. A service is a public method
of a class. Similarly, message passing refers to method invocation. For instance, con-
sider two objects, Ms. Jane Olsen and her puppy Nacho. Nacho provides certain services
for Jane. One of such services is to fetch the tennis ball. So any time Jane wants Nacho to
fetch a tennis ball, she sends a message to Nacho. Th us, Jane makes a request for the service

CRC_C6547_CH007.indd 357CRC_C6547_CH007.indd 357 10/3/2008 12:51:58 PM10/3/2008 12:51:58 PM

Apago PDF Enhancer

358 ■ Java Programming Fundamentals

fetch to Nacho. Th us, Jane is a client of Nacho since Nacho provides the fetch service.
Th e object-oriented way of expressing this idea is as follows:

nacho.fetch(ball);

Note that in the Java programming environment,

 nacho is a reference variable of the type Puppy.
 fetch is a public method of the class Puppy.
 ball is an actual parameter that references an instance of FetchableItem class.

Note that server and client are role designations. Assume that Jane has a service feed.
As Nacho becomes hungry, Nacho sends a message to the feeding service by producing
a special grunt sound. Jane interprets the grunt as a request for the feeding service and
places Nacho’s favorite puppy food in the bowl. Note that in this situation, Jane is the server
and Nacho is the client.

Mr. Jones and Mr. Clark are very good friends. One day, Mr. Jones decided to send a sur-
prise gift to Mr. Clark through an overnight delivery service Air America Overnight Inc.
(AAOI). Mr. Jones takes the package to the nearest AAOI kiosk. In this case, AAOI is the
server and Mr. Jones is the client. Once Mr. Jones gives the package to an employee of AAOI,
the safe and on-time delivery of the package to Mr. Clark is the responsibility of the AAOI.
By off ering to provide delivery service, AAOI also assumes the responsibility associated
with it. Now, AAOI may or may not hire other local subcontractors to complete the task.
However, as far as Mr. Jones is concerned, AAOI is responsible for the package. Th e way in
which AAOI is going to accomplish the delivery service is not at all important to Mr. Jones.

Let us assume that AAOI has made some agreement with Freight Services (FS) to make the
delivery. In that case, FS is a server for AAOI and AAOI is a client of FS. Once again, as far as
AAOI is concerned, FS is responsible for the delivery of Mr. Jones’ package and AAOI is not
interested in the way in which FS is going to accomplish the service. Observe that Mr. Jones
is completely unaware of the fact that AAOI depends on FS to carry out the delivery service.

Th us, in a client–server environment, clients can request any of the advertised services
(i.e., public methods) of the server. Th e server itself may use other servers to accomplish
the task. Th is delegation of task by a server is completely hidden to the client. As far as the
client–server relationship is concerned, the responsibility rests with the server.

Observe that the concepts “responsibility” and “delegation” allow us to reduce the com-
plexity. For instance, consider the case of Mr. Jones. Once the package is delivered to an AAOI
personnel, Mr. Jones need not be concerned with the safe delivery of the package. AAOI took
complete responsibility from that point on. Whether or not AAOI delegates the task in no way
reduces AAOI’s responsibility. However, using FS reduces the complexity for AAOI.

Self-Check

 7. Th e object that requests the service is a and the object that provides
the service is a .

 8. True or false: Delegation does not absolve responsibility.

•
•
•

CRC_C6547_CH007.indd 358CRC_C6547_CH007.indd 358 10/3/2008 12:51:59 PM10/3/2008 12:51:59 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 359

Software Design View

From a design perspective, you consider an object as an instance of a class. For example,
in the case of a payroll program, you may start with a class Employee. In this view all
employees are instances of the class Employee. Each class is an abstraction of some real-
life entity or concept. Th e class defi nition is similar to a blueprint. Th e defi nition as such
does not create an instance or object of the class. Rather, individual objects are instanti-
ated by applying the new operator on a constructor of the class. Each of the instances is an
object created from the specifi cation given in the class defi nition.

Example 7.1

Consider the problem of computing the area and perimeter of a rectangle. To com-
pute the required information, you must know the length and width of the rect-
angle. Th erefore, you decide to have objects with two attributes representing the
length and width. Further, the application needs methods such as area and perim-
eter. If you proceed along these lines, you are in fact viewing in a data-centric way.
However, if you start out identifying services required, say computeArea and
computePerimeter, and then identify length and width as necessary data items,
the approach taken is that of a client–server view. Finally, from the problem state-
ment you could identify Rectangle as a class and then make the Rectangle
class appropriate for this application by properly selecting the attributes and opera-
tions; this approach is more in tune with the soft ware design view.

In all three views, you need to identify classes, attributes of each class, and services of
each class. To a great extent, the above three views just assign diff erent priorities in arriv-
ing at the fi nal product. In the case of data-centric view, the priority is attribute, then
service followed by class. However, in the client–server view, the priority is service, then
attribute followed by class. Finally, in the soft ware design view, the top priority is on iden-
tifying the classes. Th e order in which you may decide on attributes and services for each
of those classes is not that important.

Self-Check

 9. Irrespective of the view, you need to identify , identify of
each class, and identify of each class.

 10. In the soft ware design view, the top priority is on identifying the .

SUBCLASS
Consider two classes Person and Employee. Observe that the following statements are
true:

 1. An instance of Employee is always an instance of Person.
 2. An instance of Person is sometimes an instance of Employee.

We say Employee is a subclass of Person. In general, if you have two classes ClassOne
and ClassTwo such that an instance of ClassTwo is always an instance of ClassOne

CRC_C6547_CH007.indd 359CRC_C6547_CH007.indd 359 10/3/2008 12:51:59 PM10/3/2008 12:51:59 PM

Apago PDF Enhancer

360 ■ Java Programming Fundamentals

and an instance of ClassOne is sometimes an instance of ClassTwo, then ClassTwo is
a subclass of ClassOne. Alternatively, ClassOne is a superclass of ClassOne.

Using the unifi ed modeling language (UML 2) you can show the subclass/superclass
relationship between the two classes as shown in Figure 7.1.

Example 7.2

Consider three classes Student, GradStudent, and UnderGradStudent.
Note that a GradStudent is always a Student and a Student is sometimes a
GradStudent. Th erefore, GradStudent is a subclass of Student class. Simi-
larly, UnderGradStudent is a subclass of Student class.

Observe that a GradStudent is never an UnderGradStudent and an
UnderGradStudent is never a GradStudent. Th erefore, GradStudent is not
a subclass of UnderGradStudent or UnderGradStudent is not a subclass of
GradStudent. Th e UML 2 diagram in Figure 7.2 shows the relationship that exists
among the three classes Student, GradStudent, and UnderGradStudent.

Example 7.3

Consider fi ve classes Triangle, Square, Rectangle, Circle, and Ellipse.
Th e relationship among these classes can be summarized in the form of a table as
shown Table 7.1.

Th us, Square is a subclass of Rectangle. Similarly, Circle is a subclass of
Ellipse. Th us, we have the UML 2 diagram shown in Figure 7.3.

FIGURE 7.1 Subclass/superclass relationship.

Person

Employee

ClassOne

ClassTwo

FIGURE 7.2 Relationship between Student and its subclasses.

Student

UnderGradStudent GradStudent

CRC_C6547_CH007.indd 360CRC_C6547_CH007.indd 360 10/3/2008 12:51:59 PM10/3/2008 12:51:59 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 361

Self-Check

 11. True or false: Th e Apple class is a subclass of the Fruit class.
 12. True or false: Th e Keyboard class is a subclass of the Computer class.

Inheritance

Consider Mr. Jones, an instance of the class Employee. Since every instance of
Employee class is an instance of Person class, Mr. Jones, in particular, is an instance of
the Person class. Th us, Mr. Jones has all the attributes of Employee class and Person
class. Similarly, Mr. Jones provides all the services of Employee as well as Person. Due
to this reason, there is no need to repeat the same attribute or service in a subclass.

Consider the attribute name. Since every instance of a Person has a name, the
attribute name is kept as an attribute of the superclass Person. In this case, the sub-
class Employee inherits the attribute name from its superclass Person. However,
consider the attribute salary of Employee. Note that every instance of a Person
need not be an instance of Employee and as such may not have a salary. Th erefore,
salary is an attribute of the Employee class. Th e Person class does not inherit the
attribute salary from Employee. Th us, in the case of a superclass/subclass relation-
ship, subclass inherits all the attributes of the superclass. Superclass does not inherit
any attribute of a subclass.

Services also follow the same pattern. For instance, talk is a service of Person class.
Th us, every instance of Employee is also capable of providing that service. However,
prepareTimesheet is a service of Employee. Th e Person class does not inherit
prepareTimesheet service of Employee class. Th us, the superclass/subclass relation-
ship establishes an inheritance hierarchy.

TABLE 7.1 Superclass/Subclass Determination Scheme

Triangle Square Rectangle Circle Ellipse

Triangle × Never Never Never Never
Square Never × Always Never Never
Rectangle Never Sometimes × Never Never
Circle Never Never Never × Always
Ellipse Never Never Never Sometimes ×

FIGURE 7.3 Relationship among geometric shapes.

Rectangle

Square

Ellipse

Circle

Triangle

CRC_C6547_CH007.indd 361CRC_C6547_CH007.indd 361 10/3/2008 12:51:59 PM10/3/2008 12:51:59 PM

Apago PDF Enhancer

362 ■ Java Programming Fundamentals

As mentioned above, subclass inherits all services of the superclass. In a subclass, if
necessary, you could override a service. While all animals eat, their eating methods are dif-
ferent. For example, dogs and humans have diff erent eating methods. Th is form of inheri-
tance is known as inheritance with polymorphism. Th us, there are two forms of inheritance:
inheritance with polymorphism and inheritance without polymorphism.

Examples 7.4 and 7.5 illustrate inheritance with polymorphism. An example for inheri-
tance without polymorphism can be found in Example 7.6.

Example 7.4

Consider the inheritance hierarchy between an Ellipse and a Circle. One of
the services of the Ellipse class is rotate. Th e service rotate tilts an ellipse
by the angle specifi ed in the counterclockwise direction with the center fi xed. Note
that in the case of a circle, rotating it by any angle makes no diff erence at all. Th ere-
fore, in the subclass Circle, you can override the rotate method such that it
does nothing at all. Th us, you can have a more effi cient implementation of the ser-
vice rotate in the subclass Circle.

Example 7.5

Consider the inheritance hierarchy between Student and GradStudent. Let
studentData be a method of the Student class that returns a String contain-
ing all the basic information about a Student. If GradStudent has additional
attributes such as thesisTitle, you may override the studentData in the
GradStudent class to include this information. In this case, the studentData
method of the GradStudent class can be implemented in such a way that it invokes
the studentData method of the superclass Student fi rst; and then appends more
information to produce the desired String.

Example 7.6

An Employee is still a Person. Being an Employee does not change the common
services of Person such as getFirstName, getLastName, setFirstName, and
setLastName. Th erefore, the superclass/subclass relationship between Person and
Employee establishes an inheritance hierarchy without polymorphism.

Note that establishing an inheritance hierarchy has many advantages. Some of
them are as follows:

 1. Complexity reduction. Typically you can start with a very simple class. Once
that class is completely implemented and tested, you can add more attributes
and services. Th is incremental approach greatly reduces the complexity.

 2. Ability to add new attributes and services. Once a class is created, you cannot
add more services to that class. Th e best way to add more services is by creat-
ing a new subclass. Th e newly created subclass inherits all the services of the
superclass. Th erefore, the newly created subclass can be used in place of the

CRC_C6547_CH007.indd 362CRC_C6547_CH007.indd 362 10/3/2008 12:52:00 PM10/3/2008 12:52:00 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 363

superclass with the added advantage of new services, which were not available
in the superclass.

 3. Code reusage. Th e services of a subclass can make use of services of the super-
class. Th is feature eliminates the need to repeat the same code both in superclass
and in subclass. Th is ability to reuse the code indirectly promotes consistency
and reduces complexity.

 4. Ability to modify services. Applying the principle of polymorphism, you can
override any method provided by the superclass. Th is feature helps to custom
tailor the method for the subclass. Th us, it is possible to start with a most gen-
eral superclass and specialize into various subclasses.

Self-Check

 13. Th e subclass all the services and attributes of its superclass.
 14. A subclass can any method of a superclass.

Creating Subclass

Th e syntax template for creating a new class SubClassName from an existing class
SuperClassName through inheritance is as follows:

[classModifiers] class SubClassName extends SuperClassName

 [modifiers]

{

 [attributes and methods of SubClassName alone]

}

Note that extends is a reserved word in Java.

Note 7.1 From an object-oriented design perspective, a class can be created through
single or multiple inheritance. In the case of single inheritance a subclass has a unique
superclass. In multiple inheritance a class has more than one superclass. Th e programming
language C++ allows multiple inheritance. However, Java does not permit multiple inheri-
tance. Instead, Java introduces the concept of an interface and allows multiple interfaces.
You will be introduced to interfaces later in this chapter.

Example 7.7

Suppose the class Person exists. Th en a new class Employee can be created
through inheritance as follows:

public class Employee extends Person

{

 //attributes and operations

}

CRC_C6547_CH007.indd 363CRC_C6547_CH007.indd 363 10/3/2008 12:52:00 PM10/3/2008 12:52:00 PM

Apago PDF Enhancer

364 ■ Java Programming Fundamentals

Similarly, suppose the class Student exists. Th en a new class GradStudent can be cre-
ated through inheritance as follows:

public class GradStudent extends Student

{

 //attributes and operations

}

As stated during the general discussion, all attributes and services of the superclass are
inherited by the subclass. However, those are not members of the subclass. All private
members (attributes and operations) of a superclass are not directly accessible to any other
class, including the subclass. Similarly, all public members (data as well as services) of a
superclass are directly accessible to any other class, including the subclass. However, there
is a third option possible, namely, protected access. All protected members of a
superclass are directly accessible in the subclass but not to any other class. Th ese facts can
be summarized in the form of a table as shown in Table 7.2.

Recall that there is a restriction on static methods. A static method can access
only other static methods and class variables. For example, a public instance variable
of a superclass is not accessible inside a static method of the subclass.

Next we address three major issues that arise in the context of a superclass/subclass
relationship. Once these issues are addressed, we will be ready to present our fi rst example
of subclass creation.

 1. Due to polymorphism, the same service is available in both the superclass and the
subclass. Th erefore, how to distinguish between these two services inside a method
of the subclass. In other words, how to invoke the service of a superclass inside a
method of the subclass.

 2. Both public and protected members of the superclass are directly accessible in
the subclass. However, private members (attributes and operations) of the super-
class are not accessible in the subclass. Th erefore, how to access private attributes
of the superclass inside a method of the subclass.

 3. Both public and protected attributes of the superclass are directly accessible
in the subclass. However, private members attributes of the superclass are not
accessible in the subclass. Th erefore, how to initialize attributes of superclass in the
subclass constructor. In other words, how to invoke the constructor of the superclass
inside a subclass constructor.

TABLE 7.2 Inheritance and the Role of Access Modifi er

Access Modifi er of a
Member in Superclass

Accessibility Inside
Methods of a Subclass

Accessibility Inside
Methods of any Class Other

Th an a Subclass

public Accessible Accessible
protected Accessible Not accessible
private Not accessible Not accessible

CRC_C6547_CH007.indd 364CRC_C6547_CH007.indd 364 10/3/2008 12:52:00 PM10/3/2008 12:52:00 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 365

Self-Check

 15. True or false: Java allows multiple inheritance.
 16. A member of the superclass is not directly accessible in the

subclass.

Invoking Method of Superclass

Consider two classes Student and GradStudent such that the class GradStudent
is a subclass of the class Student. Now the class GradStudent inherits all public
and protected methods of the class Student. Due to polymorphism, it is possible
to override a method of the class Student in the subclass GradStudent. For instance,
computegpa can be a method of both classes. However, the way grade point average
(gpa) is computed may be totally diff erent for a graduate student as opposed to other
students. If that is the case, the method computegpa needs to be overridden in the class
GradStudent. Th us, in general, a method of the class SuperClass may be overrid-
den in the class SubClass. In that case, both methods have the same signature. Th us,
there are two methods with identical signature, one in the SuperClass and the other in
the SubClass. Recall that you can have two methods with identical names but diff erent
signatures within a class. In that case, it is called method overloading. You can have two
methods with identical names and identical signatures, one in the superclass and the other
in the subclass. Th is is known as method overriding (or polymorphism).

Note 7.2 Two overloaded methods have diff erent signatures. Th us, a compiler can
uniquely identify the method that needs to be invoked. However, overridden methods have
identical signatures. Th erefore, within the subclass, there needs to be a mechanism to dis-
tinguish between the one that is the member of the subclass and the one that is inherited
from the superclass.

Note 7.3 Th e issues mentioned in Note 7.2 are not relevant to static methods. Recall
that a static method can be invoked using the class name. Th erefore, the class name will
uniquely identify the method involved.

Java provides an elegant solution through a reference variable super. In Java, super
is a keyword. Th e reference variable super can be used inside all methods of a subclass
that are not marked static and it references the implicit parameter as an instance of its
superclass. Recall that the keyword this can be used in all methods of a class that are not
marked static and it references the implicit parameter as an instance of the class.

Note 7.4 Th e keyword super is a reference similar to the self-reference this, with the
diff erence that while this references the implicit parameter as an instance of the class,
super references the implicit parameter as an instance of the superclass.

Th e template

super.methodName([actualParameterList])

CRC_C6547_CH007.indd 365CRC_C6547_CH007.indd 365 10/3/2008 12:52:00 PM10/3/2008 12:52:00 PM

Apago PDF Enhancer

366 ■ Java Programming Fundamentals

can be used inside all methods of a subclass that are not marked static to invoke the
method methodName of a superclass that is not marked static.

Good Programming Practice 7.1

It is a good programming practice to invoke all methods of the superclass using the
reference super.

Self-Check

 17. Having two methods with identical signature, one in a superclass and other in
the subclass is known as method .

 18. Having two methods with diff erent signatures in the same class is known as
method .

Accessing Private Attribute of Superclass

Recall that private attributes of the superclass remain private even under inheri-
tance. Th erefore, the subclass cannot directly access private attributes of the superclass.
Just as any other class, subclass also needs to use public services provided by the super-
class. Th erefore, if getDataMember and setDataMember are two methods provided
by the superclass to access and mutate an attribute dataMember, you can access and
mutate dataMember inside all methods of the subclass that are not marked static
using the reference super. Th us,

super.getDataMember()

and

super.setDataMember(actualParameterList)

can be used inside all methods of a subclass that are not marked static to access and
modify the private attribute dataMember of the superclass.

Self-Check

 19. To access a private attribute of a superclass, a public method of the is
required.

 20. Both and attributes of a superclass are directly accessible
in the subclass.

Invoking Constructor of Superclass

Inside the constructor of the subclass, you cannot use the new operator to initialize the
superclass attributes. For example, consider the superclass/subclass relationship between
Student and GradStudent. Th e following code is illegal:

public GradStudent(argListOne)

CRC_C6547_CH007.indd 366CRC_C6547_CH007.indd 366 10/3/2008 12:52:00 PM10/3/2008 12:52:00 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 367

{

 super = new Student(argListTwo); // illegal

 // more statements

}

Instead, the correct way of invoking the constructor of the superclass inside the constructor
of a subclass is as follows:

public GradStudent(argListOne)

{

 super(argListTwo); //Assume that superclass has

 //a constructor whose signature

 //matches argListTwo

 // more statements

}

Note that if the constructor of the superclass is invoked inside the subclass construc-
tor using the keyword super, it must be the fi rst executable statement of the subclass
constructor.

We conclude this section with Example 7.8 that illustrates all the concepts introduced
so far.

Example 7.8

In this example, we fi rst create a class Circle. Th is class has one private attri-
bute, radius of type double. Th ere are two application-specifi c methods area
and circumference that compute and return the values of area and circumfer-
ence, respectively. Two constructors are also included in the class Circle.

We use inheritance to create a new class CylinderInherited. Th e
CylinderInherited class has one new private attribute height of type
double. Th ere are two methods area and volume that compute and return the
values of surface area and volume, respectively. Th e class CylinderInherited
has two constructors and one boolean method isTall.

Now consider the CylinderInherited class created from Circle class
through inheritance. Th e following points merit special mention:

 1. Methods setRadius or getRadius need not be defi ned again. Cylinder-
Inherited inherits those methods.

 2. Every time a method of the superclass is invoked, the reference super is explic-
itly used. Th e methods circumference, getRadius, and setRadius can
be invoked without the reference super.

 3. Th e very fi rst executable statement in each of the constructors is super with
appropriate parameters to invoke a constructor of the superclass.

 4. For the sake of illustrating the mechanism of accessing a private attribute
inside a method that is not marked static, we introduce a method isTall.

CRC_C6547_CH007.indd 367CRC_C6547_CH007.indd 367 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

368 ■ Java Programming Fundamentals

Let us defi ne a cylinder to be tall if its height is at least four times its radius.
Note that you must use getRadius method to access the private attribute
radius of the class Circle.

 5. Th e class CylinderInherited overrides methods area and toString
of the class Circle. In fact, toString is defi ned in a Java system class
Object and every class with no explicit superclass such as the Circle class is
implicitly a subclass of the Object class. Th us, the toString method of the
Circle class is in fact overriding the toString method of the Object
class. Th e Object class is presented later in this chapter.

 6. Th e method area is defi ned in the class Circle fi rst and overridden in the
class CylinderInherited.

 7. Th e method circumference is not overridden in the class Cylinder
Inherited, and therefore the method circumference has identical behavior
in both classes.

 8. Th e method volume is defi ned in the class CylinderInherited only. Th is
method is not available in the class Circle.

/**

 Circle class computes area and circumference

*/

public class Circle

{

 private double radius;

 /**

 Constructor with no parameters

 */

 public Circle()

 {

 radius = 0;

 }

 /**

 Constructor to creates a circle of given radius

 @param inRadius the radius of the circle

 */

 public Circle(double inRadius)

 {

 setRadius(inRadius);

 }

 /**

 Computes and returns the area

 @return area of the circle

 */

 public double area()

CRC_C6547_CH007.indd 368CRC_C6547_CH007.indd 368 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 369

 {

 return (Math.PI * radius * radius);

 }

 /**

 Computes and returns the circumference

 @return circumference of the circle

 */

 public double circumference()

 {

 return (2 * Math.PI * radius);

 }

 /**

 Accessor method for the radius

 @return radius

 */

 public double getRadius()

 {

 return radius;

 }

 /**

 Mutator method for the radius

 @param inRadius the new value of the radius

 */

 public void setRadius(double inRadius)

 {

 if(inRadius >= 0)

 radius = inRadius;

 else

 radius = 0;

 }

 /**

 toString method

 @return radius as a String

 */

 public String toString()

 {

 String str;

 str = "Radius is " + radius ;

 return str;

 }

}

CRC_C6547_CH007.indd 369CRC_C6547_CH007.indd 369 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

370 ■ Java Programming Fundamentals

/**

 Cylinder inherited from Circle

*/

public class CylinderInherited extends Circle

{

 private double height;

 /**

 Constructor initializes radius and height

 @param inRadius

 @param inHeight

 */

 public CylinderInherited(double inRadiu s, double

inHeight)

 {

 super(inRadius);

 setHeight(inHeight);

 }

 /**

 Constructor initializes radius and height with

 default values

 */

 public CylinderInherited()

 {

 super();

 setHeight(0);

 }

 /**

 Computes the surface area

 @return area

 */

 public double area()

 {

 return (super.circumference () * height + 2 *

 super.area());

 }

 /**

 Computes the volume

 return volume

 */

 public double volume()

CRC_C6547_CH007.indd 370CRC_C6547_CH007.indd 370 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 371

 {

 return (super.area() * height);

 }

 /**

 Checks whether or not height is >= 4 ti mes the

 radius

 @return boolean value

 */

 public boolean isTall()

 {

 return (height >= 4 * super.getRadius());

 }

 /**

 Accessor method for the height

 @return height

 */

 public double getHeight()

 {

 return height;

 }

 /**

 Mutator method for the height

 @param inHeight new value for height

 */

 public void setHeight(double inHeight)

 {

 height = inHeight;

 }

 /**

 toString method

 @return a String with radius and height

 */

 public String toString()

 {

 String str;

 str = super.toString() + "; Height is " +

 height;

 return str;

 }

}

CRC_C6547_CH007.indd 371CRC_C6547_CH007.indd 371 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

372 ■ Java Programming Fundamentals

Th e class diagram in UML 2 notation is given in Figure 7.4.
Consider the following statements that create one instance of Circle and one instance

of CylinderInherited:

Circle round = new Circle(8.74);

CylinderInherited roller = new CylinderInherited(4.23, 20.45);

Th e reference variables round and roller along with the objects created can be visu-
alized as shown in Figure 7.5.

In Figure 7.5, members that are accessible through the reference variable are shown
as small rectangles projecting outward. Th us, using the round reference variable, you
can invoke fi ve methods area, circumference, getRadius, setRadius, and
toString of the class Circle. Th e attribute radius is not accessible through the
reference variable round. Similarly, using the roller reference variable, you can invoke
nine methods. Th ey are three methods circumference, getRadius, and setRadius
of the class Circle and six methods area, volume, isTall, getHeight, setHeight,

FIGURE 7.4 Class diagram of Circle and CylinderInherited.

Circle

− radius : double

+Circle()
+Circle(double)
+area() : double
+circumference() : double
+getRadius() : double
+setRadius(double) : void
+toString() : String

CylinderInherited

− height : double

+CylinderInherited()
+CylinderInherited(double, double)
+area() : double
+isTall() : boolean
+volume() : double
+getHeight() : double
+setHeight(double) : void
+toString() : String

CRC_C6547_CH007.indd 372CRC_C6547_CH007.indd 372 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 373

and toString of the class CylinderInherited. Note that none of the attributes
are accessible. Further, since methods area and toString of the class Circle are over-
ridden in the class CylinderInherited, those two methods cannot be accessed using
the reference variable roller.

Note that the Java statements

System.out.println(round);

System.out.println(roller);

will produce the following output lines, respectively, by invoking the corresponding
toString methods:

Radius is 8.74

Radius is 4.23; Height is 20.45

FIGURE 7.5 Visualization of objects round and roller.

round

8.74radius

area

circumference

getRadius

setRadius

toString

roller

4.23radius

area

circumference

getRadius

setRadius

toString

20.45height

area

volume

getHeight

setHeight

toString

isTall

CRC_C6547_CH007.indd 373CRC_C6547_CH007.indd 373 10/3/2008 12:52:01 PM10/3/2008 12:52:01 PM

Apago PDF Enhancer

374 ■ Java Programming Fundamentals

We conclude this example by the following Java program that illustrates the use of all
methods:

import java.text.DecimalFormat;

public class CircleCylinderInherited

{

 public static void main(String[] args)

 {

 DecimalFormat twoDecimalPlaces = new

DecimalFormat("0.00"); // 1

 Circle roundOne = new Circle(); // 2

 Circle round = new Circle(8.74); // 3

 CylinderInherited rollerOne

 = new CylinderInherited(); // 4

 CylinderInherited roller

 = new CylinderInherited(4.23, 20.45); // 5

 System.out.println("(6) roundOne data: " +

 roundOne); // 6

 System.out.println("(7) round data: " + round); // 7

 System.out.println("\nMethods of Circle"); // 8

 System.out.println("(8) Area of round: "

 + twoDecimalPlaces.format(round.area())); // 9

 System.out.println("(10) Circumference of

 round: " + twoDe cimalPlaces.format(round.

 circumference())); // 10

 roundOne.setRadius(6.98); // 11

 System.out.println("(12) Radius of roundOne : "

 + roundOne.getRadius()); // 12

 System.out.println(); // 13

 System.out.println("(14) rollerOne data: "

 + rollerOne); // 14

 System.out.println("(15) roller data: " +

 roller); // 15

 System.out.println("\nMethods of CylinderI nherited");

 // 16

 System.out.println("(17) Area of roller: "

 + twoDecimalPlaces.format(roller .area())); // 17

CRC_C6547_CH007.indd 374CRC_C6547_CH007.indd 374 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 375

 System.out.println("(18) Volume of roller: "

 + twoDecimalPlaces.format(roller.v olume())); // 18

 if (roller.isTall())

 System.out.println("(19) The roller is tall."); // 19

 else

 System.out.println("(20) The rol ler is not tall.");

// 20

 rollerOne.setHeight(12.7); // 21

 System.out.println("(22) Height of rollerOne : " +

 rollerOne.getHeight()); // 22

 System.out.println("\nMethods Inherited from Circle");

 // 23

 System.out.println("(24) Circumference of roller: "

 + twoDecimalPlaces.format(roller.

 circumference())); // 24

 rollerOne.setRadius(6.98); // 25

 System.out.println("(26) Radius of rollerOne : " +

 rollerOne.getRadius()); // 26

 }

}

Output

(6) roundOne data: Radius is 0.0

(7) round data: Radius is 8.74

Methods of Circle

(8) Area of round: 239.98

(10) Circumference of round: 54.92

(12) Radius of roundOne: 6.98

(14) rollerOne data: Radius is 0.0; Height is 0.0

(15) roller data: Radius is 4.23; Height is 20.45

Methods of CylinderInherited

(17) Area of roller: 655.94

(18) Volume of roller: 1149.54

(19) The roller is tall.

(22) Height of rollerOne: 12.7

Methods Inherited from Circle

(24) Circumference of roller: 26.58

(26) Radius of rollerOne: 6.98

CRC_C6547_CH007.indd 375CRC_C6547_CH007.indd 375 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

376 ■ Java Programming Fundamentals

Self-Check

 21. Inside the constructor of the subclass, you cannot use the operator
to initialize the superclass attributes.

 22. If the constructor of the superclass is invoked inside the subclass constructor
using the keyword , it must be the fi rst executable statement of the
subclass constructor.

Subclass Objects as Superclass Instance

We begin our discussion through a real-life analogy.

Example 7.9

Consider a class Pet and its two subclasses Cat and Dog. Assume the following
variable declarations:

Pet petOne;

Cat catOne;

Cat catTwo;

Dog dogOne;

Now

catOne = new Cat("Snowball");

creates an instance of Cat. Since Cat is a subclass of Pet class, the following state-
ment is legal:

petOne = catOne;

Th is allows us to treat catOne as a member of the Pet class. In other words, you
can assign a subclass reference to a superclass reference.

However, you cannot assign a superclass reference to a subclass reference. Th us,

catTwo = petOne; // illegal

You can correct the above statement as follows:

catTwo = (Cat) petOne; // is legal

Note that in this case, petOne in fact references an instance of Cat and hence the
cast operation was legal. Further note that the following statement is illegal:

dogOne = (Dog) petOne; // illegal : petOne references an
 // instance of Cat.

From an object-oriented perspective, an instance of a subclass is always an instance of the
superclass. Th erefore, you can assign a reference variable of the subclass to a reference vari-
able of the superclass.

CRC_C6547_CH007.indd 376CRC_C6547_CH007.indd 376 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 377

Consider the following declarations:

Circle roundOne; // 1

Circle round = new Circle(4.23); // 2

CylinderInherited rollerOne; // 3

CylinderInherited roller = new CylinderInherited(4.23, 20.45);

// 4

where Circle and CylinderInherited are classes as in Example 7.8. Th us, Cylin-
derInherited is a subclass of the class Circle and the following assignment statement
is legal:

roundOne = roller;

However, the following two statements are illegal:

rollerOne = round; //illegal

rollerOne = (CylinderInherited) round; //illegal

Th e reason being round refers to a Circle object only.

However, the following segment of code is legal:

roundOne = roller; //a reference variable of type Circle

 // references a CylinderIn herited Object.

rollerOne = (CylinderInherited) roundOne; // is legal.

Observe that even though roundOne is a reference variable of the type Circle, roun-
dOne references an instance of CyliderInherited class.

Self-Check

 23. True or false: A subclass object reference can be assigned to a superclass object
reference.

 24. True or false: A superclass object reference can be assigned to a subclass object
reference.

Polymorphic Behavior

Consider the following declarations:

Circle round;

CylinderInherited roller = new CylinderInherited(4.23, 20.45);

where Circle and CylinderInherited are classes as in Example 7.8. As you have seen,

round = roller;

CRC_C6547_CH007.indd 377CRC_C6547_CH007.indd 377 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

378 ■ Java Programming Fundamentals

is legal. Note that round is a reference variable of type Circle. Th erefore, you can use
round to invoke any of the methods of the Circle class. Further, if a method is overrid-
den in the subclass CylinderInherited, the overridden method is invoked rather than
the method in the superclass Circle. Th us,

round.area();

will invoke the method area of CylinderInherited class. Similarly,

roller.toString();

and

round.toString();

invoke the method toString of CylinderInherited class. Th is is the polymorphism
in action. Even though round is a reference variable of type Circle, since it references
an object of the subclass CylinderInherited, the method in the subclass is invoked
instead of the one in the Circle class. Observe that compiler cannot determine the actual
method to be executed. Th e decision has to be made at the run time. Th is is known as
dynamic binding or late binding in object-oriented terminology.

However,

roller.volume();

invokes the method volume of CylinderInherited class and

round.volume(); //Compilation error

 //Even when round has the reference of an

 //object of the class CircleInherited,

 //it is a compile time error, since volume is

 //not a method of Circle.

results in a compile time error. Observe that volume is not a method of the Circle class.
Th e above discussion can be summarized as follows. If a superclass reference references

an object of a subclass, then

Superclass reference can invoke any of the methods defi ned in the superclass and if
the method is overridden in the subclass, the method in the subclass is invoked.
Superclass reference cannot invoke any of the methods defi ned in the subclass but
not in the superclass.

Example 7.10 illustrates the concepts presented in this section.

•

•

CRC_C6547_CH007.indd 378CRC_C6547_CH007.indd 378 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 379

Example 7.10

import java.text.DecimalFormat;

/**

 Application program to illustrate various concepts related

 to inheritance

*/

public class ObjectReference

{

 public static void main(String[] args)

 {

 DecimalForma t twoDecimalPlaces = new

 DecimalFormat("0.00"); // 1

 Circle roundOne; // 2

 Circle round = new Circle(4.23); // 3

 CylinderInherited rollerOne; // 4

 CylinderInherited roller

 = new CylinderInherited(4.23, 20.45); // 5

 System.out.println("(6) round data: " + round); // 6

 System.out.println("\nMethod invocation:

 Circle reference"); // 7

 System.out.println("(8) Area of round: "

 + twoDecimalPlaces.format(round.area())); // 8

 System.out.println("(9) Circumference of round: "

 + twoDecimalPlaces.format(round.

 circumference())); // 9

 System.out.println("\n(10) roller data: " +

 roller); // 10

 roundOne = roller;

 System.out.println("(11) roundOne data: " +

 roundOne); // 11

 System.out.println("\nMethod invocati on: Superclass

 reference"); // 12

 System.out.println("(13) Area of roundOne: "

 + twoDecimalPlaces.format(roundOne. area()));

 // 13

 System.out.println("(14) Circumference of roundOne: "

 + twoD ecimalPlaces.format(roundOne.

 circumference())); // 14

 //The volume cannot be invoked; it is not defined in

 Circle class.

CRC_C6547_CH007.indd 379CRC_C6547_CH007.indd 379 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

380 ■ Java Programming Fundamentals

 //The next commented line will generate compi le time

 error

 //System.out.println("(15) Volume of roundOne: "

 // + twoDecimalPlaces.format(roundOne.vol ume()));

 // 15

 System.out.println("\nMethod invocation: Subclass

 reference"); // 16

 System.out.println("(17) Area of roller: "

 + twoDecimalPlaces.format(roller.a rea())); // 17

 System.out.println("(18) Circumference of roller: "

 + twoDecimalPlaces.format(roller.

 circumference())); // 18

 System.out.println("(19) Volume of roller: "

 + twoDecimalPlaces.format(roller.vo lume()));

 // 19

 }

}

Output

(6) round data: Radius is 4.23

Method invocation: Circle reference

(8) Area of round: 56.21

(9) Circumference of round: 26.58

(10) roller data: Radius is 4.23; Height is 20.45

(11) roundOne data: Radius is 4.23; Height is 20.45

Method invocation: Superclass reference

(13) Area of roundOne: 655.94

(14) Circumference of roundOne: 26.58

Method invocation: Subclass reference

(17) Area of roller: 655.94

(18) Circumference of roller: 26.58

(19) Volume of roller: 1149.54

Observe that toString method of CylinderInherited is invoked in both
Lines 10 and 11. Similarly, area computed in Lines 13 and 17 are also identical.
Once again, the method area of CylinderInherited is invoked. Observe that
method area of Circle class will return a value identical to one on Line 8. As a
fi nal observation, note that volume can only be invoked using a reference variable of
type CylinderInherited.

CRC_C6547_CH007.indd 380CRC_C6547_CH007.indd 380 10/3/2008 12:52:02 PM10/3/2008 12:52:02 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 381

Self-Check

 25. True or false: If a superclass reference references an object of a subclass then
superclass reference can invoke any of the methods defi ned in the superclass
and if the method is overridden in the subclass, the method in the subclass is
invoked.

 26. True or false: Irrespective of the object it references, a superclass reference cannot
invoke any of the methods defi ned in the subclass but not in the superclass.

Advanced Topic 7.1: instanceof Operator

You can use the instanceof operator to determine whether or not a reference variable
currently references an object of a particular class. Consider the following statements:

Student student = new Student();

Person person = student;

Employee employee;

Now the expression person instanceof Student evaluates to true and the expres-
sion person instanceof Employee evaluates to false.

Good Programming Practice 7.2

Avoid the use of instanceof operator unless it is absolutely necessary.

Advanced Topic 7.2: Use of protected Attributes

Th e purpose of the next example is to illustrate the use of protected attributes. Th is
example will illustrate the pros and cons of declaring an attribute as protected.

Example 7.11

In this example, once again we create a circle class and then extend it to a cylinder
class. Th e names Circle and CylinderInherited were used in Example 7.8.
Th erefore, CirclePro and CylinderProInherited are used to name circle
and cylinder classes of this example. Th e attribute radius of the CirclePro has
protected access. Th ere are two design choices:

 1. Methods getRadius and setRadius can be omitted from the CirclePro.
In other words, protected attribute need not have associated accessor and
mutator methods. However, you may decide to keep the associated mutator as a
private method. We illustrate such an approach in this example.

 2. Th e subclass has direct access to the protected attribute. Th us, attribute
radius can be accessed in the CylinderProInherited class. However,
the protected attribute is not accessible to any class that uses CylinderPro-
Inherited. Th erefore, you may decide to keep the associated accessor and
mutator methods as public method.

CRC_C6547_CH007.indd 381CRC_C6547_CH007.indd 381 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

382 ■ Java Programming Fundamentals

Th e classes CirclePro and CylinderProInherited are as follows. Th e changes
compared to Circle and CylinderInherited are shown in comments.

/**

 Circle class with radius as a protected member

*/

public class CirclePro //Circle :> CirclePro
{

 protected double radius; //private :> protected

 /**

 Constructor creates a circle with radius 0

 */

 public CirclePro() //Circle :> CirclePro

 {

 radius = 0;

 }

/**

 Constructor creates a circle of given radius

 @param inRadius radius of the circle

*/

 public CirclePro(double inRadius) //Circle :> CirclePro

{

 setRadius(inRadius);

 @return area of the circle

}

/**

 Computes area

*/

public double area()

{

 return (Math.PI * radius * radius);

}

/**

 Computes circumference

 @return circumference of the circle

*/

public double circumference()

{

 return (2 * Math.PI * radius);

}

 //getRadius deleted

CRC_C6547_CH007.indd 382CRC_C6547_CH007.indd 382 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 383

/**

 Mutator method for the radius

 @param inRadius new value for the radius

*/

 private void set Radius(double inRadius)

 //public :> private

{

 if(inRadius >= 0)

 radius = inRadius;

 else

 radius = 0;

}

/**

 toString method

 @return radius as a String

*/

public String toString()

{

 String str;

 str = "Radius is " + radius ;

 return str;

 }

}

/**

 Cylinder created by inheriting a circle with protected

attribute

*/

public class CylinderProInherited extends CirclePro

{ //class names changed

 private double height;

 /**

 Constructor creates a cylinder with default values

 */

 public CylinderProInherited() //constructor name changed

 {

 super();

 setHeight(0);

 }

 /**

 Constructor creates a cylinder with given radius and

 height

CRC_C6547_CH007.indd 383CRC_C6547_CH007.indd 383 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

384 ■ Java Programming Fundamentals

 @param inRadius radius of the cylinder

 @param inHeight height of the cylinder

 */

 public CylinderProInherited(double inR adius, double

 inHeight) //constructor name changed

 {

 super(inRadius);

 setHeight(inHeight);

 }

 /**

 Computes and returns surface area

 @return area of the cylinder

 */

 public double area()

 {

 return (super.circumference() * height + 2 *

 super.area());

 }

 /**

 Computes and returns volume

 @return volume of the cylinder

 */

 public double volume()

 {

 return (super.area() * height);

 }

 /**

 Determines whether or not height > 4 * radius

 @return true if cylinder is tall

 */

 public boolean isTall()

 {

 return (height >= 4 * radius); //getR adius() :> radius

 }

 /**

 Mutator method for radius

 @param inRadius new value for radius

 */

 public void setRadius(double inRadius)

 {

 radius = inRadius;

 }

CRC_C6547_CH007.indd 384CRC_C6547_CH007.indd 384 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 385

 /**

 Mutator method for height

 @param inHeight new value for height

 */

 public void setHeight(double inHeight)

 {

 height = inHeight;

 }

 /**

 Accessor method for radius

 @return radius

 */

 public double getRadius()

 {

 return radius;

 }

 /**

 Accessor method for height

 @return height

 */

 public double getHeight()

 {

 return height;

 }

 /**

 toString method

 @return radius and height as a String

 */

 public String toString()

 {

 String str;

 str = super.toString() + "; Height is " + height;

 return str;

 }

}

Observe that inside isTall method, the protected attribute radius of the class
CirclePro is directly accessed. As mentioned before, both radius and super.
radius mean the attribute radius of the superclass. However, super.radius high-
lights the fact that radius is an attribute of the superclass.

Th e task of creating a class CircleProCylinderInherited modifying the class
CircleCylinderInherited is left as Programming Exercise 1.

CRC_C6547_CH007.indd 385CRC_C6547_CH007.indd 385 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

386 ■ Java Programming Fundamentals

Advanced Topic 7.3: Design Options
protected Operations

As in the case of attributes, operations can also be declared protected. For instance,
you could have defi ned circumference as protected method of the class Circle.
Th e major advantage of such a design decision is to limit the method circumference
to classes that inherit Circle. In Example 7.11, CylinderInherited can treat cir-
cumference similar to any other public service of the Circle. However, the class
CircleCylinderInherited cannot invoke the method circumference.

package Access

You have already seen the access modifi ers public, protected, and private. Th ey
can be specifi ed in connection with attributes, services, and classes. You can opt for no
access modifi er at all. Th is results in package access. Note that every class in the same
package has access to an item with package access and all classes not in the package
have no access.

Modifi er final

You have seen the keyword final in Chapter 2. Th e keyword final is used to declare
constants. You can also use final modifi er in the context of a method or a class. A method
marked as final cannot be overridden in a subclass.

Th e syntax template of a value-returning static method is as follows:

[accessMo difier] final [static] returnType methodName

 ([formalParameterList])

{

 [statements]

}

Similarly, a class marked final cannot have any subclass. Th e syntax template of a class
defi nition is as follows:

[accessModifier] final ClassName modifiers

{

 [statements]

}

Th ree concepts protected methods, package access, and final modifi er, though
important, are quite easy to assimilate without a full-blown example and hence such an
example is omitted. However, the next concept is a major design concept. Th erefore, we
introduce it in the next section.

CRC_C6547_CH007.indd 386CRC_C6547_CH007.indd 386 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 387

ABSTRACT CLASSES AND METHODS
A class is marked abstract if any instance of it is an instance of one of its subclasses.
Recall that an instance of a subclass is always an instance of the superclass. For example,
consider the Circle and CylinderInherited class of Example 7.8. Every instance of
the CylinderInherited class is an instance of the Circle class. However, it is possi-
ble to have an instance of Circle class that is not an instance of CylinderInherited.
In other words, it is possible to have an instance of Circle class that is not an instance of
any of its subclasses. Th erefore, Circle is not an abstract class.

So far in this chapter, we have discussed the need to create new subclasses from
existing classes. In some situations, from a design perspective, we would like to cre-
ate a new superclass from existing classes. For example, consider the following situ-
ation. The public library carries various items that can be borrowed by its patrons.
These items can be classified into four categories: books, journals, CDs, and DVDs.
Therefore, you may start with four classes: Book, Journal, CompactDisc, and
DigitalVideoDisc. However, these classes have common attributes and common
services. Therefore, from an object-oriented design perspective, a new class Item can
be defined that abstracts the common attributes and common services. Note that every
instance of the Item class is an instance of one of the subclasses. Therefore, Item is
an abstract class.

As another example, consider the patrons of the library. All patrons fall under two
categories: children and adults. Note that there are many attributes and methods com-
mon to both groups. Th erefore, it is reasonable to create three classes: Patron, Child,
and Adult such that both Child and Adult classes are subclasses of the class Patron.
Observe that Patron is an abstract class since every instance of the Patron is an
instance of one of its subclasses.

Th e concept of an abstract method is quite similar. Let us look at a familiar
example. Consider three classes Cat, Dog, and Person. We can treat all three classes
as subclasses of an abstract class Animal. Note that eat is an operation for all
animals. However, the way an animal eats depends upon the class it belongs. In other
words, even though eat is a common operation for all animals, it is impossible to
implement the eat method in the Animal class. Instead, the implementation is done
at each of the subclasses.

For the rest of this section we explain the Java way of implementing abstract
methods and abstract classes.

A method in Java is specifi ed abstract by explicitly including the keyword abstract
in its heading. Further, an abstract method has no body; rather, the method heading
ends with a semicolon.

Th e following are some examples of abstract methods:

public abstract double computeFine();

public abstract void borrow(Item item);

CRC_C6547_CH007.indd 387CRC_C6547_CH007.indd 387 10/3/2008 12:52:03 PM10/3/2008 12:52:03 PM

Apago PDF Enhancer

388 ■ Java Programming Fundamentals

Here are some important points worth noticing about abstract classes:

 1. An abstract class is declared by placing the keyword abstract immediately
aft er the access modifi er.

 2. If a class has an abstract method, the class becomes abstract.
 3. An abstract class may or may not have an abstract method.
 4. It is legal to declare a reference variable of an abstract class type.
 5. It is illegal to instantiate a reference variable of an abstract class type using its

constructor.
 6. Subclass or subclasses are created by overriding all abstract methods of the

abstract class. Such a subclass is no longer abstract. Th us, a reference vari-
able of an abstract class type is instantiated through a constructor of one of its
subclasses.

To illustrate these concepts, consider the following problem. CTN University has two
types of students: undergraduates and graduates. Registrar services decided to printout a
slim down status report of each student for academic monitoring purposes. In the case of
undergraduate students, the most crucial parameter is the gpa. However, for a graduate
student, the number of years spent is the most important parameter.

From an object-oriented soft ware development approach, the above problem calls for
three classes: Student (an abstract class) and two subclasses GradStudent and
UnderGradStudent of Student class (see Figure 7.6).

Design decisions can be explained as follows:

 1. Th e fi rst name and last name are common to all students. Th erefore, they must be
kept as attributes of the abstract class.

 2. Th e service StudentInfo is common to all students and is kept as member of the
abstract class. However, this operation cannot be implemented at Student class.
Th erefore, it is marked as an abstract operation.

 3. Our decision to keep fi rst name as private and last name as protected is
purely for the purpose of illustrating both private and protected attributes
of a class.

Th e three classes Student, UnderGradStudent, and GradStudent along with
the application program and the output are as follows:

/**

 Superclass for all students

*/

CRC_C6547_CH007.indd 388CRC_C6547_CH007.indd 388 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 389

public abstract class Student

{

 private String firstName;

 protected String lastName;

 /**

 Constructor creates a Student with name null

 */

 public Student()

 {

 firstName = null;

 lastName = null;

 }

 /**

 Constructor creates a Student with given values for

 name

 @param inFirstName first name

FIGURE 7.6 Class diagram of Student and its two subclasses.

Abstract Student

− firstName : String;
#lastName : String;

+Student()
+Student(String, String)
+abstract studentInfo() : String
+getFirstName() : String
+getLastName() : String
+setFirstName(String) : void
+setLastName(String) : void

GradStudent

− year : int;

+GradStudent()
+GradStudent(String, String, int)
+StudentInfo() : String
+getYear() : int
+setYear(int) : void

UnderGradStudent

− gpa : double;

+UnderGradStudent()
+UnderGradStudent(String, String, double)
+StudentInfo() : String
+getGpa() : double
+setGpa(double) : void

CRC_C6547_CH007.indd 389CRC_C6547_CH007.indd 389 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

390 ■ Java Programming Fundamentals

 @param inLastName last name

 */

 public Student(String inFirstName, String inLastName)

 {

 firstName = inFirstName;

 lastName = inLastName;

 }

 /**

 Abstract method creates a Strin g with relevant

 student info

 @return relevant student info as a String

 */

 public abstract String StudentInfo();

 /**

 Accessor method for first name

 @return first name

 */

 public String getFirstName()

 {

 return firstName;

 }

 /**

 Accessor method for last name

 @return last name

 */

 public String getLastName()

 {

 return lastName;

 }

 /**

 Mutator method for last name

 @param inLastName new value for last name

 */

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 Mutator method for first name

 @param inFirstName new value for first name

 */

 public void setFirstName(String inFirstName)

CRC_C6547_CH007.indd 390CRC_C6547_CH007.indd 390 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 391

 {

 firstName = inFirstName;

 }

 /**

 toString method

 @return relevant student information

 */

 public String toString()

 {

 return StudentInfo();

 }

}

/**

 Undergrad student class keeps gpa

*/

public class UnderGradStudent extends Student

{

 private double gpa;

 /**

 Constructor creates an unde rgrad student with

 default values

 @param inFirstName first name

 @param inLastName last name

 */

 public UnderGradStudent()

 {

 super();

 gpa = 0;

 }

 /**

 Constructor creates an undergrad student with given

 values

 @param inFirstName first name

 @param inLastName last name

 @param inGpa gpa

 */

 public UnderGradStudent(St ring inFirstName, String

inLastName, double inGpa)

 {

 super(inFirstName, inLastName);

 gpa = inGpa;

 }

CRC_C6547_CH007.indd 391CRC_C6547_CH007.indd 391 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

392 ■ Java Programming Fundamentals

 /**

 String with relevant student info

 @return relevant student info as a String

 */

 public String StudentInfo()

 {

 return (getFirstName() + " " + lastName + "; gpa = " +

 gpa);

 }

 /**

 Accessor method for gpa

 @return gpa

 */

 public double getGpa()

 {

 return gpa;

 }

 /**

 Mutator method for gpa

 @param inGpa new value of gpa

 */

 public void setGpa(double inGpa)

 {

 gpa = inGpa;

 }

}

/**

 Gradstudent class keeps year

*/

public class GradStudent extends Student

{

 private int year;

 /**

 Constructor creates a Gradstudent with default values

 */

 public GradStudent()

 {

 super();

 year = 1;

 }

 /**

 Constructor creates a Gradstudent with given values

CRC_C6547_CH007.indd 392CRC_C6547_CH007.indd 392 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 393

 @param inFirstName first name

 @param inLastName last name

 @param inYear year

 */

 public GradStudent(String inFirstName, String inLastName,

 int inYear)

 {

 super(inFirstName, inLastName);

 year = inYear;

 }

 /**

 String with relevant student info

 @return relevant student info as a String

 */

 public String StudentInfo()

 {

 return (getFirstName() + " " + lastName + "; year = "

 + year);

 }

 /**

 Accessor method for year

 */

 public int getYear()

 {

 return year;

 }

 /**

 Mutator method for year

 @param inYear new value for year

 */

 public void setYear(int inYear)

 {

 year = inYear;

 }

}

import java.io.*;

import java.util.*;

/**

 The testing class for Student and its subclasses

*/

public class AbstractClassTesting

{

CRC_C6547_CH007.indd 393CRC_C6547_CH007.indd 393 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

394 ■ Java Programming Fundamentals

 static Scanner scannedInfo = new Scanner(System.in);

 public static void main(String[] args) throws IOException

 {

 Student studentRef;

 String fname, lname;

 double gradePtAvg;

 int yearAtSchool;

 int topSelection; //holds top level the selection

 System.out.println

 ("\t\t\tWelcome to Student Info. Service");

 displayTopMenu();

 topSelection = scannedInfo.nextInt();

 while(topSelection != 0)

 {

 switch(topSelection)

 {

 case 1:

 System.out.println

("tEnter first name, last name and gpa");

 fname = scannedInfo.next();

 lname = scannedInfo.next();

 gradePtAvg = scannedInfo.nextDouble();

 studentRef = new UnderGradStudent

(fname, lname, gradePtAvg);

 System.out.println

(studentRef StudentInfo());

 break;

 case 2:

 System.out.println("tEnter first

 name, last name and year at school");

 fname = scannedInfo.next();

 lname = scannedInfo.next();

 yearAtSchool = scannedInfo.nextInt();

 studentRef = new GradStudent(fname,

lname, yearAtSchool);

 System.out.println

 (studentRef.StudentInfo());

 break;

 case 0:

 System.out.println("Good Bye");

 return;

 default:

CRC_C6547_CH007.indd 394CRC_C6547_CH007.indd 394 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 395

 System.out.println

 ("Select a number between 0 and 2");

 }//end switch

 displayTopMenu();

 topSelection = scannedInfo.nextInt();

 }//end while (choice != 10)

 }//end main

 /**

 This top menu displayed as the program runs

 */

 private static void displayTopMenu()

 {

 System.out.println("Select from choices given below:");

 System.out.println("Enter 1 for undergraduate student");

 System.out.println("Enter 2 for graduate student");

 System.out.println("Enter 0 to exit");

 }//end displayTopMenu

}

Output

Welcome to Student Info. Service

Select from choices given below:

Enter 1 for undergraduate student

Enter 2 for graduate student

Enter 0 to exit

1

 Enter first name, last name and gpa

Mark Lloyd 3.27

Mark Lloyd; gpa = 3.27

Select from choices given below:

Enter 1 for undergraduate student

Enter 2 for graduate student

Enter 0 to exit

2

 Enter first name, last name and year at school

Eliza Downy 2

Eliza Downy; year = 2

Select from choices given below:

Enter 1 for undergraduate student

Enter 2 for graduate student

CRC_C6547_CH007.indd 395CRC_C6547_CH007.indd 395 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

396 ■ Java Programming Fundamentals

Enter 0 to exit

0

Example 7.12

In this example, we illustrate the power of polymorphism. For this purpose, we intro-
duce two new classes: CorrespondentStudent and PartTimeStudent. To
make this example more illustrative, we create CorrespondentStudent as a sub-
class of Student and PartTimeStudent as a subclass of UnderGradStudent,
respectively. Th us, we have the class diagram shown in Figure 7.7.

Abstract Student

− firstName : String;
#lastName : String;

+Student()
+Student(String, String)
+abstract StudentInfo() : String
+getFirstName() : String
+getLastName() : String
+setFirstName(String) : void
+setLastName(String) : void

GradStudent

− year : int;

+GradStudent()
+GradStudent(String, String, int)
+StudentInfo() : String
+getYear() : int
+setYear(int) : void

UnderGradStudent

− gpa : double;

+UnderGradStudent()
+UnderGradStudent(String, String, double)
+StudentInfo() : String
+getGpa() : double
+setGpa(double) : void

CorrespondentStudent

− state : boolean;

+CorrespondentStudent()
+CorrespondentStudent(String, String, boolean)
+StudentInfo() : String
+getState() : boolean
+setState(boolean) : void

PartTimeStudent

− creditHours : int;

+PartTimeStudent()
+PartTimeStudent(String, String, double, int)
+StudentInfo() : String
+getCreditHours() : int
+setCreditHours(int) : void

FIGURE 7.7 Class diagram of the Student class and its subclasses.

CRC_C6547_CH007.indd 396CRC_C6547_CH007.indd 396 10/3/2008 12:52:04 PM10/3/2008 12:52:04 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 397

/**

 Correspondent student class keeps state

*/

public class CorrespondentStudent extends Student

{

 private boolean state;

 /**

 Constructor creates a corres. student with default values

 */

 public CorrespondentStudent()

 {

 super();

 state = false;

 }

 /**

 Constructor creates a corres. student with given values

 @param inFirstName first name

 @param inLastName last name

 @param inState in or out of state

 */

 public Correspondent Student(String inFirstName, String

 inLastName, boolean inState)

 {

 super(inFirstName, inLastName);

 state = inState;

 }

 /**

 String with relevant student info

 @return relevant student info as a String

 */

 public String StudentInfo()

 {

 return (getFirstName() + " " + lastName + ";

 in state = " + state);

 }

 /**

 Accessor method for state

 @return state

 */

CRC_C6547_CH007.indd 397CRC_C6547_CH007.indd 397 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

398 ■ Java Programming Fundamentals

 public boolean getState()

 {

 return state;

 }

 /**

 Mutator method for state

 @param inState new value of state

 */

 public void setState(boolean inState)

 {

 state = inState;

 }

}

/**

 Part-time student class keeps credit hours

*/

public class PartTimeStudent extends UnderGradStudent

{

 private int creditHours;

 /**

 Constructor creates a part-time student with default values

 @param inFirstName first name

 @param inLastName last name

 @param inGpa gpa

 @param inCreditHours credit hours

 */

 public PartTimeStudent()

 {

 super();

 creditHours = 0;

 }

 /**

 Constructor creates a part-time student with given values

 */

 public PartTimeStudent(String inFirstName, String

 inLastName, double inGpa, int inCreditHours)

 {

 super(inFirstName, inLastName, inGpa);

 creditHours = inCreditHours;

 }

CRC_C6547_CH007.indd 398CRC_C6547_CH007.indd 398 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 399

 /**

 String with relevant student info

 @return relevant student info as a String

 */

 public String StudentInfo()

 {

 return (super.StudentInfo() + ";

credits hours = " + creditHours);

 }

 /**

 Accessor method for credit hours

 @return credit hours

 */

 public boolean getCreditHours()

 {

 return creditHours;

 }

 /**

 Mutator method for credit hours

 @param inCreditHours new value of credit hours

 */

 public void setCreditHours(int inCreditHours)

 {

 creditHours = inCreditHours;

 }

}

import java.io.*;

import java.util.*;

/**

 Application program for student and its subclasses

*/

public class AbstractClassTestingModified

{

 static Scanner scannedInfo = new Scanner(System.in);

 public static void main(String[] args) throws IOException

 {

 Student studentRef;

 String fname, lname;

 double gradePtAvg;

CRC_C6547_CH007.indd 399CRC_C6547_CH007.indd 399 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

400 ■ Java Programming Fundamentals

 int yearAtSchool;

 int stateInfo;

 int creditsEnrolled;

 int topSelection; //holds top level the selection

 System.out.println

("\t\t\tWelcome to Student Info. Service");

 displayTopMenu();

 topSelection = scannedInfo.nextInt();

 while(topSelection != 0)

 {

 switch(topSelection)

 {

 case 1:

 System.out.println

 ("tEnter first name, last name and gpa");

 fname = scannedInfo.next();

 lname = scannedInfo.next();

 gradePtAvg = scannedInfo.nextDouble();

 studentRef = new UnderGrad Student(fname,

 lname, gradePtAvg);

 System.out.println(studentRef.StudentInfo());

 break;

 case 2:

 System.out.println

("tEnter first name, last name

 and year at school");

 fname = scannedInfo.next();

 lname = scannedInfo.next();

 yearAtSchool = scannedInfo.nextInt();

 studentRef = new GradStudent(fname, lname,

 yearAtSchool);

 System.out.println(studentRef.StudentInfo());

 break;

 case 3:

 System.out.println

 ("tEnter first name, last name and

in state info.");

 System.out.println("\t \t\t(0: out of state)");

CRC_C6547_CH007.indd 400CRC_C6547_CH007.indd 400 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 401

 System.out.println("\t\t\t(1: in state)");

 fname = scannedInfo.next();

 lname = scannedInfo.next();

 stateInfo = scannedInfo.nextInt();

 if (stateInfo == 0)

 studentRef = new CorrespondentStudent

 (fname, lname, false);

 else

 studentRef = new CorrespondentStudent

 (fname, lname, true);

 System.out.println(studentRef.StudentInfo());

 break;

 case 4:

 System.out.println

("tEnter first name, last name, gpa and

credits enrolled");

 fname = scannedInfo.next();

 lname = scannedInfo.next();

 gradePtAvg = scannedInfo.nextDouble();

 creditsEnrolled = scannedInfo.nextInt();

 st udentRef = new PartTimeStudent(fname,

 lname,gradePtAvg, creditsEnrolled);

 System.out.println(studentRef.StudentInfo());

 break;

 case 0:

 System.out.println("Good Bye");

 return;

 default:

 System.out.println

("Select a number between 0 and 4");

 }//end switch

 displayTopMenu();

 topSelection = scannedInfo.nextInt();

 }//end while (topSelection != 0)

 }//end main

 /**

 Displays the top level menu

 */

CRC_C6547_CH007.indd 401CRC_C6547_CH007.indd 401 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

402 ■ Java Programming Fundamentals

 private static void displayTopMenu()

 {

 System.out.println

("nSelect from choices given below:");

 System.out.println

("Enter 1 for undergraduate student");

 System.out.println("Enter 2 for graduate student");

 System.out.println

("Enter 3 for correspondent student");

 System.out.println("Enter 4 for part-time student");

 System.out.println("Enter 0 to exit");

 }//end displayTopMenu

}

Output

Welcome to Student Info. Service

Select from choices given below:

Enter 1 for undergraduate student

Enter 2 for graduate student

Enter 3 for correspondent student

Enter 4 for part-time student

Enter 0 to exit

3

 Enter first name, last name and in state info.

 (0: out of state)

 (1: in state)

Malissa Price 0

Malissa Price; in state = false

Select from choices given below:

Enter 1 for undergraduate student

Enter 2 for graduate student

Enter 3 for correspondent student

Enter 4 for part-time student

Enter 0 to exit

4

 Enter first name, last name, gpa and credits enrolled

Darren McGill 2.71 6

Darren McGill; gpa = 2.71; credits hours = 6

CRC_C6547_CH007.indd 402CRC_C6547_CH007.indd 402 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 403

Select from choices given below:

Enter 1 for undergraduate student

Enter 2 for graduate student

Enter 3 for correspondent student

Enter 4 for part-time student

Enter 0 to exit

0

Self-Check

 27. If a class has at least one abstract method, it must be marked .
 28. True or false: An abstract class has at least one abstract method.

Advanced Topic 7.4: Object Class

In Java, all classes are subclasses of a class Object. If a class is not derived from an exist-
ing class, then the class you defi ne is implicitly derived from the Object class. Th us,

public class Student

{

 //members of the class

}

is equivalent to the following:

public class Student extends Object

{

 // members of the class

}

Th e Object class is the topmost class in the inheritance hierarchy. Every other class in
Java inherits all services of the Object class. Some of the constructors and services of the
Object class are presented in Table 7.3.

Notice that toString is a method of the Object class. Recall that toString
method is invoked implicitly by the system during the invocation of print and println
 methods. Th erefore, you are encouraged to provide a toString method in every class.
Th us, you have been overriding the method toString without actually realizing it. You
have been using inheritance with polymorphism all along!

Advanced Topic 7.5: Composition

Composition is another way to use an existing class to create a new class. In fact all appli-
cation programs we developed so far in this book have used composition. In the case
of superclass/subclass relationship, an instance of the subclass is an (“is-a”) instance of
the superclass. In the case of composition, an instance of the newly created class has an
(“has-a”) instance of the existing class as an attribute.

CRC_C6547_CH007.indd 403CRC_C6547_CH007.indd 403 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

404 ■ Java Programming Fundamentals

Earlier in this chapter you have seen creation of a new class CylinderInherited
from an existing class Circle. In this section, we create a new class CylinderComposed
from the same existing class Circle. Th us, in this section, we view a cylinder as having
two attributes: base of the type Circle and height of the type int. Th us, we have the
following:

public class CylinderComposed

{

 private Circle base;

 private double height;

 //constructors and services

}

Observe that base is an attribute. Th e reference super cannot be used to invoke ser-
vices of Circle. Similarly, the keyword super cannot be used inside a constructor of the
CylinderComposed class to instantiate the base. Each of these issues is addressed next.

Accessor and Mutator Methods

Accessor and mutator methods of the height attribute are as in the case of Cylin-
derInherited class. However, radius is not an attribute of this class. Further, base
being a private attribute, none of the methods of the Circle are available to the applica-
tion program. Th erefore, if the application program of the CylinderComposed class needs
to set the radius, such a method needs to be included in the class CylinderComposed.

Note 7.5 While composition allows the designer of the new class to block access to ser-
vices (such as getRadius and setRadius in this case), it necessitates additional coding

TABLE 7.3 Some of the Constructors and Services of the Object Class

Operation Explanation

public Object() Constructor
public boolean equals(Object ob) Returns true if implicit parameter and

the explicit parameter ob have identical
attributes; returns false otherwise

Example:
Object obOne, obTwo;
…
obOne.equals(obTwo)
is true if the obOne and obTwo objects
have identical attributes; and is false
otherwise

protected String toString() Returns a String describing the object
protected void finalize() Th e garbage collector invokes this method

once it determines there is no existing
reference

CRC_C6547_CH007.indd 404CRC_C6547_CH007.indd 404 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 405

if the designer would like to provide those services. In the case of inheritance, the designer
of the new class has no such option. All the public methods of the superclass are directly
available to the application program.

Th us, we have the following accessor and mutator methods:

public double getHeight()

{

 return height;

}

public double getBaseRadius()

{

 return base.getRadius();

}

public void setHeight(double inHeight)

{

 height = inHeight;

}

public void setBaseRadius(double inBaseRadius)

{

 base.setRadius(inBaseRadius);

}

Observe that accessor and mutator methods for the radius attribute of the base need to
invoke the getRadius and setRadius methods of the Circle class.

Constructor

In the case of composition, the constructor must instantiate every attribute that happens to
be an object reference through new operator. Th us, we have the following:

public CylinderComposed(double inRadius, double inHeight)

{

 base = new Circle(inRadius);

 setHeight(inHeight);

}

public CylinderComposed()

{

 base = new Circle();

 setHeight(0);

}

CRC_C6547_CH007.indd 405CRC_C6547_CH007.indd 405 10/3/2008 12:52:05 PM10/3/2008 12:52:05 PM

Apago PDF Enhancer

406 ■ Java Programming Fundamentals

Application-Specifi c Services

We had included three services: area, volume, and isTall in the CylinderInherited
class. To illustrate the diff erences and similarities, we provide these three services next.

public double area()

{

 return (base.circumference() * height + 2 * base.area());

}

public double volume()

{

 return (base.area() * height);

}

public boolean isTall()

{

 return (height >= 4 * base.getRadius());

}

Note that the only diff erence is that the attribute base is used instead of the keyword super.
Similar comments apply to toString method as well. Th us, we have the following:

public String toString()

{

 String str;

 str = base.toString() + "; Height is " + height;

 return str;

}

Th e complete listing of CylinderComposed class, UML 2 diagram, and visual represen-
tations are presented next.

/**

 Cylinder composed from Circle

*/

public class CylinderComposed

{

 private Circle base;

 private double height;

 /**

 Constructor initializes radius and height with default

 values

 */

 public CylinderComposed()

CRC_C6547_CH007.indd 406CRC_C6547_CH007.indd 406 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 407

 {

 base = new Circle();

 setHeight(0);

 }

 /**

 Constructor initializes radius and height

 @param inRadius

 @param inHeight

 */

 public CylinderComposed(double inRadius, double inHeight)

 {

 base = new Circle(inRadius);

 setHeight(inHeight);

 }

 /**

 Computes the surface area

 @return area

 */

 public double area()

 {

 return (base.circumference() * height

+ 2 * base.area());

 }

 /**

 Computes the volume

 @return volume

 */

 public double volume()

 {

 return (base.area() * height);

 }

 /**

 Checks whether or not height is >= 4 times the radius

 @return boolean value

 */

 public boolean isTall()

 {

 return (height >= 4 * base.getRadius());

 }

 /**

 Accessor method for the height

 @return height

CRC_C6547_CH007.indd 407CRC_C6547_CH007.indd 407 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

408 ■ Java Programming Fundamentals

 */

 public double getHeight()

 {

 return height;

 }

 /**

 Accessor method for the radius

 @return radius

 */

 public double getBaseRadius()

 {

 return base.getRadius();

 }

 /**

 Mutator method for the height

 @param inHeight new value for height

 */

 public void setHeight(double inHeight)

 {

 height = inHeight;

 }

 /**

 Mutator method for the radius

 @param inBaseRadius new value for radius

 */

 public void setBaseRadius(double inBaseRadius)

 {

 base.setRadius(inBaseRadius);

 }

 /**

 toString method

 @return a String with radius and height

 */

 public String toString()

 {

 String str;

 str = base.toString() + "; Height is " + height;

 return str;

 }

}

CRC_C6547_CH007.indd 408CRC_C6547_CH007.indd 408 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 409

Th e class diagram in UML 2 notation is shown in Figure 7.8.
Consider the following statements that create one instance of Circle, one instance

of CylinderInherited, and one instance of CylinderComposed. An instance of
CylinderInherited is included here for easy comparison.

Circle round = new Circle(8.74);

CylinderInherited roller = new CylinderInherited(4.23, 20.45);
CylinderComposed solidTube = new CylinderComposed(4.23, 20.45);

Th e reference variables round, roller, and solidTube along with the objects created
can be visualized as shown in Figure 7.9.

Circle

− radius : double

+Circle()
+Circle(double)
+area() : double
+circumference() : double
+getRadius() : double
+setRadius(double) : void
+toString() : String

CylinderComposed

− base : Circle
− height : double

+CylinderComposed()
+CylinderComposed(double, double)
+area() : double
+isTall() : boolean
+volume() : double
+getHeight() : double
+getBaseRadius() : double
+setHeight(double) : void
+setBaseRadius(double) : void
+toString() : String

FIGURE 7.8 Class diagram of CylinderComposed and Circle.

CRC_C6547_CH007.indd 409CRC_C6547_CH007.indd 409 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

410 ■ Java Programming Fundamentals

Methods that are accessible through the reference variable solidTube are the only
services of the class CylinderComposed. Note that since base is a private attribute,
all services associated with base are hidden from the user.

Note that Java statements

System.out.println(roller);

System.out.println(solidTube);

FIGURE 7.9 Visualization of inheritance and composition.

round

8.74radius

area

circumference

getRadius

setRadius

toString

roller

4.23radius

area

circumference

getRadius

setRadius

toString

20.45height

area

volume

getHeight

setHeight

toString

isTall

solidTube

4.23radius

area

circumference

getRadius

setRadius

toString

base

20.45height

area

volume

getHeight

setHeight

toString

isTall

getBaseRadius

setBaseRadius

CRC_C6547_CH007.indd 410CRC_C6547_CH007.indd 410 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 411

will produce the same output as

Radius is 4.23; Height is 20.45

We conclude this example by the following Java program that illustrates the use of all
methods of the class CylinderComposed:

import java.text.DecimalFormat;

/**

 Application class to test the Cylind er created by composition

*/

public class CircleCylinderComposed

{

 public static void main(String[] args)

 {

 DecimalFormat twoDecimalPlaces

 = new DecimalFormat("0.00"); // 1

 CylinderComposed solidTubeOne

 = new CylinderComposed(); // 2

 CylinderComposed solidTube

 = new CylinderComposed(4.23, 20.45); // 3
 System.out.println("(4) solidTubeOne data: "

 + solidTubeOne); // 4

 System.out.println("(5) solidTube data: "

 + solidTube); // 5

 System.out.println("\nMethods of Cylinder Composed"); // 6

 System.out.println("(7) Area of solidTube: "

 + twoDecimalPlaces.format(solidTube.area())); // 7

 System.out.println("(8) Volume of solidTube: "

 + twoDecimalPlaces.format(solidTube.volume())); // 8

 if (solidTube.isTall())

 System.out.println("(9) The solidTube is tall.");

// 9

 else

 System.out.println("(10) The solidTube is not

 tall."); // 10

 solidTubeOne.setHeight(12.7); // 11

 System.out.println("(12) Height of solidTubeOne : "

 + solidTubeOne.getHeight()); // 12

 solidTubeOne.setBaseRadius(6.98); // 13

 System.out.println("(14) Radius of solidTubeOne : "

 + solidTubeOne.getBaseRadius()); // 14

 }

}

CRC_C6547_CH007.indd 411CRC_C6547_CH007.indd 411 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

412 ■ Java Programming Fundamentals

Output

(4) solidTubeOne data: Radius is 0.0; Height is 0.0

(5) solidTube data: Radius is 4.23; Height is 20.45

Methods of CylinderComposed

(7) Area of solidTube: 655.94
(8) Volume of solidTube: 1149.54
(9) The solidTube is tall.

(12) Height of solidTubeOne: 12.7
(14) Radius of solidTubeOne: 6.98

INTERFACE
In Java, an interface can be thought of as an abstract class with no attribute. As
mentioned before, Java does not allow multiple inheritance. Th us, Java allows single inheri-
tance along with multiple interfaces. We will be using interfaces in Chapter 8. Th e following
points are worth noting:

 1. An interface can have named constants.
 2. An interface cannot be instantiated (as in the case of an abstract class).
 3. It is legal to declare reference variable of the interface type (as in the case of an

abstract class).

As you have seen in this chapter, in the case of inheritance, we use the keyword extends.
Similarly, in the case of interfaces, we use the keyword implements. We will cover all
these ideas in detail in Chapter 8.

Self-Check

 29. True or false: An interface cannot be instantiated.
 30. True or false: It is legal to declare reference variable of the interface type.

CASE STUDY 7.1: PAYROLL FOR SMALL BUSINESS: REDESIGNED
Having learned inheritance, Ms. Smart has decided to redesign her payroll program for
small business. Th e program specifi cation remains the same.

Last time we saw Ms. Smart, who had three classes: FullTimeEmp, PartTimeEmp,
and SalesEmp. Ms. Smart has decided to revisit the create classes step.

Th e UML 2 diagram of FullTimeEmp, PartTimeEmp, and SalesEmp classes is
shown in Figure 7.10.

Th ere are two attributes that are common to all three employee types: fi rst name and
last name. Every employee presently in the system or who may join in future must have
a name. If there happens to be a new class of employees, they also will have fi rst name

CRC_C6547_CH007.indd 412CRC_C6547_CH007.indd 412 10/3/2008 12:52:06 PM10/3/2008 12:52:06 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 413

and last names as attributes. Th us, fi rst name and last name are attributes for any type of
employee, present or future.

Now consider the services. Since it is a payroll program, every employee must have an
operation to compute the compensation. Similar is the case for creating pay stub. Th erefore,
both computeCompensation and createPayStub are services of any employee.
However, these methods vary by the employee type. Th erefore, for a general employee these
methods are to be declared abstract. Recall that once a method is abstract, the class
itself becomes abstract. Th erefore, a new abstract class Employee is introduced.
Existing three classes FullTimeEmp, PartTimeEmp, and SalesEmp change accord-
ingly and become the subclasses of the abstract class Employee. In all four classes we
include constructors instead of depending on the system-provided default constructor. Th e
UML 2 diagram for all four classes is shown in Figure 7.11 and the corresponding Java code
is as follows:

/**

 Abstract class Employee

*/

public abstract class Employee

{

 private String firstName;

 private String lastName;

/**

 Constructor initializes name with default values

*/

public Employee()

FullTimeEmp

− firstName : String
− lastName : String
− baseSalary : double
− hoursWorked : int

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getBaseSalary() : double
+getHoursworked() : int
+setFirstName(String) : void
+setLastName(String) : void
+setBaseSalary(double) : void
+setHoursworked(int) : void
+toString() : String

SalesEmp

− firstName : String
− lastName : String
− baseSalary : double
− salesVolume : double

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getBaseSalary() : double
+getSalesVolume() : double
+setFirstName(String) : void
+setLastName(String) : void
+setBaseSalary(double) : void
+setSalesVolume(double) : void
+toString() : String

PartTimeEmp

− firstName : String
− lastName : String
− payPerHour : double
− hoursWorked : int

+computeCompensation() : double
+createPayStub() : String
+getFirstName() : String
+getLastName() : String
+getPayPerHour() : double
+getHoursworked() : int
+setFirstName(String) : void
+setLastName(String) : void
+setPayPerHour(double) : void
+setHoursworked(int) : void
+toString() : String

FIGURE 7.10 Th ree types of employees.

CRC_C6547_CH007.indd 413CRC_C6547_CH007.indd 413 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

414 ■ Java Programming Fundamentals

 {

 firstName = null;

 lastName = null;

 }

 /**

 Constructor initializes first and last name

 @param inFirstName first name

 @param inLastName last name

 */

 public Employee(String inFirstName, String inLastName)

 {

 firstName = inFirstName;

 lastName = inLastName;

 }

 /**

 Computes compensation

FullTimeEmployee

− baseSalary : double
− hoursWorked : int

+FullTimeEmployee()
+FullTimeEmployee (String,

String,double,int)
+computeCompensation() : double
+createPayStub() : String
+getBaseSalary() : double
+getHoursworked() : int
+setBaseSalary(double) : void
+setHoursworked(int) : void
+toString() : String

PartTimeEmployee

− payPerHour : double
− hoursWorked : int

+PartTimeEmployee()
+PartTimeEmployee (String,

String,double,int)
+computeCompensation() : double
+createPayStub() : String
+getPayPerHour() : double
+getHoursworked() : int
+setPayPerHour(double) : void
+setHoursworked(int) : void
+toString() : String

SalesEmployee

− baseSalary : double
− salesVolume : double

+SalesEmployee()
+SalesEmployee (String,

String,double,double)
+computeCompensation() : double
+createPayStub() : String
+getBaseSalary() : double
+getSalesVolume() : double
+setBaseSalary(double) : void
+setSalesVolume(double) : void
+toString() : String

Abstract Employee

− firstName : String
− lastName : String

+Employee()
+Employee(String, String)
+abstract computeCompensation() : double
+abstract createPayStub() : String
+getFirstName() : String
+getLastName() : String
+setFirstName(String) : void
+setLastName(String) : void
+toString() : String

FIGURE 7.11 Employee and its subclasses.

CRC_C6547_CH007.indd 414CRC_C6547_CH007.indd 414 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 415

 @return compensation

 */

 public abstract double computeCompensation();

 /**

 Creates pay stub

 @return pay stub

 */

 public abstract String createPayStub();

 /**

 Accessor method for the first name

 @return first name

 */

 public String getFirstName()

 {

 return firstName;

 }

 /**

 Accessor method for the last name

 @return last name

 */

 public String getLastName()

 {

 return lastName;

 }

 /**

 Mutator method for the first name

 @param inFirstName new value for first name

 */

 public void setFirstName(String inFirstName)

 {

 firstName = inFirstName;

 }

 /**

 Mutator method for the last name

 @param inLastName new value for last name

 */

 public void setLastName(String inLastName)

 {

 lastName = inLastName;

 }

 /**

 toString method

CRC_C6547_CH007.indd 415CRC_C6547_CH007.indd 415 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

416 ■ Java Programming Fundamentals

 @return a String with name

 */

 public String toString()

 {

 String str;

 str = firstName + " " + lastName;

 return str;

 }

}

/**

 FullTimeEmployee inherited from Employee

*/

public class FullTimeEmployee extends Employee

{

 private double baseSalary;

 private int hoursWorked;

 /**

 Constructor initializes with default values

 */

 public FullTimeEmployee()

 {

 super();

 baseSalary = 0.0;

 hoursWorked = 0;

 }

 /**

 Constructor initializes all values

 @param inFirstName the first name

 @param inLastName the last name

 @param inBaseSalary base salary

 @param inHoursWorked hours worked

 */

 public FullTimeEmployee(String inFirstName, String

 inLastName, double inBaseSalary, int inHoursWorked)

 {

 super(inFirstName, inLastName);

 baseSalary = inBaseSalary;

 hoursWorked = inHoursWorked;

 }

 /**

 Computes compensation

 @return compensation

CRC_C6547_CH007.indd 416CRC_C6547_CH007.indd 416 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 417

 */

 public double computeCompensation()

 {

 double compensation, payPerHour;

 payPerHour = baseSalary /80;

 if (hoursWorked > 80)

 {

 compensation = baseSalary +

 (hoursWorked - 80) * 1.5 * payPerHour;

 }

 else

 {

 compensation = baseSalary;

 }

 return compensation;

 }

 /**

 Creates pay stub

 @return pay stub

 */

 public String createPayStub()

 {

 DecimalForm at twoDecimalPlaces = new

 DecimalFormat("0.00");

 double salary;

 salary = computeCompensation();

 String outStr;

 outStr = "\t\t\t" +

 "HEARTLAND CARS OF AMERICA" +

 "\n\n\t" +

 getFirstName() + " " + getLastName() +

 "\n\n" +

 "\n\tBasic Salary \t$" +

 twoDecimalPlaces.format(baseSalary) +

 "\n\tHours Worked \t " + hoursWorked +

 "\n\tPay \t$" +

 twoDecimalPlaces.format(salary) +

 "\n\n";

 return outStr;

 }

CRC_C6547_CH007.indd 417CRC_C6547_CH007.indd 417 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

418 ■ Java Programming Fundamentals

 /**

 Accessor method for the base salary

 @return base salary

 */

 public double getBaseSalary()

 {

 return baseSalary;

 }

 /**

 Accessor method for the hours worked

 @return hours worked

 */

 public int getHoursWorked()

 {

 return hoursWorked;

 }

 /**

 Mutator method for base salary

 @param inBaseSalary new value of base salary

 */

 public void setBaseSalary(int inBaseSalary)

 {

 baseSalary = inBaseSalary;

 }

 /**

 Mutator method for hours worked

 @param inHoursWorked new value of hours worked

 */

 public void setHoursWorked (int inHoursWorked)

 {

 hoursWorked = inHoursWorked;

 }

 /**

 toString method

 @return a String with name

 */

 public String toString()

 {

 String str;

 str = "Full time employee : " + super.toString();

CRC_C6547_CH007.indd 418CRC_C6547_CH007.indd 418 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 419

 return str;

 }

}

/**

 PartTimeEmployee inherited from Employee

*/

public class PartTimeEmployee extends Employee

{

 private double payPerHour;

 private int hoursWorked;

 /**

 Constructor initializes with default values

 */

 public PartTimeEmployee()

 {

 super();

 payPerHour = 0.0;

 hoursWorked = 0;

 }

 /**

 Constructor initializes all values

 @param inFirstName the first name

 @param inLastName the last name

 @param inPayPerHour pay per hour

 @param inHoursWorked hours worked

 */

 public PartTimeEmployee(String inFirstName, String inLastName,

double inPayPerHour, int inHoursWorked)

 {

 super(inFirstName, inLastName);

 payPerHour = inPayPerHour;

 hoursWorked = inHoursWorked;

 }

 /**

 Computes compensation

 @return compensation

 */

 public double computeCompensation()

CRC_C6547_CH007.indd 419CRC_C6547_CH007.indd 419 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

420 ■ Java Programming Fundamentals

 {

 double compensation;

 compensation = payPerHour * hoursWorked;

 return compensation;

 }

 /**

 Creates pay stub

 @return pay stub

 */

 public String createPayStub()

 {

 DecimalFormat twoDecimalPlaces = new

DecimalFormat("0.00");

 double salary;

 salary = computeCompensation();

 String outStr;

 outStr = "\t\t\t" +

 "HEARTLAND CARS OF AMERICA" +

 "\n\n\t" +

 getFirstName() + " " + getLastName() +

 "\n\n" +

 "\n\tSalary/Hour \t$" +

 twoDecimalPlaces.format(payPerHour) +

 "\n\tHours worked \t " + hoursWorked +

 "\n\tPay \t$" +

 twoDecimalPlaces.format(salary) +

 "\n\n";

 return outStr;

 }

 /**

 Accessor method for the pay per hour

 @return pay per hour

 */

 public double getPayPerHour()

 {

 return payPerHour;

 }

 /**

 Accessor method for the hours worked

 @return hours worked

 */

CRC_C6547_CH007.indd 420CRC_C6547_CH007.indd 420 10/3/2008 12:52:07 PM10/3/2008 12:52:07 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 421

 public int getHoursWorked()

 {

 return hoursWorked;

 }

 /**

 Mutator method for pay per hour

 @param inPayPerHour new value of pay per hour

 */

 public void setPayPerHour (double inPayPerHour)

 {

 payPerHour = inPayPerHour;

 }

 /**

 Mutator method for hours worked

 @param inHoursWorked new value of hours worked

 */

 public void setHoursWorked (int inHoursWorked)

 {

 hoursWorked = inHoursWorked;

 }

 /**

 toString method

 @return a String with name

 */

 public String toString()

 {

 String str;

 str = "Part-time employee : " + super.toString();

 return str;

 }

}

/**

 SalesEmployee inherited from Employee

*/

public class SalesEmployee extends Employee

{

 private double baseSalary;

 private double salesVolume;

CRC_C6547_CH007.indd 421CRC_C6547_CH007.indd 421 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

422 ■ Java Programming Fundamentals

 /**

 Constructor initializes with default values

 */

 public SalesEmployee()

 {

 super();

 baseSalary = 0.0;

 salesVolume = 0.0;

 }

 /**

 Constructor initializes all values

 @param inFirstName the first name

 @param inLastName the last name

 @param inBaseSalary base salary

 @param inSalesVolume sales volume

 */

 public SalesEmployee(String inFirstName, String inLastName,

double inBaseSalary, double inSalesVolume)

 {

 super(inFirstName, inLastName);

 baseSalary = inBaseSalary;

 salesVolume = inSalesVolume;

 }

 /**

 Computes compensation

 @return compensation

 */

 public double computeCompensation()

 {

 double compensation;

 compensation = baseSalary + 0.02 * salesVolume;

 return compensation;

 }

 /**

 Creates pay stub

 @return pay stub

 */

 public String createPayStub()

CRC_C6547_CH007.indd 422CRC_C6547_CH007.indd 422 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 423

 {

 DecimalFormat twoDecimalPlaces = new

DecimalFormat("0.00");

 double salary;

 salary = computeCompensation();

 String outStr;

 outStr = "\t\t\t" +

 "HEARTLAND CARS OF AMERICA" +

 "\n\n\t" +

 getFirstName()+ " " + getLastName() +

 "\n\n" +

 "\n\tBasic Salary \t$" +

 twoDecimalPlaces.format(baseSalary) +

 "\n\tSales Volume \t$" +

 twoDecimalPlaces.format(salesVolume) +

 "\n\tPay \t$" +

 twoDecimalPlaces.format(salary) +

 "\n\n";

 return outStr;

 }

 /**

 Accessor method for the base salary

 @return base salary

 */

 public double getBaseSalary()

 {

 return baseSalary;

 }

 /**

 Accessor method for the sales volume

 @return sales volume

 */

 public double getSalesVolume()

 {

 return salesVolume;

 }

 /**

 Mutator method for the base salary

 @param inBaseSalary new value of base salary

 */

CRC_C6547_CH007.indd 423CRC_C6547_CH007.indd 423 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

424 ■ Java Programming Fundamentals

 public void setBaseSalary(int inBaseSalary)

 {

 baseSalary = inBaseSalary;

 }

 /**

 Mutator method for the sales volume

 @param inSalesVolume new value of sales volume

 */

 public void setSalesVolume (double inSalesVolume)

 {

 salesVolume = inSalesVolume;

 }

 /**

 toString method

 @return a String with name

 */

 public String toString()

 {

 String str;

 str = "Sales employee : " + super.toString();

 return str;

 }

}

import java.util.*;

import java.io.*;

/**

 Application program for Heartland Cars of America

*/

public class HeartlandCarsOfAmericaEmployeePayRoll

{

 //public static void main (String[] args)

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 //Create reference variable of all three employee types

 Employee employee = null;

 //Declare variables to input

 char inputEmployeeType;

 String inputFirstName;

CRC_C6547_CH007.indd 424CRC_C6547_CH007.indd 424 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 425

 String inputLastName;

 double inputBaseSalary;

 double inputPayPerHour;

 int inputSalesVolume;

 int inputHoursWorked;

 //Get two input values

 // Scanner scannedInfo = new Scanner(System.in);

 Scanner scannedInfo = new Scanner(

 new File("C:\\Employee.dat"));

 PrintWriter outFile = new PrintWriter(

 new FileWriter("C:\\payroll.dat"));

 while (scannedInfo.hasNext())

 {

 inputEmployeeType

= scannedInfo.next().charAt(0);

 switch (inputEmployeeType)

 {

 case 'F' :
 case 'f' :

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputBaseSalary

= scannedInfo.nextDouble();

 inputHoursWorked = scannedInfo.nextInt();

 //create an object

 employee = new FullTimeEmployee

 (inputFirstName, inputLastName,

inputBaseSalary, inputHoursWorked);

 break;

 case 'P' :
 case 'p' :

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputPayPerHour

= scannedInfo.nextDouble();

 inputHoursWorked = scannedInfo.nextInt();

 //create an object an d initialize attributes

CRC_C6547_CH007.indd 425CRC_C6547_CH007.indd 425 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

426 ■ Java Programming Fundamentals

 em ployee = new PartTimeEmployee

(inputFirstName, inputLastName,

inputPayPerHour, inputHoursWorked);

 break;

 case 'S' :
 case 's' :

 inputFirstName = scannedInfo.next();

 inputLastName = scannedInfo.next();

 inputBaseSalar y

= scannedInfo.nextDouble();

 inputSalesVolume = scannedInfo.nextInt();

 //create an object and initialize

 attributes

 employee = new SalesEmployee

 (inputFirstName,inputLastName,

 inputBaseSalary, inputSalesVolume);

 break;

 default:

 System.out.println("Check data file.");

 return;

 } // End of switch

 //invoke the createPayStub method

 outFile.println(employee.createPayStub());

 } // End of while

 outFile.close();

 } // End of main

} // End of class

Input File Content

F Adam Smith 2450.00 87

F Joyce Witt 3425.67 80

F Mike Morse 1423.56 75

P Chris Olsen 34.56 34

S Patrick McCoy 1040.57 856985

CRC_C6547_CH007.indd 426CRC_C6547_CH007.indd 426 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 427

Output

HEARTLAND CARS OF AMERICA

Adam Smith

Basic Salary $2450.00

Hours Worked 87

Pay $2771.56

HEARTLAND CARS OF AMERICA

Joyce Witt

Basic Salary $3425.67

Hours Worked 80

Pay $3425.67

 HEARTLAND CARS OF AMERICA

Mike Morse

Basic Salary $1423.56

Hours Worked 75

Pay $1423.56

HEARTLAND CARS OF AMERICA

Chris Olsen

Salary/Hour $34.56

Hours worked 34

Pay $1175.04

HEARTLAND CARS OF AMERICA

Patrick McCoy

Basic Salary $1040.57

Sales Volume $856985.00

Pay $18180.27

REVIEW
 1. From a data-centric perspective, an object is a collection of attributes and operations

that manipulate the data.
 2. Grouping data and operations on data is called encapsulation.

CRC_C6547_CH007.indd 427CRC_C6547_CH007.indd 427 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

428 ■ Java Programming Fundamentals

 3. Th e fact that implementation is hidden from the user is known as information
hiding.

 4. From a client–server perspective, every object in the application provides some
service.

 5. Th e delegation of task by a server is completely hidden to the client and as far as the
client is concerned, the responsibility rests with the server.

 6. From a design perspective, you consider an object as an instance of a class.
 7. Each class is an abstraction of some real-life entity or concept.
 8. Th e superclass/subclass relationship establishes an inheritance hierarchy.
 9. In a subclass a service can be overridden. Th is form of inheritance is known as inher-

itance with polymorphism.
 10. Th ere are two forms of inheritance: inheritance with polymorphism and inheritance

without polymorphism.
 11. Java does not permit multiple inheritance.
 12. All private members of a superclass are not directly accessible to any other class,

including the subclass.
 13. All public members of a superclass are directly accessible to any other class, includ-

ing the subclass.
 14. All protected members of a superclass are directly accessible to subclass but not to

any other class.
 15. Method overloading refers to two or more methods with identical names but diff er-

ent signatures within a class.
 16. Method overriding refers to two methods with identical names and identical signa-

tures, one in the superclass and the other in the subclass.
 17. Use super as an implicit parameter inside all methods of a subclass that are not

marked static to invoke a method of a superclass that is not marked static.
 18. Invoking the constructor of the superclass is the fi rst executable statement inside the

constructor of the subclass.
 19. An instance of a subclass is always an instance of the superclass. Th erefore, a subclass

reference can be assigned to a superclass reference.
 20. A method marked as final cannot be overridden in a subclass.
 21. A class marked as final cannot have any subclass.
 22. A class is marked abstract if any instance of it is an instance of one of its

subclasses.
 23. If a class has an abstract method, the class becomes abstract.
 24. An abstract class need not contain any abstract method.
 25. An abstract class can have reference variables.
 26. Th e Object class is the topmost class in the inheritance hierarchy.

CRC_C6547_CH007.indd 428CRC_C6547_CH007.indd 428 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 429

 27. Every other class in Java inherits all services of the Object class.
 28. In the case of composition, the constructor must instantiate every attribute that hap-

pens to be an object reference through a new operator.
 29. In Java, interfaces can be thought of as abstract classes with no attribute.

EXERCISES
 1. Mark the following statements as true or false:
 a. You, as a user, need not understand the technical details inside your iPhone is an

example of encapsulation.
 b. In a program, an object will be either a client or a server. It cannot be both.
 c. Th e subclass inherits all attributes and services of the superclass.
 d. Rectangle is a subclass of square.
 e. Polymorphism refers to the presence of a method having the same name but

possibly diff erent signatures in a superclass and subclass.
 f. Th e keyword extends is used to create a subclass from a superclass.
 g. A protected attribute is accessible in the subclass.
 h. Th e keyword super references the implicit attribute as an instance of the

superclass.
 i. It is legal to modify an inherited private attribute.
 j. Th e new operator is not allowed inside a constructor.
 k. For a class to be abstract, it must have at least one abstract method.
 l. It is legal to create instances of an abstract class.
 m. It is legal to create reference variables of an abstract class.

 2. Fill in the blanks
 a. As a designer of the class you may mark a class to prevent

creation of any subclass.
 b. A member is available only in the class and its subclass.
 c. data member of a subclass is inherited by a superclass.
 d. Let B be a subclass of A. Let try() be a method of A. Inheritance without

polymorphism means method try() is implemented in B.
 e. Let B be a subclass of A. Let try() be a method of both classes. In class B, you

invoke try of class A using the keyword .
 f. If you see the code “X extends Y” in a Java program, X is a of Y.
 g. In a subclass constructor, you invoke the default constructor of the superclass as

.
 h. If no access modifi er is specifi ed, the class has access.

CRC_C6547_CH007.indd 429CRC_C6547_CH007.indd 429 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

430 ■ Java Programming Fundamentals

 3. Consider three classes A, B, and C. Class A is a superclass of B and C. Th e class A
has two methods: void alpha() and void beta(). Th e class B has two methods:
void beta() and void gamma(). Th e class C has two methods: void alpha()
and void gamma(). Further assume that a is an instance of A, b is an instance of B,
and c is an instance of C. Indicate whether or not the segment of code has any error.
If there is an error that can be corrected through proper casting, then correct it. Once
the segment of code is error free, identify the method that is being invoked.

 i. a = b; a.beta();
 ii. a = b; …; b = a; b.beta();

 iii. a = b; …; c = a; c.alpha();

 iv. a = b; …; b = a; b.gamma();

 v. b.alpha();
 vi. a = b; …; b = (C) a; b.beta();

 vii. a = b; …; a.alpha();

 viii. a = c; …; a.alpha();

 4. Determine whether or not each of the following is a superclass/subclass pair. If so,
identify the superclass. Can the superclass be an abstract class? If not, suggest a
possible superclass that is abstract.

 a. Person, car
 b. Vehicle, car
 c. Course, test
 d. Country, USA
 e. Car, truck
 f. Employee, person
 g. House, building
 h. Part-time employee, full-time employee
 i. Animal, dog
 j. Doctor, health care professional
 5. Consider three classes BankAccount, SavingsAccount, and Checking

Account maintained by your local bank. A person having a savings account receives
interest at the end of each month based on his average balance. However, the savings
account allows only three withdrawals for each month. Th e checking account
receives no interest and it allows unlimited number of withdrawals per month. Based
on these facts, answer the following:

 a. Is there any superclass/subclass relationship(s) among BankAccount,
SavingsAccount, and CheckingAccount?

 b. Suggest the best possible candidate to be an abstract class. For the remaining
questions, assume that the class you have suggested is chosen abstract.

CRC_C6547_CH007.indd 430CRC_C6547_CH007.indd 430 10/3/2008 12:52:08 PM10/3/2008 12:52:08 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 431

 c. Suggest an attribute for the abstract class.
 d. Suggest a method for the abstract class.
 e. Suggest an abstract method for the abstract class.
 f. Suggest a method for one of the classes that is not a member of the other two

classes, including the abstract class.
 6. Let ClassOne be superclass of ClassTwo. Assume that ClassOne has a method

with the following heading:

 public void testing()

 and it is overridden in class ClassTwo. Answer the following:
 a. How to invoke testing of ClassTwo inside another method of ClassTwo?
 b. How to invoke testing of ClassOne inside another method of ClassTwo?
 c. How to invoke testing of ClassOne inside the method testing of

ClassTwo?
 d. How to invoke testing of ClassTwo inside a method of ClassThree.
 e. How to invoke testing of ClassOne inside a method of ClassThree.
 f. Assume that ClassThree, one of the methods, have a local variable z of type

ClassOne. Is the statement z = new ClassTwo(); legal?
 g. Assume that ClassThree has an instance variable z of type ClassOne. Is the

statement z = new ClassTwo(); legal?
 h. Assume that ClassThree, one of the methods, has a local variable z of type

ClassTwo. Is the statement z = new ClassOne(); legal?
 i. Assume that ClassThree has an instance variable z of type ClassTwo. Is the

statement z = new ClassOne(); legal?
 7. Write Java method headings. In all cases assume that the method name is trial,

returns an int, and has two formal parameters of String and double, respec-
tively. If a certain case is not possible, explain the reason.

 a. Marked as abstract; but not static; not final
 b. Marked as abstract and static; but not final
 c. Marked as final and static; but not abstract
 d. Marked as abstract and final; but not static
 8. Given two classes, ClassOne and ClassTwo. Consider the three diff erent ways

a new class, ClassThree, can be created from ClassOne and ClassTwo:
(a) ClassThree is a subclass of ClassOne and there is an attribute of the type
ClassTwo, (b) ClassThree is a subclass of ClassTwo and there is an attribute
of the type ClassOne, and (c) ClassThree has two attributes: one of the type
ClassOne and the other of the type ClassTwo. Explain, as a designer, which
option is the most appropriate?

CRC_C6547_CH007.indd 431CRC_C6547_CH007.indd 431 10/3/2008 12:52:09 PM10/3/2008 12:52:09 PM

Apago PDF Enhancer

432 ■ Java Programming Fundamentals

PROGRAMMING EXERCISES
 1. Create the class CircleProCylinderInherited by modifying the class

CircleCylinderInherited.
 2. Create a class Rectangle having two attributes: length and width. Keep length as

private and width as protected instance variables of type int. Th e Rectangle
class has two services: area and perimeter. Extend the class to ThreeDRectangle
by adding a protected int attribute height. Th e ThreeDRectangle overrides the
method area of the Rectangle class. Further, it has a method volume.

 3. Redesign the Employee class of Programming Exercise 1 of Chapter 6. Create a
class Name with two attributes and then create Employee class by extending the
Name class.

 4. Modify the Name and Employee classes of the Programming Exercise 3 by adding
a copy constructor, copy method, equals method, and compareTo method to
both classes. Two employees are ordered based on their names.

 5. Extend the Employee class of Programming Exercise 3 or 4 to Boss class by intro-
ducing one more attribute noOfEmployees to keep track of the number of employ-
ees to supervise. If you extend Employee class of Programming Exercise 4, add a
copy constructor, copy method, equals method, and compareTo method to
Boss class.

 6. Redo Programming Exercise 3, applying composition instead of inheritance.
 7. Redo Programming Exercise 4, applying composition instead of inheritance.
 8. Redo Programming Exercise 5, applying composition instead of inheritance.
 9. Consider the class CircularCounter of Chapter 3. Create a class Second-

Clock by extending the CircularCounter. Th e second clock counts up to 60.
Th ere are two methods, tick() and tick(int s). tick() increments by 1 second
and tick(int s) increments by s seconds. Create a MinuteClock by extending
 SecondClock and create Clock by extending MinuteClock. (Hint: You may
need to override tick and tick(int s) in one or both of the classes, MinuteClock
and Clock.)

 10. Consider the class CircularCounter of Chapter 3. Create a class Clock having
three attributes minute, second, and hour. Each one is of the type CircularCounter.
Provide methods tick and tick(int s) that will increment the clock by 1 and s sec-
onds, respectively.

 11. Create a class Person from two other classes: Name and Address. Th e Name class
has two attributes: fi rst name and last name. Th e Address class has four attributes:
street, city, state, and zip code. Create Person by extending Name.

 12. Redo Programming Exercise 11, using composition instead of inheritance.
 13. Create two subclasses Student and Faculty of the Person class of either Pro-

gramming Exercise 11 or 12 or start with a Person class with six attributes: fi rst

CRC_C6547_CH007.indd 432CRC_C6547_CH007.indd 432 10/3/2008 12:52:09 PM10/3/2008 12:52:09 PM

Apago PDF Enhancer

Object-Oriented Software Design ■ 433

name, last name, street, city, state, and zip code. Student has two new attributes:
major and year of graduation. Th e faculty has two more attributes: specialty and
salary.

 14. Create an abstract class GeometricFigure with one attribute dimension and
two abstract methods area and magnify. Create each of the following classes.
Th e area of the ellipse can be calculated as Math.PI * a * b, where a and b are
major and minor axes of the ellipse, respectively.

 a. Create Point as a subclass of GeometricFigure. Point has two attributes x
and y, both of type int.

 b. Create Ellipse as a subclass of GeometricFigure. Ellipse has two attributes
a and b, both of type int for major and minor axes.

 c. Create Circle as a subclass of Ellipse. No additional attribute required.
 d. Create Rectangle as a subclass of GeometricFigure. Rectangle has two

attributes a and b, both of type int for length and width.
 e. Create Square as a subclass of Rectangle. No additional attribute required.
 15. Redo Programming Exercise 14, by creating an interface GeometricFigure with

two methods, area and magnify.

ANSWERS TO SELF-CHECK
 1. object
 2. template
 3. Attributes
 4. double
 5. private, public
 6. True
 7. client, server
 8. True
 9. classes, attributes, services
 10. classes
 11. True
 12. False
 13. inherits
 14. override
 15. False
 16. private
 17. overriding

CRC_C6547_CH007.indd 433CRC_C6547_CH007.indd 433 10/3/2008 12:52:09 PM10/3/2008 12:52:09 PM

Apago PDF Enhancer

434 ■ Java Programming Fundamentals

 18. overloading
 19. superclass
 20. public, protected
 21. new
 22. super
 23. True
 24. False
 25. True
 26. True
 27. abstract
 28. False
 29. True
 30. True

CRC_C6547_CH007.indd 434CRC_C6547_CH007.indd 434 10/3/2008 12:52:09 PM10/3/2008 12:52:09 PM

Apago PDF Enhancer

435

C H A P T E R 8

GUI Applications,
Applets, and Graphics

In this chapter you learn

Java concepts
Principles of event-driven programming, event-interface model, interfaces, inner
classes, anonymous inner classes, listener interfaces, GUI components, graphics,
color, and font classes

Programming skills
Design and create three diff erent types of Java GUI programs: applications, applets,
and applet applications

Graphical user interfaces (GUIs) have revolutionized the world of computers and made
computers useful to ordinary people. Internet became a very useful tool mainly due to
its sophisticated GUI. One no longer needs to type strange character combinations of
 yesteryears. One can perform almost any task by just clicking the mouse.

In this chapter, you learn the fundamentals of GUI programming. A GUI program is
more attractive, intuitive, and user-friendly. You will be introduced to six Java classes:
Component, Container, JFrame, JLabel, JTextField, and JButton. A GUI
program is an event-driven program. User-generated events, such as clicking the mouse
button or pressing the Enter key, determine the next task performed by a GUI program.
Th is chapter explains the principles behind event-driven programming. With the help of
the six Java classes and the principles introduced in this chapter, you can create a wide
variety of application programs and applets. Further, Programming Exercises at the end of
this chapter introduce additional GUI components. Graphics package presented in this
chapter will enable you to use colors, fonts, and drawing services.

•
•

•
•

CRC_C6547_CH008.indd 435CRC_C6547_CH008.indd 435 10/16/2008 5:02:32 PM10/16/2008 5:02:32 PM

Apago PDF Enhancer

436 ■ Java Programming Fundamentals

COMMON THEME BEHIND ALL GUI APPLICATION PROGRAMS
Creating a GUI program involves two stages of separate but interlinked activities. Th e fi rst
stage is creating the desired appearance on the screen. Th is is done by creating instances
of appropriate GUI classes. For the sake of simplicity, let us refer this stage as creating the
application window. Th e second stage involves writing a program so that the application
window created in stage 1 becomes a functional user interface. Let us refer to this stage as
event-driven programming.

Creating a GUI program can be summarized as follows:

 1. Creating the application window. Create the desired appearance on the screen by
 creating instances of appropriate GUI classes.

 2. Event-driven programming. Add necessary Java code that turns the application win-
dow created in stage 1 into a functional user interface.

We cover these two stages of GUI program development in sequence.

Example 8.1

Consider the problem of computing the sum of fi rst N integers. Creating the appli-
cation window begins with deciding on inputs and outputs. In this case, all you
need is one input and one output. Next, you need to decide on control buttons. You
need one to calculate the sum and another to exit the application. Th erefore, in the
fi rst stage we create an application window as shown in Figure 8.1.

Recall that the control buttons Calculate and Exit will not work at the end
of the fi rst stage. Th e second stage of the application development makes controls
Calculate and Exit behave as planned.

Example 8.2

Th is example identifi es various GUI components required to create the application
window of Example 8.1 (Figure 8.2).

Here, a JFrame object contains all other GUI components. Th ere are two JText
Field objects. We use one of them for the input and another for the output. Th e

FIGURE 8.1 Application window for simple arithmetic progression.

CRC_C6547_CH008.indd 436CRC_C6547_CH008.indd 436 10/16/2008 5:02:35 PM10/16/2008 5:02:35 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 437

JTextField object intended for the output is kept as noneditable to prevent the
user from entering any value. We use JLabel objects to properly label inputs and
outputs. Finally, JButton objects are used as controls. In this example, eventually,
aft er entering an integer, clicking the JButton object labeled Calculate com-
putes the sum and displays it in the output JTextField. Clicking the JButton
Exit terminates the application.

Self-Check

 1. Creating the application window involves creating the desired appearance on
the screen by creating instances of appropriate classes.

 2. Event-driven programming involves adding necessary that turns
the application window created in stage 1 into a functional user interface.

CREATING APPLICATION WINDOW
Th e application window of all applications is created by extending the JFrame class
of the Java package javax.swing. All other GUI components are contained inside
the borders of the JFrame object. To be more specifi c, the interior area of a JFrame
object is called a content pane. Th e content pane itself is an instance of the Container
class. Th e Container class has a service add that can be used to add any instance of
 Component class. In particular, we use add service of the Container class to place
various GUI objects in the content pane of the JFrame object. Th us, the process of cre-
ating the application window has three steps:

 1. Create a new application class by extending the JFrame class
 2. Get the reference of the content pane
 3. Create and place necessary GUI components in the content pane

FIGURE 8.2 Identifi cation of GUI components.

CRC_C6547_CH008.indd 437CRC_C6547_CH008.indd 437 10/16/2008 5:02:36 PM10/16/2008 5:02:36 PM

Apago PDF Enhancer

438 ■ Java Programming Fundamentals

Each one of the above steps is explained below.

Self-Check

 3. Th e application window of all applications is created by extending the
class of the Java package .

 4. Th e content pane itself is an instance of the class.

Creating New Application Class

We have been creating applications by creating a new class or classes and using them in
an application program. Th e application program had a single method, the main. A GUI
application also follows the same pattern, except that the new class is created by extending
JFrame class. Th us, we have the following:

import javax.swing.*;

public class StartingPoint extends JFrame

{

 //private data members

 //constructors and methods

}

public class StartingPointApplication

{

 //main method

 public static void main(String[] args)

 {

 StartingPoint sp = new StartingPoint();

 }

}

Unlike the applications you have seen so far, the main of a GUI application is going to be
quite short. Th erefore, instead of creating two classes, we keep main as part of the new
class created. Th us, we have the following:

import javax.swing.*;

//other import statements

public class StartingPoint extends JFrame

{

 //private data members

CRC_C6547_CH008.indd 438CRC_C6547_CH008.indd 438 10/16/2008 5:02:36 PM10/16/2008 5:02:36 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 439

 //constructors and methods

 //main method

 public static void main(String[] args)

 {

 StartingPoint sp = new StartingPoint();

 }

}

Observe that we need to create the necessary graphics only once. Th erefore, we make use
of the constructor to create the application window. Th us, the general structure of all GUI
applications in this chapter is as follows:

import javax.swing.*;

//other import statements

public class StartingPoint extends JFrame

{

 //private data members

 public StartingPoint()

 {

 //Java statements to create

 //application window

 }

 //additional constructors and methods

 //main method

 public static void main(String[] args)

 {

 StartingPoint sp = new StartingPoint();

 }

}

Recall that the application starts by executing the main. Th e main invokes the constructor
of the class. Th e constructor in turn creates the application window. Th erefore, the necessary
code to create and display the application window is part of the constructor of the class.
Th erefore, at the very minimum, the constructor needs to perform the following tasks:

 1. Invoke the constructor of the superclass
 2. Defi ne the size of the JFrame

CRC_C6547_CH008.indd 439CRC_C6547_CH008.indd 439 10/16/2008 5:02:37 PM10/16/2008 5:02:37 PM

Apago PDF Enhancer

440 ■ Java Programming Fundamentals

 3. Make the JFrame visible
 4. Provide a graceful way to exit the application

We address each of these issues in detail.

Self-Check

 5. Every Java application has a method.
 6. Every Java application starts by executing the method.

Invoking Constructor of Superclass
Two constructors of the JFrame class are shown in Table 8.1. Th roughout this chapter,
we use the second constructor. Th is allows us to provide a meaningful name to
our application in the title bar of the JFrame. For instance, to give a title such as
 "Simple Arithmetic Progression" you invoke the constructor of JFrame as
shown below:

super("Simple Arithmetic Progression");

Self-Check

 7. Write the necessary Java code to create an instance of JFrame with title
"Welcome to Java".

 8. True or false: Th e JFrame constructor with zero arguments creates an applica-
tion window with no title.

Defi ne Size of JFrame
One of the ways to custom design a GUI application is to defi ne the size explicitly. All
GUI components occupy a certain rectangular area in your monitor’s screen. Th us,
every GUI component has a width (the horizontal measure) and height (the vertical
measure). Th e unit of measure is a pixel. Th e term pixel stands for picture element and
is the smallest unit on your screen that you can control. Th e pixel size depends on the
current monitor setting. For instance if our current monitor resolution is 1280 by 1024,
then there are 1280 pixels in each horizontal line and 1024 pixels in each vertical line.

TABLE 8.1 Constructors of the JFrame Class

Constructor Explanation

public JFrame(); Constructor with no arguments.
Creates a JFrame object with no
title. Both width and height are
zero. The object is not visible

public JFrame(String str); Constructor with a String argument.
Creates a JFrame object with str as
title. Both width and height are
zero. The object is not visible

CRC_C6547_CH008.indd 440CRC_C6547_CH008.indd 440 10/16/2008 5:02:37 PM10/16/2008 5:02:37 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 441

In this case, if you want your frame to occupy 1/4 horizontally, you select width as
1280/4 = 320. Similarly, if you want your frame to occupy 1/2 vertically, you select
height as 1024/2 = 512.

To set the size, invoke the setSize method of the superclass Component. Since the
program is not changing the values of width and height, we can keep them as named con-
stants. Th us, we have the following:

private static final int WIDTH = 300;

private static final int HEIGHT = 120;

super.setSize(WIDTH, HEIGHT);

Self-Check

 9. Th e unit of measure of a GUI component is a .
 10. Th e term pixel stands for .

Make JFrame Visible
You can control the visibility of a GUI component through setVisible method of the
superclass Component. Th is method has one formal parameter of the type boolean. If
the actual parameter is true, the GUI is visible; otherwise, GUI remains invisible. Th us,
you need the following statement to make the application window visible:

super.setVisible(true);

Self-Check

 11. Th e method setVisible belongs to class.
 12. Th e setVisible method has one formal parameter of the type .

Provide Graceful Way to Exit Application
As you may be well aware of, a window comes with a close button. Th e user can click on
the close button to terminate the application program. To enable this feature, we include
the following statement:

setDefaultCloseOperation(EXIT_ON_CLOSE);

Th us, we have the following application program that can be compiled and executed
just like any other application. You can close the window by clicking the “close” button, ×,
on the upper right-hand corner of the window (in Microsoft Windows). (Other platforms
may have diff erent locations and diff erent looks.)

import javax.swing.*;

public class StartingPoint extends JFrame

CRC_C6547_CH008.indd 441CRC_C6547_CH008.indd 441 10/16/2008 5:02:37 PM10/16/2008 5:02:37 PM

Apago PDF Enhancer

442 ■ Java Programming Fundamentals

{

 private static final int WIDTH = 300;

 private static final int HEIGHT = 120;

 public StartingPoint()

 {

 super("Simple Arithmetic Progression");

 super.setSize(WIDTH, HEIGHT);

 //add other GUI components here.

 super.setVisible(true);

 super.setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 public static void main(String[] args)

 {

 StartingPoint sp = new StartingPoint();

 }

}

Output

Many of the useful services of JFrame are inherited from two superclasses, the Compo-
nent and the Container (Table 8.2). In Java, every GUI component is derived from the
Component class. Some of the components are such that they can contain other compo-
nents. Th ese components are members of the Container subclass. Th e simple arithmetic
progression is shown in Figure 8.3 and the inheritance hierarchy is shown in Figure 8.4.

Self-Check

 13. In Java, every GUI component is derived from the class.
 14. Th e method determines the action taken as the user clicks the close

button, ×, appearing on the top right-hand corner of the window.

FIGURE 8.3 Application window with a visible JFrame.

CRC_C6547_CH008.indd 442CRC_C6547_CH008.indd 442 10/16/2008 5:02:37 PM10/16/2008 5:02:37 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 443

TABLE 8.2 Services of Component, Container, and JFrame Classes

Service Explanation

java.awt.Component
public void setSize(int width, int height) Sets both width and height

public void setVisible(boolean bool); The Component object is visible
if bool is true. The object
remains invisible otherwise

java.awt.Container
public void add(Component comp) Adds the Component comp to the

Container object

java.awt.JFrame
public Container getContentPane() Returns the reference of the

content pane

public void setDefaultCloseOperation
(int action)

Determines the action taken as
the user clicks the close
button, ×, appearing on the top
right-hand corner of the window.
There are four choices for the
parameter action. They are the
constants: EXIT_ON_CLOSE,
DISPOSE_ON_CLOSE, HIDE_ON_CLOSE,
and DO_NOTHING_ON_CLOSE. The
constant EXIT_ON_CLOSE is defined
in the JFrame class and other
constants are defined in javax.
swing.WindowConstants

FIGURE 8.4 Th e inheritance hierarchy of JFrame.

java.lang.Object

java.awt.Container

javax.swing.JFrame

java.awt.Window

java.awt.Frame

java.awt.Component

CRC_C6547_CH008.indd 443CRC_C6547_CH008.indd 443 10/16/2008 5:02:38 PM10/16/2008 5:02:38 PM

Apago PDF Enhancer

444 ■ Java Programming Fundamentals

Get Reference of Content Pane

Before jumping into coding, keep in mind that all the code we develop in the fi rst stage is
part of the constructor of the class we are developing.

Recall that JFrame has a content pane and GUI components are placed on the content
pane and not on the JFrame. Th e content pane can be thought of as the interior part of
the JFrame. Th e content pane is an instance of the Container class. Th e following
statement creates a reference variable conInterior of type Container and initializes
with the reference of the content pane of the JFrame:

Container conInterior = super.getContentPane();

Once the content pane is accessible, add service of the Container class can be used
to place other components. However, before we can place other GUI components, a layout
manager has to be set for the content pane. Th e layout manager determines the size and
location of components placed inside a container. We use the GridLayout manager in
this chapter (Table 8.3).

For example, the following Java statement creates a GridLayout manager with three
rows and two columns:

GridLayout gridlayout; // (1)

gridlayout = new GridLayout(3,2); // (2)

Now, the layout manager of the content pane conInterior can be set as gridlayout
through the setLayout service of the Container class as shown below:

conInterior.setLayout(gridlayout); // (3)

Observe that the only reason we declared a reference variable gridlayout in Line 1 is to
use it as an actual parameter in Line 3. Th ere is no need to store the reference returned by

TABLE 8.3 Constructors of the GridLayout Class

Constructor Explanation

public GridLayout() Creates a one row, one column
grid layout

public GridLayout(int r, int c) Creates a grid layout with r rows
and c columns. All grids have the
same dimension

public GridLayout(int r, int c,
int rsep, int csep)

Creates a grid layout with r rows
and c columns. Rows are separated
by rsep pixels, and columns are
separated by csep pixels. All
grids have the same dimension

CRC_C6547_CH008.indd 444CRC_C6547_CH008.indd 444 10/16/2008 5:02:38 PM10/16/2008 5:02:38 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 445

new GridLayout(3,2) in a reference variable such as gridlayout as in Line 2.
Instead, you could use the expression new GridLayout(3,2) as the actual parameter.
Th us, Lines 1–3 can be replaced by Line 4.

conInterior.setLayout(new GridLayout(3,2)); // (4)

Self-Check

 15. JFrame has a and GUI components are placed on it.
 16. Th e content pane is an instance of the class.

Create and Place GUI Components in Content Pane

In this section, you learn how to create and place various GUI components in the content
pane. Th is step can be further split into two smaller steps:

 1. Component creation. Create a reference variable of the component type and use
one of the constructors to instantiate the reference variable.

 2. Component placement. Place the object created in Step 1 in the content pane using
the add service of the Container class.

We illustrate these concepts by three diff erent types of GUI components: JLabel,
JtextField, and JButton.

Component creation
JLabel As the name suggests, an instance of JLabel is used to label various GUI com-
ponents of an application. Th e primary use of JLabel objects is to label other GUI com-
ponents. Th e four constructors of the JLabel class are listed in Table 8.4.

TABLE 8.4 Constructors of JLabel Class

Constructor Explanation

public JLabel(String str) Constructor with a String argument.
Creates a JLabel object with str as a
left-aligned label

public JLabel(Icon ic) Constructor with an Icon argument. Creates
a JLabel object with Icon ic

public JLabel(String str,
int halign)

Constructor with a String argument and a
horizontal alignment specification. The
halign can be SwingConstants.LEFT,
SwingConstants.RIGHT, SwingConstants.
CENTER for left, right, or center
alignment of the label str

public JLabel(String str,
Icon ic, int halign)

Constructor with all three arguments. Icon
ic will appear left of the label str

CRC_C6547_CH008.indd 445CRC_C6547_CH008.indd 445 10/16/2008 5:02:38 PM10/16/2008 5:02:38 PM

Apago PDF Enhancer

446 ■ Java Programming Fundamentals

Th e following segment of code creates two JLabel objects:

JLabel jLNumber;

JLabel jLSumToNumber;

jLNumber = new JLabel("Enter an integer (N) : ",

 SwingConstants.RIGHT);

jLSumToNumber = new JLabel("Sum of first N integers : ",

 SwingConstants.RIGHT);

Note that the string appearing on both of these JLabel objects are right-justifi ed.

Self-Check

 17. Write a Java statement to declare a JLabel reference named “title.”
 18. Instantiate the JLabel reference created with a JLabel object with label

“Java for Game Development.” Make sure that the label is centered.

JTextField JTextField can be used for input and output. If a JTextField is
used for output alone, then it is advisable to make it noneditable. Th e data entered in
a JTextField object by the user is treated as one String, and similarly the output
displayed in a JTextField is also a String. Th e String itself appears as a single
line. If you want multiple lines in your graphical display, you can use JTextArea
class. Both JTextField and JTextArea inherit many operations from their com-
mon superclass JTextComponent. Some of the constructors of JTextField and
some of the services of its superclass JTextComponent are presented in Tables 8.5
and 8.6, respectively.

Th us the following segment of code creates two instances of JTextField, each with
10 columns:

JTextField jTFNumber;

JTextField jTFSumToNumber;

jTFNumber = new JTextField(10);

jTFSumToNumber = new JTextField(10);

TABLE 8.5 Constructors of JTextField Class

Constructor Explanation

public JTextField(int c) Constructor with an int argument.
Creates a JTextField object with
c columns

public JTextField(String str) Constructor with a String argument.
Creates a JTextField object
initialized with str

public JTextField(String str, int c) Creates a JTextField object
initialized with str and c columns

CRC_C6547_CH008.indd 446CRC_C6547_CH008.indd 446 10/16/2008 5:02:38 PM10/16/2008 5:02:38 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 447

Further, the Java statement

jTFSumToNumber.setEditable(false);

makes the JTextField instance jTFSumToNumber as noneditable. Note that by
default, a JTextField is editable. Th us, there is no need to include the statement

jTFNumber.setEditable(true); // this statement is not required.

in your program.

Self-Check

 19. Write a Java statement to declare and instantiate a JTextField reference
named “message.”

 20. Make the JTextField object created noneditable.

JButton
We use JButton in a GUI to start an action. For instance, you can use a JButton to
start a computation once all the data values are entered. A JButton can also be used
to terminate the application. Some of the constructors of JButton are presented in
Table 8.7.

Th e following segment of code creates two JButton objects with labels Calculate
and Exit:

JButton jBCompute;

JButton jBExit;

jBCompute = new JButton("Calculate");

jBExit = new JButton("Exit");

TABLE 8.6 Services of JTextField Inherited from JTextComponent

Services Explanation

public String getText() Get method. Returns String
contained in the
JTextComponent used in the
context of input

public void setEditable(boolean b) The default value is true.
If the value is set false,
user can no longer enter
data. Thus used mainly to
designate a JTextComponent
as output only

public void setText(String str) Set method. The String str
becomes the new String. Used
in the context of output

CRC_C6547_CH008.indd 447CRC_C6547_CH008.indd 447 10/16/2008 5:02:38 PM10/16/2008 5:02:38 PM

Apago PDF Enhancer

448 ■ Java Programming Fundamentals

Self-Check

 21. Write a Java statement to declare a JButton reference named “startButton.”
 22. Instantiate the JButton reference created with a JButton object with the

label “Start.”

Component placement
Recall that we have chosen GridLayout manager as the layout manager. In the case of
GridLayout manager, all we need to do to place various components in the content pane
is to use the add service of the Container class. Components are placed in the grid from
left to right in each row, and rows are fi lled from top to bottom. For instance, in the case
of a 3 by 2 grid, there are three rows and two columns. Th e components are placed in the
order (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), and (3, 2).

Th e ordered pair (i, j) stands for row i, column j position in the grid. Th us components
are placed in the order row 1, column 1, followed by row 1, column 2. Th is completes row
one from left to right. Th erefore, the next component will be placed in row 2, column 1,
followed by row 2, column 2. Th is completes row 2 from left to right. Th e next component
will be placed in row 3, column 1, followed by row 3, column 2. Th is completes row 3 from
left to right and rows from top to bottom.

Th e following Java statements will place the six components we created in the content
pane conInterior:

conInterior.add(jLNumber); // place at (1, 1)

conInterior.add(jTFNumber); // place at (1, 2)

conInterior.add(jLSumToNumber); // place at (2, 1)

conInterior.add(jTFSumToNumber); // place at (2, 2)

conInterior.add(jBCompute); // place at (3, 1)

conInterior.add(jBExit); // place at (3, 2)

Th is completes the fi rst stage of the GUI application development.

TABLE 8.7 Constructors of JButton Class

Constructor Explanation

public JButton(Icon ic) Constructor with an Icon
argument. Creates a JButton
object with Icon ic

public JButton(String
str)

Constructor with a String
argument. Creates a JButton
object with String str as
its label

public JButton(String str,
Icon ic)

Creates a JButton object with
an icon and a label

CRC_C6547_CH008.indd 448CRC_C6547_CH008.indd 448 10/16/2008 5:02:38 PM10/16/2008 5:02:38 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 449

/**

 Computes the sum of first N numbers

*/

import javax.swing.*;

import java.awt.*;

public class StageOne extends JFrame

{

 private JLabel jLNumber;

 private JLabel jLSumToNumber;

 private JTextField jTFNumber;

 private JTextField jTFSumToNumber;

 private JButton jBCompute;

 private JButton jBExit;

 private static final int WIDTH = 300;

 private static final int HEIGHT = 120;

 /**

 Constructor with no arguments

 */

 public StageOne()

 {

 //Invoke JFrame constructor and set the size

 super("Simple Arithmetic Progression");

 super.setSize(WIDTH,HEIGHT);

 // Create two labels

 jLNumber = new JLabel("Enter an integer (N) : ",

 SwingConstants.RIGHT);

 jLSumToNumber = new JLabel("Sum of first N integers : ",
 SwingConstants.RIGHT);

 //Create two JTextfields

 jTFNumber = new JTextField(10);

 jTFSumToNumber = new JTextField(10);

 jTFSumToNumber.setEditable(false);

 //Create compute JButton

 jBCompute = new JButton("Calculate");

 //Create Exit JButton

 jBExit = new JButton("Exit");

CRC_C6547_CH008.indd 449CRC_C6547_CH008.indd 449 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

450 ■ Java Programming Fundamentals

 Container conInterior = super.getContentPane();

 //Set the layout

 conInterior.setLayout(new GridLayout(3,2));

 //Place components in the container

 //left to right; top to bottom order

 conInterior.add(jLNumber);

 conInterior.add(jTFNumber);

 conInterior.add(jLSumToNumber);

 conInterior.add(jTFSumToNumber);

 conInterior.add(jBCompute);

 conInterior.add(jBExit);

 //Make the frame visible and allow graceful exit

 super.setVisible(true);

 super.setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 public static void main(String args[])

 {

 StageOne stageOne = new StageOne();

 }

}

Th is will produce the application window as shown in Figure 8.1. You can type in the
JTextField; however, buttons Compute and Exit will not work.

Self-Check

 23. True or false: In the case of GridLayout manager components are placed in the
grid from left to right in each row, and rows are fi lled from top to bottom.

 24. Th e add method is inherited from the class.

EVENT-DRIVEN PROGRAMMING
In the fi rst stage of our GUI application development we created JButton objects:
jBCompute and jBExit. Th is section implements the behavior of these buttons as the
user clicks them using a mouse. Note that the behavior as such is application-specifi c. For
instance, in this application, we would like the application to compute the desired sum and
display it in the appropriate JTextField as the user clicks the Compute JButton and
terminate the application as the user clicks the Exit JButton. However, the underlying
principles remain the same for all GUI applications. In this section, we explain and illus-
trate those principles.

CRC_C6547_CH008.indd 450CRC_C6547_CH008.indd 450 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 451

Every time a JButton object is clicked, Java virtual machine (JVM) creates an instance
of the class ActionEvent. JVM provides you with an actionListener interface.
An interface can be thought of as a class with one or more abstract methods, but no
data. From a programmer’s perspective, for a JButton object to carry out an action you
must implement the actionListener interface in your program. Implementing an
interface means, defi ning all the abstract methods of the interface. In the case
of the actionListener interface, the only method that needs to be implemented is
actionPerformed, which has an ActionEvent as its formal parameter. During the
program execution, as the user clicks a JButton object, an ActionEvent object is cre-
ated. Th e associated actionListener invokes the actionPerformed method with
this newly created ActionEvent object as the actual parameter.

As you click a JButton object, creating an ActionEvent object as well as invoking
the corresponding actionPerformed method with this newly created ActionEvent
object as actual parameter is performed by the JVM. As a GUI application programmer,
you only need to do the following:

 1. Implement the actionListener interface. For each JButton object, an
actionListener interface needs to be implemented. Th is amounts to provid-
ing the necessary code for the actionPerformed method.

 2. Register the actionListener interface. For each JButton object, its
actionListener needs to be specifi ed. In Java terminology, this is called register-
ing the actionListener.

Event-Driven Model of Computation

You have seen that clicking a mouse in JButton is an ActionEvent. Th ere is an
interface associated with ActionEvent class, called ActionListener. Th e
ActionListener interface has one method actionPerformed and is defi ned
as follows:

public interface ActionListener

{

 public void actionPerformed(ActionEvent e);

}

Th erefore, implementing the ActionListener interface amounts to creating the
method ActionPerformed as a member of a class. Finally, you need to register the
interface implemented.

Our discussion so far on the event-driven model of computation can be summarized as
follows:

 1. Every user-generated event falls under some event class.
 2. Corresponding to each event class, there is an associated listener interface.

CRC_C6547_CH008.indd 451CRC_C6547_CH008.indd 451 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

452 ■ Java Programming Fundamentals

 3. An interface may contain one or more abstract methods.
 4. Implementing a listener interface involves defi ning all the methods of the

interface as part of some class in your program.
 5. Once the listener interface is implemented, it needs to be registered.

Implementing Listener interface

Implementing a listener interface involves defi ning all the methods of the inter-
face as members of some class in your program. Th erefore let us begin by creating a class,
ComputeJButtonInterface, to implement the ActionListener associated with
jBCompute object as follows:

private class ComputeJButtonInterface implements ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 //application specific code

 }

}

Observe that the class ComputeJButtonInterface is declared as private. Our
application alone needs access to this class and that can be achieved by keeping this as
an inner class (or a class within a class) of our program. Recall that in the case of inheri-
tance we use the keyword extends and in the case of interface we use the keyword
implements. We now proceed to provide the application-specifi c code for the method
actionPerformed.

As the user clicks the Compute JButton, he/she must have already entered an integer
value in the input JTextField. Th erefore, actionPerformed method must fi rst get
that value as an integer. Th e JTextField class has a method getText that returns the
input entered by the user as a String. Th us

jTFNumber.getText();

returns a String. In Java, there is a class Integer. One of the static methods of the
Integer class is parseInt, which has String as its formal parameter and returns
the int value if in fact the actual parameter is a String representation of an integer.
Th erefore,

int n;

n = Integer.parseInt(jTFNumber.getText());

CRC_C6547_CH008.indd 452CRC_C6547_CH008.indd 452 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 453

converts the integer value entered by the user into an int and stores it in the variable n.
Now the sum can be computed using the mathematical formula

sum of first n integers
n n

2
�

�()1

Since either n or n + 1 is always even, we could code the above formula as shown below:

if ((n % 2) == 0)

 sum = (n / 2) * (n + 1);

else

 sum = ((n + 1) / 2) * n;

Now all that remains is to display the computed sum in the designated JTextField. We
use the service setText of the JTextField class as shown below:

jTFSumToNumber.setText("" + sum);

Observe that setText requires a String as its argument and one of the simple ways
to convert an int into a String is to use a null String along with the concatenation
operation.

Th us we have the following:

private class ComputeJButtonInterface implements ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 int n;

 int sum;

 n = Integer.parseInt(jTFNumber.getText());

 if ((n % 2) == 0)

 sum = (n / 2) * (n + 1);

 else

 sum = ((n + 1) / 2) * n;

 jTFSumToNumber.setText("" + sum);

 }

}

CRC_C6547_CH008.indd 453CRC_C6547_CH008.indd 453 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

454 ■ Java Programming Fundamentals

We could similarly create an ActionListener interface for the Exit JButton as
shown below. Note that all that needs to be done is to make use of the exit service of the
System class. Th e method exit can be used to indicate an error code. Since our program
is exiting without any error, we shall use 0. Th us, we have the following:

private class ExitJButtonInterface implements ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 System.exit(0);

 }

}

Self-Check

 25. Implementing a listener interface involves defi ning the methods
of the interface as members of some class in your program.

 26. We use the keyword to create a subclass from an existing class and
we use the keyword to implement an interface.

Registering Listener interface

In this section, we illustrate how to register a listener interface. Th e central idea involves
using the appropriate registering method of the class and passing an instance of the lis-
tener interface as an actual parameter. For instance, to register an ActionListener
interface, you need to use the service addActionListener. Th erefore,

ComputeJButtonInterface computeJBInterface;

computeJBInterface = new ComputeJButtonInterface();

creates an instance of ComputeJButtonInterface. Th e following statement com-
pletes the registration step:

jBCompute.addActionListener(computeJBInterface);

Note that the above three lines of code can be replaced by the following single Java
statement:

jBCompute.addActionListener(new ComputeJButtonInterface());

Similarly,

jBExit.addActionListener(new ExitJButtonInterface());

registers the listener interface ExitJButtonInterface as the ActionListener
of the Exit JButton object.

CRC_C6547_CH008.indd 454CRC_C6547_CH008.indd 454 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 455

Th e ActionListener interface is part of java.awt.event package. Th ere-
fore, we must include one of the following import statements in our program:

import java.awt.event.*;

or

import java.awt.event.ActionListener;

Th is completes the second and the fi nal stage of GUI application development. Th e com-
plete program listing and sample output are given as follow:

/**

 Computes the sum of first N numbers

*/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class SumToN extends JFrame

{

 private JLabel jLNumber;

 private JLabel jLSumToNumber;

 private JTextField jTFNumber;

 private JTextField jTFSumToNumber;

 private JButton jBCompute;

 private JButton jBExit;

 private static final int WIDTH = 300;

 private static final int HEIGHT = 120;

 /**

 Constructor with no arguments

 */

 public SumToN()

 {

 //Invoke JFrame constructor and set the size

 super("Simple Arithmetic Progression");

 super.setSize(WIDTH,HEIGHT);

 // Create two labels

 jLNumber = new JLabel("Enter an integer (N) : ",

 SwingConstants.RIGHT);

CRC_C6547_CH008.indd 455CRC_C6547_CH008.indd 455 10/16/2008 5:02:39 PM10/16/2008 5:02:39 PM

Apago PDF Enhancer

456 ■ Java Programming Fundamentals

 jLSumToNumber = new JLabel("Sum of first N integers : ",

 SwingConstants.RIGHT);

 //Create two JTextfields

 jTFNumber = new JTextField(10);

 jTFSumToNumber = new JTextField(10);

 jTFSumToNumber.setEditable(false);

 //Create compute JButton

 jBCompute = new JButton("Calculate");

 jBCompute.addActionListener(new ComputeJButton Interface());

 //Create Exit JButton

 jBExit = new JButton("Exit");

 jBExit.addActionListener(new ExitJButtonInterface());

 Container conInterior = super.getContentPane();

 //Set the layout

 conInterior.setLayout(new GridLayout(3,2));

 //Place components in the container

 //left to right; top to bottom order

 conInterior.add(jLNumber);

 conInterior.add(jTFNumber);

 conInterior.add(jLSumToNumber);

 conInterior.add(jTFSumToNumber);

 conInterior.add(jBCompute);

 conInterior.add(jBExit);

 //Make the frame visible and allow graceful exit

 super.setVisible(true);

 super.setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 /**

 Implements action listener interface for compute button

 */

 private class ComputeJButtonInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

CRC_C6547_CH008.indd 456CRC_C6547_CH008.indd 456 10/16/2008 5:02:40 PM10/16/2008 5:02:40 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 457

 {

 int n, sum;

 n = Integer.parseInt(jTFNumber.getText());

 if ((n % 2) == 0)

 sum = (n / 2) * (n + 1);

 else

 sum = ((n + 1) / 2) * n;

 jTFSumToNumber.setText("" + sum);

 }

 }

 /**

 Implements action listener interface for exit button

 */

 private class ExitJButtonInterface implements ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 System.exit(0);

 }

 }

 public static void main(String args[])

 {

 SumToN sumTN = new SumToN();

 }

}

Output

Figure 8.5 shows the sample run of simple arithmetic progression.

FIGURE 8.5 Sample run of simple arithmetic progression.

CRC_C6547_CH008.indd 457CRC_C6547_CH008.indd 457 10/16/2008 5:02:40 PM10/16/2008 5:02:40 PM

Apago PDF Enhancer

458 ■ Java Programming Fundamentals

Self-Check

 27. To register an ActionListener interface, you need to use the service
.

 28. Th e ActionListener interface is part of package.

For ease of reference, we summarize our discussion so far as follows.

Th e common theme behind all GUI application programs involve the following:

 1. Create the application window
 a. Create a new application class by extending JFrame
 b. Invoke the constructor of the superclass
 c. Defi ne the size of the JFrame
 d. Make the JFrame visible
 e. Provide a graceful way to exit the application
 f. Get the reference of the content pane
 g. Create a layout manager
 h. Create and place GUI components in the content pane
 2. Create code for event-driven programming
 a. Implement the actionListener interface
 b. Register the actionListener interface

METRIC CONVERSION HELPER
In this section, we create a GUI application to convert between the following pairs of units
of measure:

 1. Miles and kilometers
 2. Pounds and kilograms
 3. Gallons and liters
 4. Fahrenheit and Centigrade

Th ere are eight units of measure. Th erefore, you need eight instances of JText-
Field and eight instances of JLabel. Th e question is do we really need any instance of
JButton. As you might have observed, the Exit JButton is not really necessary. Th e
user can always close the application by clicking the close button. What about the Compute
JButton? Not really! In fact, JTextField object can also generate an ActionEvent
object every time the Enter key is pressed. Th erefore, we can design the program so that as
the user enters any one of the eight possible values and presses the Enter key, the value is
converted into the corresponding unit in the other system of measurement. Th us, all you
need is eight instances of JTextField and eight instances of JLabel corresponding to
each of the units of measure, and they can be organized as shown in Figure 8.6.

CRC_C6547_CH008.indd 458CRC_C6547_CH008.indd 458 10/16/2008 5:02:40 PM10/16/2008 5:02:40 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 459

If the user enters a certain value in one of the JTextField objects and presses the
Enter key, the equivalent value in the other system of measurement will be displayed in the
adjacent JTextField object. For instance, if the user enters distance in JTextField
object adjacent to the label Mile and presses the Enter key, the equivalent distance in kilo-
meters will appear in the JTextField object adjacent to the label Kilometer. Similarly,
when the user enters the volume in JTextField object adjacent to the label Liter and
presses the Enter key, the equivalent volume in gallons will appear in the JTextField
adjacent to the label Gallon.

Observe that there are eight JLabel objects and eight JTextField objects. Th us,
there are 16 components and they are placed in a 4 by 4 grid.

Recall that pressing the Enter key in a JTextField object generates an ActionEvent.
Th erefore, you had to create and register action listeners to each of the JTextField
objects. Th e action performed methods get the data entered through the getText service
of the JTextComponent (superclass of JTextField), convert it into the other unit of
measurement, and set it in the designated JTextField through the setText service of
the JTextComponent (superclass of JTextField). Th us, we have the following:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.DecimalFormat;

/**

 Metric conversion class

*/

public class MetricConversion extends JFrame

{

 private JLabel jLMile;

 private JLabel jLKilometer;

 private JLabel jLPound;

 private JLabel jLKilogram;

 private JLabel jLGallon;

 private JLabel jLLiter;

FIGURE 8.6 Application window for metric conversion assistant.

CRC_C6547_CH008.indd 459CRC_C6547_CH008.indd 459 10/16/2008 5:02:40 PM10/16/2008 5:02:40 PM

Apago PDF Enhancer

460 ■ Java Programming Fundamentals

 private JLabel jLFahrenheit;

 private JLabel jLCentigrade;

 private JTextField jTFMile;

 private JTextField jTFKilometer;

 private JTextField jTFPound;

 private JTextField jTFKilogram;

 private JTextField jTFGallon;

 private JTextField jTFLiter;

 private JTextField jTFFahrenheit;

 private JTextField jTFCentigrade;

 private static final int WIDTH = 400;

 private static final int HEIGHT = 150;

 private static final double MILE_KM = 1.6; // Mile to

Kilometer

 private static final double LB_KG = 0.454; // Pound to

 Kilogram

 private static final double GL_LT = 3.7; // Gallon to

Liter

 private static final double CENT_FAHR = 1.8;

 // Centigrade to

 Fahrenheit

 private static final double FREEZING_POINT = 32.0;

 public MetricConversion()

 {

 //Invoke JFrame constructor and set the size

 super("Metric Conversion Assistant");

 super.setSize(WIDTH,HEIGHT);

 // Create labels

 jLMile = new JLabel("Mile : ", SwingConstants.RIGHT);

 jLKilometer = new JLabel("Kilometer : ",

 SwingConstants.RIGHT);

 jLPound = new JLabel("Pound : ", SwingConstants.

 RIGHT);

 jLKilogram = new JLabel("Kilogram : ", SwingConstants.

 RIGHT);

CRC_C6547_CH008.indd 460CRC_C6547_CH008.indd 460 10/16/2008 5:02:40 PM10/16/2008 5:02:40 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 461

 jLGallon = new JLabel("Gallon : ", SwingConstants.

 RIGHT);

 jLLiter = new JLabel("Liter : ", SwingConstants.

 RIGHT);

 jLFahrenheit = new JLabel("Fahrenheit : ",

 SwingConstants.RIGHT);

 jLCentigrade = new JLabel("Centigrade : ",

 SwingConstants.RIGHT);

 //Create JTextfields

 jTFMile = new JTextField(10);

 jTFKilometer = new JTextField(10);

 jTFPound = new JTextField(10);

 jTFKilogram = new JTextField(10);

 jTFGallon = new JTextField(10);

 jTFLiter = new JTextField(10);

 jTFFahrenheit = new JTextField(10);

 jTFCentigrade = new JTextField(10);

 jTFMile.addActionListener(new

 MileJTextFieldInterface());

 jTFKilometer.addActionListener(new

 KilometerJTextFieldInterface());

 jTFPound.addActionListener(new

 PoundJTextFieldInterface());

 jTFKilogram.addActionListener(new

 KilogramJTextFieldInterface());

 jTFGallon.addActionListener(new

 GallonJTextFieldInterface());

 jTFLiter.addActionListener(new

 LiterJTextFieldInterface());

 jTFFahrenheit.addActionListener(new

 FahrenheitJTextFieldInterface());

 jTFCentigrade.addActionListener(new

 CentigradeJTextFieldInterface());

 Container conInterior = super.getContentPane();

 //Set the layout

 conInterior.setLayout(new GridLayout(4,2));

 //Place components in the container

 //left to right; top to bottom order

CRC_C6547_CH008.indd 461CRC_C6547_CH008.indd 461 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

462 ■ Java Programming Fundamentals

 conInterior.add(jLMile);

 conInterior.add(jTFMile);

 conInterior.add(jLKilometer);

 conInterior.add(jTFKilometer);

 conInterior.add(jLPound);

 conInterior.add(jTFPound);

 conInterior.add(jLKilogram);

 conInterior.add(jTFKilogram);

 conInterior.add(jLGallon);

 conInterior.add(jTFGallon);

 conInterior.add(jLLiter);

 conInterior.add(jTFLiter);

 conInterior.add(jLFahrenheit);

 conInterior.add(jTFFahrenheit);

 conInterior.add(jLCentigrade);

 conInterior.add(jTFCentigrade);

 //Make the frame visible and allow graceful exit

 super.setVisible(true);

 super.setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 /**

 Implements action listener interface for MileJTextField

 */

 private class MileJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double mile;

 double kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 mile = Double.parseDouble(jTFMile.getText());

 kilometer = mile * MILE_KM;

 jTFKilometer.setText(""+ fourPlaces.

 format(kilometer));

 }

 }

CRC_C6547_CH008.indd 462CRC_C6547_CH008.indd 462 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 463

 /**

 Implements action listener interface for

 KilometerJTextField

 */

 private class KilometerJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double mile;

 double kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 kilometer = Double.parseDouble(jTFKilometer.

 getText());

 mile = kilometer / MILE_KM;

 jTFMile.setText(""+ fourPlaces.format(mile));

 }

 }

 /**

 Implements action listener interface for PoundJTextField

 */

 private class PoundJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double pound;

 double kilogram;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 pound = Double.parseDouble(jTFPound.getText());

 kilogram = pound * LB_KG;

 jTFKilogram.setT ext(""+ fourPlaces.

 format(kilogram));

 }

 }

CRC_C6547_CH008.indd 463CRC_C6547_CH008.indd 463 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

464 ■ Java Programming Fundamentals

 /**

 Implements action listener interface for

 KilogramJTextField

 */

 private class KilogramJTextFieldInter face implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double pound;

 double kilogram;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 kilogram = Double.parseDouble(jTFKilogram.getText());

 pound = kilogram / LB_KG;

 jTFPound.setText(""+ fourPlaces.format(pound));

 }

 }

 /**

 Implements action listener interface for GallonJTextField

 */

 private class GallonJTextFieldInterf ace implements

ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double gallon;

 double liter;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 gallon = Double.parseDouble (jTFGallon.

getText());

 liter = gallon * GL_LT;

 jTFLiter.setText(""+ fourPlaces.format(liter));

 }

 }

CRC_C6547_CH008.indd 464CRC_C6547_CH008.indd 464 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 465

 /**

 Implements action listener interface for LiterJTextField

 */

 private class LiterJTextFieldInte rface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double gallon;

 double liter;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 liter = Double.parseDouble(jTFLiter.getText());

 gallon = liter / GL_LT;

 jTFGallon.setText (""+ fourPlaces.

format(gallon));

 }

 }

 /**

 Implements action l istener interface for

 FahrenheitJTextField

 */

 private class FahrenheitJTextFieldInter face implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double centigrade;

 double fahrenheit;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 fahrenheit = Double.parseDouble(jTFFahrenheit.

 getText());

 centigrade = (fahrenheit - FREEZING_POINT) /

 CENT_FAHR;

 jTFCentigrade. setText(""+ fourPlaces.

 format(centigrade));

 }

 }

CRC_C6547_CH008.indd 465CRC_C6547_CH008.indd 465 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

466 ■ Java Programming Fundamentals

 /**

 Implements action listener interface for

 CentigradeJTextField

 */

 private class CentigradeJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double centigrade;

 double fahrenheit;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 centigrade = Double.parseDouble(jTF Centigrade.

getText());

 fahrenheit = centigr ade * CENT_FAHR +

 FREEZING_POINT;

 jTFFahrenheit.setText(""+ fourPlaces.

 format(fahrenheit));

 }

 }

 public static void main(String[] args)

 {

 MetricConversion metricConversion = new

 MetricConversion();

 }

}

Advanced Topic 8.1: Programming Options for Implementing Event Listeners

In this chapter, so far, we followed a simple programming style for creating and registering
action listeners. To begin our discussion, let us refer to the style of programming we have
followed so far as Option A. In Option A, for each GUI component that needs an event
listener, an inner class that implements the necessary interface is created. How-
ever, there are many other programming options available to a Java programmer in terms
of coding. Th is section illustrates some of the most common programming styles. Th is
will allow you to choose a style you may prefer for your GUI programs. Further, you may

CRC_C6547_CH008.indd 466CRC_C6547_CH008.indd 466 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 467

encounter these styles as you read Java programs developed by other programmers. You
may omit this section completely if you choose to do so.

Option B

In this option, you create one class that implements the necessary interface for all
GUI components that needs an event listener. For instance, we can replace the following
eight inner classes:

MileJTextFieldInterface, KilometerJTextFieldInterface,

PoundJTextFieldInterface, KilogramJTextFieldInterface,

GallonJTextFieldInterface, LiterJTextFieldInterface,

FahrenheitJTextFieldInterface, CentigradeJTextFieldInterface

of Option A by a single inner class.

private class ActionListenerInterface implements ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 double mile, kilometer;

 double pound, kilogram;

 double gallon, liter;

 double centigrade, fahrenheit;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 if (e.getSource() == jTFMile)

 {

 mile = Double.parseDouble(jTFMile.getText());

 kilometer = mile * MILE_KM;

 jTFKilometer.setText(""+ fourPlaces.

 format(kilometer));

 }

 else if (e.getSource() == jTFKilometer)

 {

 kilometer = Double.parseDouble(jT FKilometer.

getText());

 mile = kilometer / MILE_KM;

 jTFMile.setText(""+ fourPlaces.format(mile));

 }

 else if (e.getSource() == jTFPound)

CRC_C6547_CH008.indd 467CRC_C6547_CH008.indd 467 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

468 ■ Java Programming Fundamentals

 {

 pound = Double.parseDouble(jTFPound.getText());

 kilogram = pound * LB_KG;

 jTFKilogram.setTe xt(""+ fourPlaces.

format(kilogram));

 }

 else if (e.getSource() == jTFKilogram)

 {

 kilogram = Double.parseDouble(j TFKilogram.

getText());

 pound = kilogram / LB_KG;

 jTFPound.setText(""+ fourPlaces.format(pound));

 }

 else if (e.getSource() == jTFGallon)

 {

 gallon = Double.parseDouble (jTFGallon.

getText());

 liter = gallon * GL_LT;

 jTFLiter.setText(""+ fourPlaces.format(liter));

 }

 else if (e.getSource() == jTFLiter)

 {

 liter = Double.parseDouble(jTFLiter.getText());

 gallon = liter / GL_LT;

 jTFGallon.setText (""+ fourPlaces.

format(gallon));

 }

 else if (e.getSource() == jTFFahrenheit)

 {

 fahrenheit = Double.parseDouble(jT FFahrenheit.

 getText());

 centigrade = (fahrenheit - FREE ZING_POINT) /

 CENT_FAHR;

 jTFCentigrade.set Text(""+ fourPlaces.

format(centigrade));

 }

 else if (e.getSource() == jTFCentigrade)

 {

 centigrade = Double.parseDouble(jTF Centigrade.

getText());

 fahrenheit = centigra de * CENT_FAHR +

 FREEZING_POINT;

CRC_C6547_CH008.indd 468CRC_C6547_CH008.indd 468 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 469

 jTFFahrenheit.set Text(""+ fourPlaces.

format(fahrenheit));

 }

 }

}

Observe that there is only one actionPerformed method. Th us, it is imperative that
you determine the GUI component associated with the action event inside the action-
Performed method. Th e source that generated the event can be identifi ed through the
getSource service of the ActionEvent class. Th us instead of creating eight separate
classes, we just create one inner class. Further, instead of registering eight diff erent objects,
you could register the same object. In other words, the following eight statements:

 jTFMile.addActionListener(new

 MileJTextFieldInterface());

jTFKilometer.addActionListener(new

 KilometerJTextFieldInterface());

 jTFPound.addActionListener(new

 PoundJTextFieldInterface());

jTFKilogram.addActionListener(new

 KilogramJTextFieldInterface());

jTFGallon.addActionListener(new

 GallonJTextFieldInterface());

jTFLiter.addActionListener(new

 LiterJTextFieldInterface());

jTFFahrenheit.addActionListener(new

 FahrenheitJTextFieldInterface());

jTFCentigrade.addActionListener(new

 CentigradeJTextFieldInterface());

of Option A needs to be replaced by the following nine statements:

 ActionListenerInterface instanceALI =

 new ActionListenerInterface();

jTFMile.addActionListener(instanceALI);

jTFKilometer.addActionListener(instanceALI);

jTFPound.addActionListener(instanceALI);

jTFKilogram.addActionListener(instanceALI);

jTFGallon.addActionListener(instanceALI);

jTFLiter.addActionListener(instanceALI);

jTFFahrenheit.addActionListener(instanceALI);

jTFCentigrade.addActionListener(instanceALI);

CRC_C6547_CH008.indd 469CRC_C6547_CH008.indd 469 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

470 ■ Java Programming Fundamentals

Option C

In this option, you need not create any inner class at all. Instead, the application class
itself implements the interface. Th us, the actionPerformed method is a
member of the application class. For instance, we can replace the following eight inner
classes:

MileJTextFieldInterface, KilometerJTextFieldInterface,

PoundJTextFieldInterface, KilogramJTextFieldInterface,

GallonJTextFieldInterface, LiterJTextFieldInterface,

FahrenheitJTextFieldInterface, CentigradeJTextFieldInterface

of Option A by a single actionPerformed method. Observe that the actionPer
formed method in this case is a member of the application program itself and not a mem-
ber of an inner class as in the case of Option B. In other words, in both Option B and
Option C, there is only one actionPerformed method. In the case of Option B, the
actionPerformed method is a member of an inner class whereas in the case of Option
C, it is a member of the application class itself.

Th e actionPerformed method is identical to the one presented in Option B. Since it
is the application class that implements the action listener, you need to modify the class
declaration. For instance, you need to modify the following class declaration in Option A
(or Option B)

public class MetricConversionThree extends JFrame

as shown below:

public class MetricConversionThree extends JFrame

 implements ActionListener

During registering, you need to use an instance of the application class itself. Th erefore, we
use the keyword this. In other words, the following eight statements of Option A

 jTFMile.addActionListener(new

 MileJTextFieldInterface());

jTFKilometer.addActionListener(new

 KilometerJTextFieldInterface());

 jTFPound.addActionListener(new

 PoundJTextFieldInterface());

jTFKilogram.addActionListener(new

 KilogramJTextFieldInterface());

jTFGallon.addActionListener(new

 GallonJTextFieldInterface());

CRC_C6547_CH008.indd 470CRC_C6547_CH008.indd 470 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 471

jTFLiter.addActionListener(new

 LiterJTextFieldInterface());

jTFFahrenheit.addActionListener(new

 FahrenheitJTextFieldInterface());

jTFCentigrade.addActionListener(new

 CentigradeJTextFieldInterface());

are to be replaced by the following eight statements:

jTFMile.addActionListener(this);

jTFKilometer.addActionListener(this);

jTFPound.addActionListener(this);

jTFKilogram.addActionListener(this);

jTFGallon.addActionListener(this);

jTFLiter.addActionListener(this);

jTFFahrenheit.addActionListener(this);

jTFCentigrade.addActionListener(this);

Option D

In this option, you specify the action to be taken through an anonymous inner class. Th us
the code appears as part of the registering mechanism. For instance, we can replace the
following inner class

private class MileJTextFieldInter face implements

 ActionListener

{

 public void actionPerformed(ActionEvent e)

 {

 double mile, kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 mile = Double.parseDouble(jTFMile.getText());

 kilometer = mile * MILE_KM;

 jTFKilometer.set Text(""+ fourPlaces.

 format(kilometer));

 }

}

and the Java statement in Option A

jTFMile.addActionListener(new MileJTextFieldInterface());

CRC_C6547_CH008.indd 471CRC_C6547_CH008.indd 471 10/16/2008 5:02:41 PM10/16/2008 5:02:41 PM

Apago PDF Enhancer

472 ■ Java Programming Fundamentals

by the following segment of code:

jTFMile.addActionListener(

 new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 double mile, kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 mile = Double.parseDouble(jTFMile.getText());

 kilometer = mile * MILE_KM;

 jTFKilometer.setT ext(""+ fourPlaces.

format(kilometer));

 }

 });

Similar is the case of the remaining seven inner classes in Option A.

Advanced Topic 8.2: Applets

Java allows you to create small applications, commonly known as applets, which can be
executed inside a web browser. Since an applet runs inside a web browser, it is subject to
certain restrictions. One of the major restrictions is that an applet cannot access the local
disk. However, on the bright side, you need not worry about your applet causing damage
to someone else’s computer! You create an applet by inheriting the JApplet class of the
package javax.swing (Tables 8.8 and 8.9).

In the case of a Java application, program execution begins by executing the very fi rst
executable statement in the method main. Th erefore, all application programs must have
a method main. Java applets do not start by executing the method main. However, as the

TABLE 8.8 Commonly Used Methods of the JApplet

Method Explanation

public Container
getContentPane()

Returns the reference of the
contentPane

public void
setContentPane(Container c)

Sets c as the contentPane of the
JApplet

public JMenuBar getJMenuBar() Returns the reference of the JMenuBar

public void
setJMenuBar(JMenuBar menuBar)

Sets menuBar as the JMenuBar of the
JApplet

public void update(Graphics g) Updates the graphics by invoking the
paint method

CRC_C6547_CH008.indd 472CRC_C6547_CH008.indd 472 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 473

web browser loads the web page, it loads the applet and invokes methods init followed by
start. Hence from a programming perspective, creating an applet involves inheriting a
JApplet class and overriding methods init and start.

Creating Applet from GUI Application

In this section, an applet version of the metric conversion application is created. In fact, we
start with the GUI application program and convert it into a Java applet. Th is process will
illustrate major similarities as well as diff erences between an applet and an application.
An applet is a GUI program and as such has many features in common with a stand-alone
GUI application. However, there are many diff erences and those diff erences are listed as
follows:

 1. An applet is created by extending JApplet class. A GUI application can be created
from JFrame either by inheritance or through composition.

TABLE 8.9 Inherited Methods of the JApplet from Applet

Method Explanation

public void init() Automatically invoked by the
browser or applet viewer to
initialize the applet

public void start() Automatically invoked by the
browser or applet viewer to start
its normal execution. It is invoked
after the init method and every
time the applet moves into sight in
a web browser

public void stop() Automatically invoked by the
browser or applet viewer to stop
its normal execution. It is invoked
every time the applet moves out of
sight in a web browser. It is also
invoked just before destroy

public void destroy() Automatically invoked by the
browser or applet viewer as applet
is no longer required

public void resize(int w,
int h)

Width and height are changed to w
and h, respectively

public void
showStatus(String str)

Displays the String str in the
status bar of the web browser
window

public URL getDocumentBase() Returns the Uniform Resource
Locator (URL) of the document that
has the applet

public URL getCodeBase() Returns the URL of the applet

CRC_C6547_CH008.indd 473CRC_C6547_CH008.indd 473 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

474 ■ Java Programming Fundamentals

 2. Applets have no main method. Web browser invokes init, start, stop, and
dispose methods in sequence. A GUI application must have a main method.
Th e application program starts by executing the fi rst executable statement of the
main.

 3. Applet initialization code is kept in init method. In a GUI application, the initial-
ization code is kept in a constructor.

 4. An applet is visible so long as the web page is visible. Th us, you need not invoke set
Visible method. In the case of a GUI application, you must invoke setVisible
method with true as its actual parameter.

 5. Applets have no title. Th erefore, you cannot invoke setTitle method. Th e HTML
fi le is used to set the title. In a GUI application, you invoke setTitle method to
display a string in the title bar.

 6. Applets have a method resize. However, the size of an applet is specifi ed in the
HTML fi le. A GUI application invokes setSize method to set the dimensions.

 7. Applets need no code for closing. Typically, an application provides mechanisms to
gracefully end the execution.

Th erefore, the following seven steps broadly outline the process of converting a GUI
application into an applet:

 1. Create your applet by inheriting JApplet class
 2. Replace the constructor with init method
 3. Delete Java statements that invoke the superclass constructor super and setTitle

method
 4. Delete the setSize and setVisible methods
 5. Delete main method
 6. Delete all the code corresponding to an Exit JButton
 7. Delete statements, such as setDefaultCloseOperation, that refer to a window

We illustrate these steps by modifying the metric conversion GUI application presented
earlier in this chapter. We have included the comments to indicate the change. For the sake
of clarity, we have intentionally removed all other comments.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.DecimalFormat;

/*

 Step 1

 public class MetricConversion extends JFrame

CRC_C6547_CH008.indd 474CRC_C6547_CH008.indd 474 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 475

 is replaced by the following: */

public class MetricConversionApplet extends JApplet

{

 private JLabel jLMile;

 private JLabel jLKilometer;

 private JLabel jLPound;

 private JLabel jLKilogram;

 private JLabel jLGallon;

 private JLabel jLLiter;

 private JLabel jLFahrenheit;

 private JLabel jLCentigrade;

 private JTextField jTFMile;

 private JTextField jTFKilometer;

 private JTextField jTFPound;

 private JTextField jTFKilogram;

 private JTextField jTFGallon;

 private JTextField jTFLiter;

 private JTextField jTFFahrenheit;

 private JTextField jTFCentigrade;

 /*

 Step 4

 Delete the following. These are used in connection

 with setSize only

 private static final int WIDTH = 400;

 private static final int HEIGHT = 150;

 */

 private static final double MILE_KM = 1.6;

 private static final double LB_KG = 0.454;

 private static final double GL_LT = 3.7;

 private static final double CENT_FAHR = 1.8;

 private static final double FREEZING_POINT = 32.0;

 /*

 Step 2

 The following constructor heading

CRC_C6547_CH008.indd 475CRC_C6547_CH008.indd 475 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

476 ■ Java Programming Fundamentals

 public MetricConversion()

 is replaced by the following: */

 public void init()

 {

 /*

 Step 3

 The following invocation of super is deleted

 super("Metric Conversion Assistant");

 */

 /*

 Step 4

 Delete invocation of setSize

 super.setSize(WIDTH,HEIGHT);

 */

 jLMile = new JLabel("Mile : ", SwingConstants.RIGHT);

 jLKilometer = new JLabel("Kilometer : ",

 SwingConstants.RIGHT);

 jLPound = new JLabel("Pound : ", SwingCo nstants.

 RIGHT);

 jLKilogram = new JLabel("Kilogram : ", SwingConstants.

 RIGHT);

 jLGallon = new JLabel("Gallon : ", SwingConstants.

 RIGHT);

 jLLiter = new JLabel("Liter : ", SwingCon stants.

RIGHT);

 jLFahrenheit = new JLabel("Fahrenheit : ",

 SwingConstants.RIGHT);

 jLCentigrade = new JLabel("Centigrade : ",

 SwingConstants.RIGHT);

 jTFMile = new JTextField(10);

 jTFKilometer = new JTextField(10);

 jTFPound = new JTextField(10);

 jTFKilogram = new JTextField(10);

CRC_C6547_CH008.indd 476CRC_C6547_CH008.indd 476 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 477

 jTFGallon = new JTextField(10);

 jTFLiter = new JTextField(10);

 jTFFahrenheit = new JTextField(10);

 jTFCentigrade = new JTextField(10);

 jTFMile.addActionListener(new

 MileJTextFieldInterface());

 jTFKilometer.addActionListener(new

 KilometerJTextFieldInterface());

 jTFPound.addActionListener(new

 PoundJTextFieldInterface());

 jTFKilogram.addActionListener(new

 KilogramJTextFieldInterface());

 jTFGallon.addActionListener(new

 GallonJTextFieldInterface());

 jTFLiter.addActionListener(new

 LiterJTextFieldInterface());

 jTFFahrenheit.addActionListener(new

 FahrenheitJTextFieldInterface());

 jTFCentigrade.addActionListener(new

 CentigradeJTextFieldInterface());

 Container conInterior = super.getContentPane();

 conInterior.setLayout(new GridLayout(4,2));

 conInterior.add(jLMile);

 conInterior.add(jTFMile);

 conInterior.add(jLKilometer);

 conInterior.add(jTFKilometer);

 conInterior.add(jLPound);

 conInterior.add(jTFPound);

 conInterior.add(jLKilogram);

 conInterior.add(jTFKilogram);

 conInterior.add(jLGallon);

 conInterior.add(jTFGallon);

 conInterior.add(jLLiter);

 conInterior.add(jTFLiter);

 conInterior.add(jLFahrenheit);

CRC_C6547_CH008.indd 477CRC_C6547_CH008.indd 477 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

478 ■ Java Programming Fundamentals

 conInterior.add(jTFFahrenheit);

 conInterior.add(jLCentigrade);

 conInterior.add(jTFCentigrade);

 /*

 Step 4

 Invocation of setVisible is deleted

 super.setVisible(true);

 */

 /*

 Step 7

 Invocation of setDefaultClose Operation is

 deleted

 super.setDefaultCloseOperation(EXIT_ON_CLOSE);

 */

 }

 private class MileJTextFieldInter face implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double mile;

 double kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000"

 mile = Double.parseDouble(jTFMile.getText());

 kilometer = mile * MILE_KM;

 jTFKilometer.setText(""+ fourPlaces.

 format(kilometer));

 }

 }

 private class KilometerJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

CRC_C6547_CH008.indd 478CRC_C6547_CH008.indd 478 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 479

 {

 double mile;

 double kilometer;

 Deci malFormat fourPlaces = new

 DecimalFormat("0.0000");

 kilometer = Double.parseDouble (jTFKilometer.

 getText());

 mile = kilometer / MILE_KM;

 jTFMile.setText(""+ fourPlaces.format(mile));

 }

 }

 private class PoundJTextFieldIn terface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double pound;

 double kilogram;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 pound = Double.parseDouble(jTFPound.getText());

 kilogram = pound * LB_KG;

 jTFKilogram.set Text(""+ fourPlaces.

 format(kilogram));

 }

 }

 private class KilogramJTextFieldInterf ace implements

ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double pound;

 double kilogram;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

CRC_C6547_CH008.indd 479CRC_C6547_CH008.indd 479 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

480 ■ Java Programming Fundamentals

 kilogram = Double.parseDoub le(jTFKilogram.

 getText());

 pound = kilogram / LB_KG;

 jTFPound.setText(""+ fourPlaces.format(pound));

 }

 }

 private class GallonJTextFieldInterf ace implements

ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double gallon;

 double liter;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 gallon = Double.parseDouble(jTFGallon.

 getText());

 liter = gallon * GL_LT;

 jTFLiter.setText(""+ fourPlaces.format(liter));

 }

 }

 private class LiterJTextFieldInte rface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double gallon;

 double liter;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 liter = Double.parseDouble(jTFLiter.getText());

 gallon = liter / GL_LT;

 jTFGallon.setText (""+ fourPlaces.

format(gallon));

 }

 }

CRC_C6547_CH008.indd 480CRC_C6547_CH008.indd 480 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 481

 private class FahrenheitJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double centigrade;

 double fahrenheit;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 fahrenheit = Double.parseDouble (jTFFahrenheit.

 getText());

 centigrade = (fahrenheit - FREEZ ING_POINT) /

 CENT_FAHR;

 jTFCentigrade.set Text(""+ fourPlaces.

format(centigrade));

 }

 }

 private class CentigradeJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double centigrade;

 double fahrenheit;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 centigrade = Double.parseDouble(jT FCentigrade.

 getText());

 fahrenheit = centigrad e * CENT_FAHR +

FREEZING_POINT;

 jTFFahrenheit.s etText(""+ fourPlaces.

 format(fahrenheit));

 }

 }

 /*

 Step 5

 method main is deleted

CRC_C6547_CH008.indd 481CRC_C6547_CH008.indd 481 10/16/2008 5:02:42 PM10/16/2008 5:02:42 PM

Apago PDF Enhancer

482 ■ Java Programming Fundamentals

 public static void main(String[] args)

 {

 MetricConversion metricConversion = new

 MetricConversion();

 }

 */

}

Just like an application, to run an applet, you must fi rst compile it and create a .class
fi le. Next you need to embed the applet (the .class fi le) inside a web page. If you have never
created an HTML fi le, you can use the following simple HTML fi le. Once the contents are
typed into fi le using a text editor, remember to save it as a .html or .htm fi le. For instance,
you can save as MetricConversionJApplet.html.

<HTML>

<HEAD>

<TITLE>Metric Conversion Helper</TITLE>
</HEAD>

<BODY>

<APPLET code = “MetricConversionJApplet.class” width = “400” height = “120”>
</APPLET>

</BODY>

</HTML>

Finally, you run your applet either by opening HTML fi le MetricConversionJAp
plet.html with a web browser, or running the appletviewer (an HTML viewer with
limited capabilities) at command line prompt as shown below:

appletviewer MetricConversionJApplet.html

Output

FIGURE 8.7 Metric conversion applet.

CRC_C6547_CH008.indd 482CRC_C6547_CH008.indd 482 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 483

Advanced Topic 8.3: Applet and GUI Application

You have learned how to create GUI applications and applets. You may be wondering
whether or not it is necessary to keep two versions of the same program, one to execute as a
stand-alone application and the other to execute embedded inside a web page as an applet.
Fortunately, you can write a Java program that is both an application as well as an applet.
Th e major steps are as follows:

 1. Create an applet class by extending JApplet class
 2. Add a main method to the class created in step 1
 3. Create an instance of the applet class and JFrame class
 4. Add the applet instance created in step 3 to the content pane of the JFrame instance
 5. Invoke the setSize method of the JFrame class
 6. Invoke the init and the start methods of the applet class
 7. Invoke setVisible method to make the JFrame instance visible and invoke set-

DefaultCloseOperation method to gracefully close the application window

We illustrate these steps by converting the MetricConversionJApplet presented in
the previous section. We have included the comments to indicate the change. For the sake
of clarity, we have intentionally removed all other comments.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.DecimalFormat;

public class MetricConversionJAppletApp extends JApplet

{

 private JLabel jLMile;

 private JLabel jLKilometer;

 private JLabel jLPound;

 private JLabel jLKilogram;

 private JLabel jLGallon;

 private JLabel jLLiter;

 private JLabel jLFahrenheit;

 private JLabel jLCentigrade;

 private JTextField jTFMile;

 private JTextField jTFKilometer;

 private JTextField jTFPound;

 private JTextField jTFKilogram;

 private JTextField jTFGallon;

 private JTextField jTFLiter;

 private JTextField jTFFahrenheit;

 private JTextField jTFCentigrade;

CRC_C6547_CH008.indd 483CRC_C6547_CH008.indd 483 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

484 ■ Java Programming Fundamentals

 /*

 Step 5

 Next two lines are added as part of Step 5.

 */

 private static final int WIDTH = 400;

 private static final int HEIGHT = 150;

 private static final double MILE_KM = 1.6;

 private static final double LB_KG = 0.454;

 private static final double GL_LT = 3.7;

 private static final double CENT_FAHR = 1.8;

 private static final double FREEZING_POINT = 32.0;

 public void init()

 {

 jLMile = new JLabel("Mile : ", SwingConstants.RIGHT);

 jLKilometer = new JLabel("Kilometer : ",

 SwingConstants.RIGHT);

 jLPound = new JLabel("Pound : ", Swing Constants.

 RIGHT);

 jLKilogram = new JLabel("Kilogram : ", SwingC onstants.

 RIGHT);

 jLGallon = new JLabel("Gallon : ", Swing Constants.

 RIGHT);

 jLLiter = new JLabel("Liter : ", Swing Constants.

 RIGHT);

 jLFahrenheit = new JLabel("Fahrenheit : ",

 SwingConstants.RIGHT);

 jLCentigrade = new JLabel("Centigrade : ",

 SwingConstants.RIGHT);

 jTFMile = new JTextField(10);

 jTFKilometer = new JTextField(10);

 jTFPound = new JTextField(10);

 jTFKilogram = new JTextField(10);

 jTFGallon = new JTextField(10);

 jTFLiter = new JTextField(10);

 jTFFahrenheit = new JTextField(10);

 jTFCentigrade = new JTextField(10);

 jTFMile.addActionListener(new

 MileJTextFieldInterface());

 jTFKilometer.addActionListener(new

 KilometerJTextFieldInterface());

CRC_C6547_CH008.indd 484CRC_C6547_CH008.indd 484 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 485

 jTFPound.addActionListener(new

 PoundJTextFieldInterface());

 jTFKilogram.addActionListener(new

 KilogramJTextFieldInterface());

 jTFGallon.addActionListener(new

 GallonJTextFieldInterface());

 jTFLiter.addActionListener(new

 LiterJTextFieldInterface());

 jTFFahrenheit.addActionListener(new

 FahrenheitJTextFieldInterface());

 jTFCentigrade.addActionListener(new

 CentigradeJTextFieldInterface());

 Container conInterior = super.getContentPane();

 conInterior.setLayout(new GridLayout(4,2));

 conInterior.add(jLMile);

 conInterior.add(jTFMile);

 conInterior.add(jLKilometer);

 conInterior.add(jTFKilometer);

 conInterior.add(jLPound);

 conInterior.add(jTFPound);

 conInterior.add(jLKilogram);

 conInterior.add(jTFKilogram);

 conInterior.add(jLGallon);

 conInterior.add(jTFGallon);

 conInterior.add(jLLiter);

 conInterior.add(jTFLiter);

 conInterior.add(jLFahrenheit);

 conInterior.add(jTFFahrenheit);

 conInterior.add(jLCentigrade);

 conInterior.add(jTFCentigrade);

 }

 private class MileJTextFieldInterf ace implements

ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double mile;

 double kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

CRC_C6547_CH008.indd 485CRC_C6547_CH008.indd 485 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

486 ■ Java Programming Fundamentals

 mile = Double.parseDouble(jTFMile.getText());

 kilometer = mile * MILE_KM;

 jTFKilometer.setText(""+ fourPlaces.

 format(kilometer));

 }

 }

 private class KilometerJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double mile;

 double kilometer;

 DecimalFormat fourPlaces = new

 DecimalFormat("0.0000");

 kilometer = Double.parseDouble(jTFKilometer.

 getText());

 mile = kilometer / MILE_KM;

 jTFMile.setText(""+ fourPlaces.format(mile));

 }

 }

 private class PoundJTextFieldInter face implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double pound;

 double kilogram;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 pound = Double.parseDouble(jTFPound.getText());

 kilogram = pound * LB_KG;

 jTFKilogra m.setText(""+ fourPlaces.

 format(kilogram));

 }

 }

CRC_C6547_CH008.indd 486CRC_C6547_CH008.indd 486 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 487

 private class KilogramJTextFieldInter face implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double pound;

 double kilogram;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 kilogram = Double.parseDouble

 (jTFKilogram.getText());

 pound = kilogram / LB_KG;

 jTFPound.setText(""+ fourPlaces.format(pound));

 }

 }

 private class GallonJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double gallon;

 double liter;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 gallon = Double.parseDouble (jTFGallon.getText());

 liter = gallon * GL_LT;

 jTFLiter.setText(""+ fourPlaces.format(liter));

 }

 }

 private class LiterJTextFieldInterf ace implements

ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double gallon;

 double liter;

CRC_C6547_CH008.indd 487CRC_C6547_CH008.indd 487 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

488 ■ Java Programming Fundamentals

 Deci malFormat fourPlaces = new

 DecimalFormat("0.0000");

 liter = Double.parseDouble(jTFLiter.getText());

 gallon = liter / GL_LT;

 jTFGallon.setText (""+ fourPlaces.

format(gallon));

 }

 }

 private class FahrenheitJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double centigrade;

 double fahrenheit;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

 fahrenheit = Double.parseDouble(jTFFahrenheit.

 getText());

 centigrade = (fahrenheit - FREEZ ING_POINT) /

 CENT_FAHR;

 jTFCentigrade.set Text(""+ fourPlaces.

format(centigrade));

 }

 }

 private class CentigradeJTextFieldInterface implements

 ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 double centigrade;

 double fahrenheit;

 Decima lFormat fourPlaces = new

DecimalFormat("0.0000");

CRC_C6547_CH008.indd 488CRC_C6547_CH008.indd 488 10/16/2008 5:02:43 PM10/16/2008 5:02:43 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 489

 centigrade = Double.parseDouble (jTFCentigrade.

 getText());

 fahrenheit = centigra de * CENT_FAHR +

 FREEZING_POINT;

 jTFFahrenheit.setText(""+ fourPlaces.

 format(fahrenheit));

 }

 }

 /*

 Step 2

 method main is added

 */

 public static void main(String[] args)

 {

 /*

 Step 3

 instance of applet and JFrame

 */

 MetricConversionJAppletApp

 metricConversion = new

 MetricConversionJAppletApp();

 JFrame appWindow = new JFrame("Metric Conversion

 Helper");

 /*

 Step 4

 add instance of applet to the

 content pane of the appWindow

 */

 Container conInterior = appWindow.getContentPane();

 conInterior.add(metricConversion);

 /*

 Step 5

 invoke setSize for appWindow

 */

CRC_C6547_CH008.indd 489CRC_C6547_CH008.indd 489 10/16/2008 5:02:44 PM10/16/2008 5:02:44 PM

Apago PDF Enhancer

490 ■ Java Programming Fundamentals

 appWindow.setSize(WIDTH,HEIGHT);

 /*

 Step 6

 invoke init and start of the applet

 */

 metricConversion.init();

 metricConversion.start();

 /*

 Step 7

 invoke setVisible and

 setDefaultCloseOperation

 */

 appWindow.setVisible(true);

 appWindow.setDefaultClose Operation(JFrame.

 EXIT_ON_CLOSE);

 }

}

Th e program can be executed either as an application or as an applet. Th e output pro-
duced will be similar to the one shown in Figure 8.6 or 8.7, respectively, and hence
omitted.

Advanced Topic 8.4: Graphics

Event handlers discussed in previous sections are examples of a callback mechanism. In sim-
ple terms, Java system invokes certain methods based on the events occurring during the
execution of a program. However, the developer of the application has the ability to override
those methods. In this section, you will encounter a new callback method paint. Th e paint
service is defi ned in the Component class and it renders contents of a Component object.

Th roughout this section, you will be using the paint service of the applet to draw vari-
ous objects in an instance of Canvas class that is part of the applet. Th e Canvas class is a
subclass of the Component class.

To draw, a graphics context is required. A graphics context is an instance of Graphics
class. Since Graphics class is an abstract class, it is impossible to create a graphics con-
text using the new operator. As a programmer, there are two ways to get a graphics context

CRC_C6547_CH008.indd 490CRC_C6547_CH008.indd 490 10/16/2008 5:02:44 PM10/16/2008 5:02:44 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 491

for drawing on a component. First, the formal parameter to the paint method is a
graphics context, and thus it is available inside a component’s paint method. Th e second
option is to use getGraphics method of a component. In this section, we will be using
the fi rst option. Th e reader is encouraged to try Programming Exercise 10 that requires
getGraphics method.

Th e paint is invoked by the system in three diff erent occasions:

 1. Th e component is made visible on the screen for the fi rst time.
 2. Th e component is resized.
 3. Th e component needs to be made visible again as some other component that pre-

viously obscured this component has moved.

The paint method can also be called by the user indirectly. For instance, the
component determines that it needs to update its contents, due to a user action such
as clicking a JButton object, by displaying a pushed-in look. As a programmer,
you override the paint method of a component. However, you never invoke the
paint method directly. Instead, you call repaint method with no parameters and
repaint method in turn will call update method followed by the paint method
of the component.

You draw graphics by overriding the paint method. We start with the follow-
ing Java program that draws a string “Graphics and Java” starting at pixel loca-
tion (10, 25) (Figure 8.8). Th e paint method has a single argument that is an
instance of the Graphics class of the package java.awt. Th ere are many meth-
ods in the Graphics class to produce various geometric shapes and writing strings.
You can use these methods inside the paint method. Some of the most commonly
used Graphics methods are presented in Table 8.10. For the present, we use draw-
String method of the Graphics class with three arguments. Th e fi rst argu-
ment is the String to be drawn and the next two int values specify the starting
pixel location. Th erefore, the following paint method draws the String at pixel
location (10, 25):

public void paint(Graphics g)

{

 super.paint(g);

 g.drawString("Graphics and Java", 10, 25);

}

Th e complete Java program listing is given below:

import java.awt.Graphics;

import javax.swing.*;

CRC_C6547_CH008.indd 491CRC_C6547_CH008.indd 491 10/16/2008 5:02:44 PM10/16/2008 5:02:44 PM

Apago PDF Enhancer

492 ■ Java Programming Fundamentals

/**

 Illustration of drawString method

*/

public class GraphicsJAppletApp extends JApplet

{

 private static final int WIDTH = 200;

 private static final int HEIGHT = 100;

 public void paint(Graphics g)

 {

 super.paint(g);

 g.drawString("Graphics and Java", 10, 25);

 }

 public static void main(String[] args)

 {

 GraphicsJAppletApp appletApp = new

 GraphicsJAppletApp();

 Jframe appWindow = new Jframe("Graphics and Java");

 appWindow.getContentPane().add(appletApp);

 appWindow.setSize(WIDTH,HEIGHT);

 appletApp.init();

 appletApp.start();

 appWindow.setVisible(true);

 appWindow.setDefaultCloseOp eration(Jframe.EXIT_ON_CLOSE);

 }

}

Output (produced by application)

FIGURE 8.8 Demonstration of drawString.

CRC_C6547_CH008.indd 492CRC_C6547_CH008.indd 492 10/16/2008 5:02:44 PM10/16/2008 5:02:44 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 493

TABLE 8.10 Methods For Creating Geometric Shapes

Method Explanation

public abstract void drawLine
(int sx, int sy, int dx, int
dy)

Draws a line starting from (sx, sy) to
(dx, dy)

public abstract void drawArc
(int x, int y, int w, int h,
int sa, int aa)

Draws an arc of the ellipse with top-
left corner (x,y) and width w, height
h. The arc starts at an angle sa (degree)
and ends at an angle sa + aa (degree)

public abstract void fillArc Draws a filled arc of the ellipse with
top-left corner (x,y) and width w,
height h. The arc starts at an angle
sa (degree) and ends at an angle sa +
aa (degree)

 (int x, int y, int w, int h,
int sa, int aa)

public abstract void drawRect Draws a rectangle with top-left corner
at (x,y) and width w, height h (int x, int y, int w, int h)

public abstract void fillRect Draws a filled rectangle with top-left
corner at (x,y) and width w, height h (int x, int y, int w, int h)

public abstract void draw3DRect Draws a 3-dimensional rectangle with
top-left corner at (x,y) and width w,
height h. Rectangle will appear raised
if r is true

 (int x, int y, int w, int h,
boolean r)

public abstract void fill3DRect Draws a filled 3-dimensional rectangle
with top-left corner at (x,y) and
width w, height h. Rectangle will
appear raised if r is true

 (int x, int y, int w, int h,
boolean r)

public abstract void
drawRoundRect(int x, int y, int
w, int h, int aw, int ah)

Draws a corner-rounded rectangle with
top-left corner at (x,y) and width w,
height h. The arc width aw and arc
height ah determine the shape of the
corner

public abstract void
fillRoundRect(int x, int y, int
w, int h, int aw, int ah)

Draws a filled corner-rounded rectangle
with top-left corner at (x,y) and
width w, height h. The arc width aw
and arc height ah determine the shape
of the corner

public abstract void drawOval Draws an Oval with top-left corner at
(x,y) and width w, height h (int x, int y, int w, int h)

public abstract void fillOval Draws a filled Oval with top-left
corner at (x,y) and width w, height h (int x, int y, int w, int h)

public abstract void
drawPolygon(int[] x, int[] y,
int n)

Draws a polygon with n points: (x[0],
y[0]), ...,(x[n-1], y[n-1])

public abstract void
fillPolygon(int[] x, int[] y,
int n)

Draws a filled polygon with n points:
(x[0], y[0]), ...,(x[n-1], y[n-1])

public abstract void
drawPolygon(Polygon p)

Draws the polygon p

public abstract void
fillPolygon(Polygon p)

Draws the filled polygon p

public abstract void
drawString(Polygon p)

Draws the String str starting at pixel
location (x, y)

CRC_C6547_CH008.indd 493CRC_C6547_CH008.indd 493 10/16/2008 5:02:44 PM10/16/2008 5:02:44 PM

Apago PDF Enhancer

494 ■ Java Programming Fundamentals

Before we introduce other methods of the Graphics class, let us explore the Color class
and the Font class of the java.awt package.

Advanced Topic 8.5: Color

Every GUI component in Java has a background color and a foreground color. As you draw
on a component, you see the foreground color. You can set both background color and
foreground color of a Component using methods setBackground and setFore-
ground, respectively.

Java employs RGB (Red Green Blue) color scheme. Every color in this scheme is obtained
by mixing red, green, and blue hues in various proportions. For instance, yellow is
obtained by mixing equal amounts of red and green with no blue at all. Similarly, the color
magenta is created by mixing red and blue in equal amounts. Th e Color class has three
constructors. Th e fi rst constructor in Table 8.11 allows us to specify the RGB value as three
separate int values. Each of these int values can be between 0 and 255. Th erefore, using
the fi rst constructor, you can create red, green, blue, yellow, and magenta as shown below:

Color redColor = new Color(255, 0, 0); //creates a red color

Color greenColor = new Color(0, 255, 0); //creates a green

 color

Color blueColor = new Color(0, 0, 255); //creates a blue color

Color yellowColor = new Color(255, 255, 0); //creates a yellow

 color

Color magentaColor = new Color(255, 0, 255); //cr eates a magenta

 color

TABLE 8.11 Selected Constructors and Methods of Color Class

Constructor or Method Explanation

Color(int r, int g, int b) Creates a color object with red value r,
green value g, and blue value b. Values
r, g, and b are in the range 0–255

Color(int c) Creates a color object with red value r,
green value g, and blue value b such
that r, g, and b are in the range 0–55;
and c = r * 65536 + g * 256 + b

Color(float r, float g,
float b)

Creates a color object with red value r,
green value g, and blue value b. Values
r, g, and b are in the range 0–1

public int getBlue() Accessor method that returns blue
component value in the range 0–255

public int getGreen() Accessor method that returns green
component value in the range 0–255

public int getRed() Accessor method that returns red
component value in the range 0–255

public int getRGB() Accessor method that returns the RGB
value c. c = r * 65536 + g * 256 + b,
then r, g, and b are red, green, and
blue components in the range 0–255

CRC_C6547_CH008.indd 494CRC_C6547_CH008.indd 494 10/16/2008 5:02:44 PM10/16/2008 5:02:44 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 495

Mixing all three colors in the same proportion produces diff erent shades of gray. White
color has RGB values 255, 255, 255, and black has RGB values 0, 0, 0. Note that an RGB
value of 64, 64, 64 creates a 75% gray color and an RGB value of 192, 192, 192 creates a 25%
gray color. Similarly, an RGB value of 255, 255, 0 produces the most light yellow color and
an RGB value of 1, 1, 0 produces the most dark yellow color.

Th e Color class defi nes 15 most commonly used colors as constants. Table 8.12
lists these constants and their RGB values. Note that all color constants are spelled in
lowercase.

We now create a simple applet application to demonstrate the Color class. Th ree
instances of JTextField, jTFRed, jTFGreen, and jTFBlue are used to get the RGB
values from the user. If the user fails to enter a value in any one of the textfi elds, we would
like to treat it as zero. Th is can be accomplished by checking the length of the string
entered by the user. If the length of the string happens to be zero, we will set the value as
zero. If the length is not zero, then we use parseInt method of the Integer class to
parse the string and get the integer value. Recall that each of the RGB component value
has to be between 0 and 255. We compute the remainder of the user-entered value upon
division by 256. Th is will make sure that the RGB values are always between 0 and 255.
Th us, we have the following code:

int r, g, b;

String str;

str = jTFRed.getText();

if (str.length() == 0)

 r = 0;

else

 r = Integer.parseInt(str) % 256;

str = jTFGreen.getText();

if (str.length() == 0)

 g = 0;

TABLE 8.12 Most Commonly Used Colors

Primary colors of RGB

Color.red (255,0,0) Color.green (0,255,0)
Color.blue (0,0,255)

Secondary colors

Color.yellow (255,255,0) Color.magenta (255,0,255)
Color.cyan (0,255,255) Color.orange (255,200,0)
Color.pink (255,175,175)

Shades of gray

Color.black (0,0,0) Color.darkGray (64,64,64)
Color.gray (128,128,128) Color.lightGray (192,192,192)
Color.white (255,255,255)

CRC_C6547_CH008.indd 495CRC_C6547_CH008.indd 495 10/16/2008 5:02:45 PM10/16/2008 5:02:45 PM

Apago PDF Enhancer

496 ■ Java Programming Fundamentals

else

 g = Integer.parseInt(str) % 256;

str = jTFBlue.getText();

if (str.length() == 0)

 b = 0;

else

 b = Integer.parseInt(str) % 256;

Th e following Java statement will create a new Color and set it as the background color
of the content pane conInterior:

conInterior.setBackground(new Color(r, g, b));

To make this change to take eff ect we need to call the repaint method of the Compo
nent class as shown below:

conInterior.repaint();

Th us, we have the following actionPerformed method:

public void actionPerformed(ActionEvent e)

{

 int r, g, b;

 String str;

 str = jTFRed.getText();

 if (str.length() == 0)

 r = 0;

 else

 r = Integer.parseInt(str) % 256;

 str = jTFGreen.getText();

 if (str.length() == 0)

 g = 0;

 else

 g = Integer.parseInt(str) % 256;

 str = jTFBlue.getText();

 if (str.length() == 0)

 b = 0;

 else

 b = Integer.parseInt(str) % 256;

CRC_C6547_CH008.indd 496CRC_C6547_CH008.indd 496 10/16/2008 5:02:45 PM10/16/2008 5:02:45 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 497

 conInterior.setBackground(new Color(r, g, b));

 conInterior.repaint();

}

Observe that reference variable conInterior needs to be available inside the action
Performed. Th erefore, it has to be declared as an attribute of the applet class. Since
grid layout places components from left to right and top to bottom order, we create an
extra JLabel object jLnoLabel and place it so that our JButton object jBsetColor
appears at the center. Th e complete listing is given below:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.DecimalFormat;

/**

 Applet application illustrating the Color class

*/

public class ColorDisplayJAppletApp extends JApplet

{

 private JLabel jLRed, jLGreen, jLBlue, jLnoLabel;

 private JTextField jTFRed, jTFGreen, jTFBlue;

 private JButton jBsetColor;

 private Container conInterior;

 private static final int WIDTH = 300;

 private static final int HEIGHT = 150;

 /**

 init method creates the GUI

 */

 public void init()

 {

 jLRed = new JLabel("Red", SwingConstants.CENTER);

 jLGreen = new JLabel("Green", SwingConstants.CENTER);

 jLBlue = new JLabel("Blue", SwingConstants.CENTER);

 jLnoLabel = new JLabel();

 //Create JTextfields

 jTFRed = new JTextField(3);

CRC_C6547_CH008.indd 497CRC_C6547_CH008.indd 497 10/16/2008 5:02:45 PM10/16/2008 5:02:45 PM

Apago PDF Enhancer

498 ■ Java Programming Fundamentals

 jTFGreen = new JTextField(3);

 jTFBlue = new JTextField(3);

 //Create JButton

 jBsetColor = new JButton("Set Color");

 jBse tColor.addActionListener(new

SetColorJButtonInterface());

 conInterior = super.getContentPane();

 //Set the layout

 conInterior.setLayout(new GridLayout(3,3));

 //Place components in the container

 //left to right; top to bottom order

 conInterior.add(jLRed);

 conInterior.add(jLGreen);

 conInterior.add(jLBlue);

 conInterior.add(jTFRed);

 conInterior.add(jTFGreen);

 conInterior.add(jTFBlue);

 conInterior.add(jLnoLabel);

 conInterior.add(jBsetColor);

 }

 /**

 Implements the action listener class

 */

 private class SetColorJButtonInterf ace implements

ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 int r, g, b;

 String str;

 str = jTFRed.getText();

 if (str.length() == 0)

 r = 0;

 else

 r = Integer.parseInt(str) % 256;

 str = jTFGreen.getText();

 if (str.length() == 0)

 g = 0;

CRC_C6547_CH008.indd 498CRC_C6547_CH008.indd 498 10/16/2008 5:02:45 PM10/16/2008 5:02:45 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 499

 else

 g = Integer.parseInt(str) % 256;

 str = jTFBlue.getText();

 if (str.length() == 0)

 b = 0;

 else

 b = Integer.parseInt(str) % 256;

 conInterior.setBackground(new Color(r, g, b));

 conInterior.repaint();

 }

 }

 public static void main(String[] args)

 {

 ColorDisplayJAppletApp appletApp = new

 ColorDisplayJAppletApp();

 JFrame appWindow = new JFrame("Color Creator");

 appWindow.getContentPane().add(appletApp);

 appWindow.setSize(WIDTH,HEIGHT);

 appletApp.init();

 appletApp.start();

 appWindow.setVisible(true);

 appWindow.setDefaultClose Operation(JFrame.EXIT_ON_CLOSE);

 }

}

Output (produced by application)

Th e color creator is as shown in Figure 8.9.

FIGURE 8.9 Color creator.

CRC_C6547_CH008.indd 499CRC_C6547_CH008.indd 499 10/16/2008 5:02:45 PM10/16/2008 5:02:45 PM

Apago PDF Enhancer

500 ■ Java Programming Fundamentals

Advanced Topic 8.6: Font

In the previous section, you have learned about the Color class in Java. In this section, we
explore the Font class in Java. Using the Font class you could create a Font object and
use it in your GUI programs and applets to add more visual eff ects. Th e Font class is part
of java.awt package.

Th e Font class has a constructor that takes three arguments as shown below:

public Font(String fontName, int fontStyle, int pointSize)

fontName: A string to indicate the Font face name or font name. Examples are

 Serif
 Monospaced Sanserif
 Dialog
 DialogInput

Th ese fonts will be available in all Java systems.

fontStyle: Font class has three int constants to indicate the font style:

 Font.PLAIN for plain style text
 Font.BOLD for bold style text
 Font.ITALIC for italic style text

You can also use Font.BOLD + Font.ITALIC for bold and italic style text.

pointSize: An int value to specify the size of the character in points. An inch is 72 points.
Th us, 12 points is one-sixth of an inch.

Before we start creating fonts, it is a good idea to fi nd out the fonts available in your
system. Th e following Java application can be used for that purpose. Th e program uses
graphics environment and arrays that we have not introduced. Th e graphics environment
will be introduced later in this chapter. Th e arrays are presented in Chapter 9. For the
present, execute this program and observe the output. Since output depends on the
machine, it is not presented.

import java.awt.*;

/**

 Lists all fonts available in the system.

 Applet application version

*/

public class FontAvailable

{

 public static void main(String[] args)

•
•
•
•

•
•
•

CRC_C6547_CH008.indd 500CRC_C6547_CH008.indd 500 10/16/2008 5:02:45 PM10/16/2008 5:02:45 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 501

 {

 int j;

 String[] FontNameList =

 GraphicsEnvironment.getLocalGraphicsEnvironment()

 .getAvailableFontFamilyNames();

 for (j = 0; j < listOfFontNames.length; j++)

 System.out.println(FontNameList[j]);

 }

}

Th e following example illustrates the use of Font class inside a paint method.

Example 8.3

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.DecimalFormat;

/**

 Illustration of Font class

 Applet application version

*/

public class FontDisplayJAppletApp extends JApplet

{

 private static final int WIDTH = 600;

 private static final int HEIGHT = 160;

 /**

 Overridden paint method

 */

 public void paint(Graphics g)

 {

 super.paint(g);

 g.setFont(new Font("Monospaced Sanserif ", Font. PLAIN,

10));

 g.drawString(

 "Sea to Shinning Sea : Monospaced Sanserif plain

10pt",110,20);

CRC_C6547_CH008.indd 501CRC_C6547_CH008.indd 501 10/16/2008 5:02:46 PM10/16/2008 5:02:46 PM

Apago PDF Enhancer

502 ■ Java Programming Fundamentals

 g.setFont(new Font("Courier New", Font.ITALIC, 15));

 g.drawString(

 "Sea to Shinning Sea : Couri er New italic

15pt",80,40);

 g.setFont(new Font("Arial", Font.BOLD, 20));

 g.drawString("Sea to Shinning Se a : Arial bold

 20pt",50,65);

 g.setFont(new Font("Times Roman",

 Font.ITALIC + Font.BOLD, 25));

 g.drawString(

 "Sea to Shinning Sea : Times Roman italic bold

 25pt", 20,95);

 }

 public static void main(String[] args)

 {

 FontDisplay JAppletApp appletApp = new

 FontDisplayJAppletApp();

 JFrame appWindow = new JFrame("Font Creator");

 appWindow.getContentPane().add(appletApp);

 appWindow.setSize(WIDTH,HEIGHT);

 appletApp.init();

 appletApp.start();

 appWindow.setVisible(true);

 appWindow.setDefa ultCloseOperation(JFrame.

 EXIT_ON_CLOSE);

 }

}

Output (produced by application)

Figure 8.10 shows the demonstration of the Font class.

FIGURE 8.10 Demonstration of the Font class.

CRC_C6547_CH008.indd 502CRC_C6547_CH008.indd 502 10/16/2008 5:02:46 PM10/16/2008 5:02:46 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 503

Advanced Topic 8.7: Drawing Services

Th e Graphics class of java.awt package has many services to create a wide variety
of geometric shapes and drawing strings. Th e basic shapes supported are

Line
Arc
Rectangle
Th ree-dimensional rectangle
Rectangles with round corners
Oval
Polygon

All these shapes except line, come with a fi lled version as well. Observe that in the case of
line, there is no need for a fi lled version.

Example 8.4

In this example, we illustrate some of the drawing methods. Program is quite self-
explanatory.

import java.awt.*;

import javax.swing.*;

/**

 Illustration of various drawing methods

*/

public class DrawingJAppletApp extends JApplet

{

 private static final int WIDTH = 400;

 private static final int HEIGHT = 400;

 public void paint(Graphics g)

 {

 super.paint(g);

 g.setColor(Color.red);

 g.drawOval(100, 100, 60, 60);

 g.setColor(Color.green);

 g.fillOval(100, 100, 30, 30);

 g.setColor(Color.blue);

 g.drawOval(200, 100, 60, 40);

 g.setColor(Color.pink);

 g.fillOval(215, 115, 30, 10);

 g.setColor(Color.green);

 g.drawRect(100, 200, 60, 60);

•
•
•
•
•
•
•

CRC_C6547_CH008.indd 503CRC_C6547_CH008.indd 503 10/16/2008 5:02:46 PM10/16/2008 5:02:46 PM

Apago PDF Enhancer

504 ■ Java Programming Fundamentals

 g.setColor(Color.red);

 g.fillRect(160, 230, 25, 25);

 g.setColor(Color.pink);

 g.drawRoundRect(200, 200, 60, 40,10,20);

 g.setColor(Color.green);

 g.drawRoundRect(260, 260, 30, 10, 10,20);

 g.setColor(Color.cyan);

 g.fill3DRect(150, 300, 80, 40,true);

 }

 public static void main(String[] args)

 {

 DrawingJAppletApp appletApp = new DrawingJAppletApp();

 JFrame appWindow = new JFrame("Drawing");

 appWindow.getContentPane().add(appletApp);

 appWindow.setSize(WIDTH,HEIGHT);

 appletApp.init();

 appletApp.start();

 appWindow.setVisible(true);

 appWindow.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

 }

}

Output (produced by applet)

Figure 8.11 shows various drawing services to create geometric shapes.

FIGURE 8.11 Drawing services.

CRC_C6547_CH008.indd 504CRC_C6547_CH008.indd 504 10/16/2008 5:02:46 PM10/16/2008 5:02:46 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 505

REVIEW
 1. Th e application window of all applications is created by extending the JFrame class

of the Java package javax.swing.
 2. In particular, we use the add service of the Container class to place various GUI

objects in the content pane of the JFrame object.
 3. Th e term pixel stands for picture element and is the smallest unit on your screen that

you can control.
 4. You can control the visibility of a GUI component through setVisible method of

the superclass Component.
 5. JFrame has a content pane and GUI components are placed on the content pane and

not on the JFrame.
 6. Th e layout manager determines size and location of components placed inside a

container.
 7. Components are placed in the grid from left to right in each row and rows are fi lled

from top to bottom.
 8. Every user-generated event falls under some event class.
 9. Corresponding to each event class, there is an associated listener interface.
 10. An interface may contain one or more abstract methods.
 11. Implementing a listener interface involves defi ning all the methods of the

interface as part of some class in your program.
 12. Pressing the Enter key in a JTextField object generates an ActionEvent.
 13. Java allows you to create small applications, commonly known as applets that can be

executed inside a web browser.
 14. An applet cannot access the local disk.
 15. Java application program begins by executing the very fi rst executable statement in

the method main.
 16. An applet is created by extending JApplet class.
 17. Applets have no main method. Web browser invokes init, start, stop, and

dispose methods in sequence.
 18. Applets have no title.
 19. An applet is executed by opening an HTML fi le with a web browser or running the

appletviewer.
 20. An appletviewer is a scaled down web browser.
 21. Th e service paint method is defi ned in the Component class and the method

 renders contents of a Component object.
 22. To draw, a graphics context is required.
 23. A graphics context is an instance of Graphics class. Since Graphics class is an

abstract class, it is impossible to create a graphics context using the new operator.

CRC_C6547_CH008.indd 505CRC_C6547_CH008.indd 505 10/16/2008 5:02:47 PM10/16/2008 5:02:47 PM

Apago PDF Enhancer

506 ■ Java Programming Fundamentals

 24. Th e formal parameter to the paint method is a graphics context and it is available
inside a component’s paint method.

 25. Th e paint method is not invoked directly. Instead, you call repaint method with
no parameters and repaint method in turn will call update method followed by
the paint method.

 26. Every GUI component in Java has a background color and a foreground color.
 27. Java employs RGB (Red Green Blue) color scheme. Every color in this scheme is

obtained by mixing red, green, and blue hues in various proportions.
 28. Th e Font class is part of java.awt package.
 29. An inch is 72 points. Th us, 12 points is one-sixth of an inch.
 30. Th e Graphics class of java.awt package has many services to create a wide

variety of geometric shapes.

EXERCISES
 1. Mark the following statements as true or false:
 a. A GUI program responds to events generated by the user.
 b. GUI components are measured in points.
 c. In the case of GridLayout manager, components are placed from left to right in

each row and rows are fi lled from top to bottom.
 d. Th ere are interfaces with no abstract methods.
 e. parseInt is a method of the String class.
 f. Applet is a small application that can be executed inside a web browser.
 g. An applet is created as a subclass of JFrame.
 h. Th e setTitle method can be used to set the title of an applet.
 i. Th e setVisible method is used to make the applet visible.
 j. To draw, a graphics context is required.
 k. Th e paint is invoked by the user to draw various geometric shapes.
 l. Th e primary colors of the Java color system are red, blue, and yellow.
 m. Th ere are user-generated events that do not fall under some event class.
 n. If all three components of a color are the same, then it is some shade of gray,

including black and white.
 2. Fill in the blanks.
 a. Th e two stages of creating a GUI program are and

.
 b. An instance of the class is used to label a GUI

component.
 c. Th e getText method of a JTextField returns a .

CRC_C6547_CH008.indd 506CRC_C6547_CH008.indd 506 10/16/2008 5:02:47 PM10/16/2008 5:02:47 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 507

 d. To get the reference of the content pane of a JFrame, use the method
.

 e. Both JTextField and JTextArea inherit common methods from its imme-
diate superclass .

 f. A component is placed in a container using the method
of class.

 g. Every time a JButton is clicked, JVM creates an instance of the class
.

 h. An applet starts with method followed by
 method.

 i. Th e size of an applet is determined by .
 j. A Font has , , and .
 k. Th e actionListener interface has an abstract method .
 l. Th e RGB values of the color Red are , ,

.
 m. Th e RGB values of the color Black are , , .
 n. Th e formal parameter of the paint method is of the type .
 3. Write the Java statement or statements to accomplish the following tasks:
 a. To make the JFrame of your application 300 by 500 pixel
 b. To make the JFrame visible
 c. To get the content pane of the JFrame
 d. To create a button labeled “Ok”
 e. To place a button in a content pane
 f. To create a new color with red, green, and blue in the ratio 2:3:4 approximately
 g. To create a new font with name “Courier new,” style “italic,” and 48 points in size
 h. To draw a circle of radius 100 and center (250, 400)
 i. To draw a fi lled rectangle of height 200, width 300, and center (500, 600) and

color blue
 4. In fi nding sum of fi rst n integers program, the book has used the fact that either n

or n + 1 is going to be an integer. Explain the advantages and disadvantages of this
approach.

 5. Suggest the appropriate GUI component
 a. To input data
 b. To output data
 c. To input and output data
 d. To identify other GUI components
 e. To generate an event

CRC_C6547_CH008.indd 507CRC_C6547_CH008.indd 507 10/16/2008 5:02:47 PM10/16/2008 5:02:47 PM

Apago PDF Enhancer

508 ■ Java Programming Fundamentals

 6. Using a GridLayout manager, six identical GUI components can be placed in four
diff erent ways: 1 by 6, 2 by 3, 3 by 2, and 6 by 1. List all possible ways one can place
24 identical GUI components using a GridLayout manager.

 7. List all the methods automatically invoked by the system during the execution of an
applet in the order they are invoked.

 8. What are the primary colors in Java? Name at least four secondary colors.
 9. Name the fonts that are available in Java independent of the machine.

PROGRAMMING EXERCISES
 1. Create a user interface similar to the one shown in Figure 8.12. Th e user can enter any

number and press the Enter key to see the running average. Th e user can reset the
running average to zero using the reset button.

 2. Create a GUI program to display maximum, minimum, average, and standard devia-
tion of all the numbers input. (Hint: You can compute standard deviation using the
formula square root of (average of (x * x) – average of x * average of x)).

 3. Write a GUI program to assign a letter grade based on four test scores (use the grading
policy of Chapter 4).

 4. Design and implement GUI program that can convert a String into corresponding
telephone number. If it is an uppercase letter or a lowercase letter, the program will
substitute it with the corresponding digit. If it is already a digit, no substitution is
done. Th us, “GOODCAR,” “gooDCar,” and “go6DC2r” will be translated to 4663227.
Your program should fi rst create a class TelephoneNumber that has a method to
 perform the conversion and use it in your GUI program.

 5. Create an applet to determine the monthly payment of a mortgage. If the principal is
p, and the interest rate is r, then amount to be paid back is a = p * (1 + r/100)n where
n is the number of years. Now, the monthly payment is obtained by dividing the
amount by the number of months.

 6. Th is book has used the GridLayout manager for layout. Use BorderLayout
manager to place fi ve buttons North, South, Center, East, and West on an applet. If
the user clicks any one of them, all others will disappear. If the user clicks again, then
all the buttons will reappear.

FIGURE 8.12 Average calculator.

CRC_C6547_CH008.indd 508CRC_C6547_CH008.indd 508 10/16/2008 5:02:47 PM10/16/2008 5:02:47 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 509

 7. Th is book has used the GridLayout manager for layout. Use FlowLayout man-
ager to place fi ve labels A, B, C, D, and E on an applet. If the user clicks any one
of them, all others will disappear. If the user clicks again, then all the buttons will
reappear.

 8. In the book examples, components are always added to the content pane. Instead, you
can create add components to diff erent panels. Th en add the panels to the content
pane. Create an application that will produce the GUI shown in Figure 8.13. As the
user clicks on a button, either it will disappear or all buttons will be restored. Th e aim
of this game is to clear all buttons. (Hint: Use a random number generator to produce
a number between 1 and 9. If the number is <7, let the button disappear. Otherwise
let all buttons appear.)

 9. In this program you are asked to create a GUI with two JTextArea objects. Unlike
a JTextField, JTextArea can have multiple lines. So the string you get as well as
you set in a JTextArea object can contain new line characters. In addition to two
JTextArea objects, there is a JTextField to input an integer value. Th e objective
of this program is to encrypt and decrypt the text in one JTextArea and display it
in the other JTextArea. Th e encryption scheme used is called a shift method. For
example, if the input is 5, the character “A” will be encrypted to “F”. (Hint: Use the
panel introduced in Programming Exercise 8.)

 10. Create a GUI program to magnify and reduce the text by a given percentage. Use
JTextField for the text. Use the panel introduced in Programming Exercise 8.
Use two panels: one to keep all GUI components and the other for drawing. Get the
graphic context of the panel to draw.

FIGURE 8.13 Panel exercise.

CRC_C6547_CH008.indd 509CRC_C6547_CH008.indd 509 10/16/2008 5:02:48 PM10/16/2008 5:02:48 PM

Apago PDF Enhancer

510 ■ Java Programming Fundamentals

 11. Create an application applet to produce a bullseye similar to the one shown in Fig-
ure 8.14. Th e order of colors from the outside is red, orange, yellow, green, and blue.

 12. Create a traffi c light system. Every time the user pushes a button, the signal cycles
through the familiar pattern of green on, yellow on, red on, and green on.

 13. Th is book has illustrated four diff erent programming options to implement an
interface. For this exercise, create a “hybrid” version of the Metric Conversion
Helper showing all four diff erent programming options.

ANSWERS TO SELF-CHECK
 1. GUI
 2. Java code
 3. JFrame, javax.swing
 4. Container
 5. main
 6. main
 7. super("Welcome to Java");
 8. True
 9. pixel
 10. picture element
 11. Component

FIGURE 8.14 Bullseye.

CRC_C6547_CH008.indd 510CRC_C6547_CH008.indd 510 10/16/2008 5:02:48 PM10/16/2008 5:02:48 PM

Apago PDF Enhancer

GUI Applications, Applets, and Graphics ■ 511

 12. boolean
 13. Component
 14. setDefaultCloseOperation
 15. content pane
 16. Container
 17. JLabel title;
 18. title = new JLabel("Java for Game Development",

 SwingConstants.CENTER);

 19. JTextField message = new JTextField(10);
 20. message.setEditable(false);
 21. JButton startButton;
 22. startButton = new JButton("Start");
 23. True
 24. Container
 25. all
 26. extends, implements
 27. addActionListener
 28. java.awt.event

CRC_C6547_CH008.indd 511CRC_C6547_CH008.indd 511 10/16/2008 5:02:48 PM10/16/2008 5:02:48 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

513

C H A P T E R 9

Simple Data Structures

In this chapter you learn

Object-oriented concepts
Use classes Vector and ArrayList, members of Java Collection Framework

Java concepts
One-dimensional arrays, two-dimensional arrays, multidimensional arrays, ragged
arrays, enhanced for loop, wrapper classes, auto-boxing, and auto-unboxing

Programming skills
Create classes with arrays of various data types, develop simple array processing
algorithms

You have seen primitive data types and classes. Primitive data types allow us to store only
one value at a time. An object, however, is capable of encapsulating more than one data
values. As you have seen in Chapter 5, the ability to perform the same task again and again,
or repetition, is an important control structure. Th is chapter introduces its data structure
counterparts: arrays, ArrayList class, and Vector class.

Let us visit Heartland Cars of America and see the project Ms. Smart is currently
 working on. Now Heartland Cars of America is well established with many employees. To
promote competition among sales personnel, the manager has decided to introduce a “Best
sales person award” to the most successful sales person at the end of each pay period. Th us,
the most successful sales person is awarded an extra $500.00. Ms. Smart is currently work-
ing on her program to incorporate this new change in the payroll program.

As she analyzed the problem, she noticed the following facts. She needs to process all
sales person information to fi nd out the most successful sales person for the period. Th ere-
fore, she can no longer compute the compensation and print the pay stub as she used to
do. Instead, she needs to determine the most successful sales employee fi rst. Ms. Smart
decided to use arrays to simplify the computation.

•
•

•
•

•
•

CRC_C6547_CH009.indd 513CRC_C6547_CH009.indd 513 10/3/2008 1:03:20 PM10/3/2008 1:03:20 PM

Apago PDF Enhancer

514 ■ Java Programming Fundamentals

Observe that similar problem can arise in many situations. Suppose that Mr. Grace has
decided on the following grading scheme. A student’s fi nal grade no longer depends solely
on the points he or she receives. Rather it is directly linked to the class average as shown
in Table 9.1.

Note that in this case, Mr. Grace fi rst needs to process the entire data to determine the
class average before assigning fi nal grades. Mr. Grace could use an array to simplify the
computation involved.

ONE-DIMENSIONAL ARRAY
Array is a contiguous fi xed-length structure for storing multiple values of the same type.
Array is a directly supported language feature. Th us, their performance is on par with
primitive data types. Further, they have a unique syntax that is diff erent from other
objects. Each element of an array is referred to by the array name along with its position or
index. For instance, if an array is named pointsEarned, then the individual elements
are named pointsEarned[0], pointsEarned[1], pointsEarned[2], and so on.
Note that index of the fi rst location is 0 and the fi rst element is pointsEarned[0]. You
can use any integer expression as an index.

Self-Check

 1. Array is a structure for storing multiple values of the .
 2. Each element of an array is referred to by the along with its

.
 3. Th e fi rst index value is .
 4. You can use any as an index.

Declaring Array

Th e syntax template for declaring an array is as follows:

dataType[] arrayName;

In the above declaration, dataType specifi es the data type of the elements that can be kept
at each of the array locations, arrayName is the name of the array and the pair [] distin-
guishes this as a one-dimensional array declaration. Note that a declaration of the form

dataType arrayName;

is a valid statement in Java and declares a single variable of the type dataType.

TABLE 9.1 Mr. Grace’s New Grading Policy

Points Range Final Grade

More than 30% below class average F
Between 10 and 30% below the class average D
Between 10% below and 10% above class average C
Between 10 and 30% above the class average B
More than 30% above the class average A

CRC_C6547_CH009.indd 514CRC_C6547_CH009.indd 514 10/3/2008 1:03:22 PM10/3/2008 1:03:22 PM

Apago PDF Enhancer

Simple Data Structures ■ 515

Example 9.1

Consider the following array declarations:

char[] line; // 1 dimensional array of

 characters

int[] gameScores; // 1 dimensional array of integers

double[] taxRate; // 1 dimensional array of double

 values

String[] page; // 1 dimensional array of String

 references

Employee[] EmployeeList; // 1 dimensional array of Employee

 references

Self-Check

 5. Declare a one-dimensional array named points of double values.
 6. Let Student be a class. Declare a one-dimensional array named classList

of Student.

Instantiating Array

A declaration such as

char[] line;

creates a reference variable line. You need to explicitly create an array object using the
new operator and instantiate the reference variable. Th e syntax template for instantiating
a reference variable arrayName is:

arrayName = new dataType[IntegerExpression];

where IntegerExpression is any constant expression that evaluates to a nonnegative
integer value, and it specifi es the number contiguous storage locations or the length of the
array. Since the very fi rst location has an index value 0, the index of the last location is
length – 1 or IntegerExpression – 1.

Example 9.2

Th e following statement

line = new char[20]; //instantiation of line

creates an array of characters of length 20. Th e individual array locations are as
follows:

line[0], line[1], line[2], ..., line[19].

Observe that each of these 20 locations can store one character. Th e statement

line = new char[0];

CRC_C6547_CH009.indd 515CRC_C6547_CH009.indd 515 10/3/2008 1:03:22 PM10/3/2008 1:03:22 PM

Apago PDF Enhancer

516 ■ Java Programming Fundamentals

is legal in Java; however, no memory location is allocated. Note that you can also
declare and instantiate an array using the following syntax template:

dataType[] arrayName = new dataType[IntegerExpression];

In the case of primitive data types, the array locations are initialized with default values.
Th us, integral arrays are initialized by 0, fl oating point arrays by 0.0, and boolean arrays
by false. In the case of object references, the array locations are initialized by null.

Self-Check

 7. Instantiate array points of Self-Check 5 so that the array has 25 locations.
 8. In the case of primitive data types, the array locations are initialized with

 values.

Example 9.3

Consider the following Java statements:

double[] itemPrice; //(1)

itemPrice = new double[4]; //(2)

Statement 1 creates a reference variable itemPrice as shown in Figure 9.1.
Statement 2 fi rst allocates four contiguous memory locations, each capable of stor-

ing a double value, and then initializes the variable itemPrice with the reference
of the array object created, as shown in Figure 9.2.

Observe that each of the array locations is initialized with the default value 0.0.
Statements 1 and 2 above can be combined as follows:

double[] itemPrice = new double[4];

Th e four locations created by the new operator are itemPrice[0], itemPrice[1],
itemPrice[2], and itemPrice[3]. Th us,

itemPrice[0] = 10.56;

itemPrice[1] = 34.12;

FIGURE 9.1 Primitive data type
array reference variable.

itemPrice

FIGURE 9.2 Primitive data type array instantiation.

itemPrice

0.0

itemPrice[0]

0.0

itemPrice[3]

0.0

itemPrice[2]

0.0

itemPrice[1]

CRC_C6547_CH009.indd 516CRC_C6547_CH009.indd 516 10/3/2008 1:03:23 PM10/3/2008 1:03:23 PM

Apago PDF Enhancer

Simple Data Structures ■ 517

assigns 10.56 and 34.56 to fi rst and second locations of the array itemPrice
(see Figure 9.3). You can assign three times the fi rst location value to the third loca-
tion as follows:

itemPrice[2] = 3 * itemPrice[0];

Th e fourth location can be assigned with the sum of fi rst two locations as
follows:

itemPrice[3] = itemPrice[0] + itemPrice[1];

Example 9.4

Th is example illustrates the creation of array of object references. Let Student be
a class. Now consider the following two Java statements:

Student[] enrolled; //(3)

...

enrolled = new Student[4]; //(4)

Statement 3 creates a reference variable enrolled as shown in Figure 9.4.
Statement 4 fi rst allocates four contiguous memory locations, each one of them

capable of storing a Student reference, and then initializes the variable enrolled
with the reference of the newly created array object, as shown in Figure 9.5.

Observe that each of the array locations is initialized with the default value null.
Statements 3 and 4 can be combined as follows:

Student[] enrolled = new Student[4];

FIGURE 9.3 Primitive data type array location initialization.

itemPrice

10.56

itemPrice[0]

44.68

itemPrice[3]

31.68

itemPrice[2]

34.12

itemPrice[1]

FIGURE 9.4 Object array
reference variable.

enrolled

FIGURE 9.5 Object array instantiation.

enrolled

null

enrolled[0]

null

enrolled[3]

null

enrolled[2]

null

enrolled[1]

CRC_C6547_CH009.indd 517CRC_C6547_CH009.indd 517 10/3/2008 1:03:23 PM10/3/2008 1:03:23 PM

Apago PDF Enhancer

518 ■ Java Programming Fundamentals

Recall that each of the array locations is a reference variable of the type Student.
Th erefore, you need to explicitly instantiate each of those locations. For instance,
you can instantiate enrolled[0] using the default constructor as follows (see also
Figure 9.6):

enrolled[0] = new Student();

Common Programming Error 9.1

Failure to instantiate array locations in the case of object references is a common
programming error.

Self-Check

 9. Assign 23.5 to the third location of the array points of Self-Check 7.
 10. In the array points, assign fi ve times the value at location 6 to location 8.

Advanced Topic 9.1: Programming Option

One programming option to avoid the common Programming Error 9.1 is to instantiate
all array locations using a for statement similar to

for (int j = 0; j < enrolled.length; j++)

{

 enrolled[i] = new Student();

}

However, this approach has its drawbacks. See Exercise 12. A better approach is shown in
loadData method of Course class that is part of Case Study 9.2.

Note 9.1 Observe the use of a constructor with no arguments inside the for loop. In
Chapter 6, we made the observation that it is a good programming practice to make sure
that every class has either a default constructor (i.e., one that is supplied by the compiler)

FIGURE 9.6 Object array location instantiation.

enrolled

enrolled[0]

null

enrolled[3]

null

enrolled[2]

null

enrolled[1]

Student
object

CRC_C6547_CH009.indd 518CRC_C6547_CH009.indd 518 10/3/2008 1:03:23 PM10/3/2008 1:03:23 PM

Apago PDF Enhancer

Simple Data Structures ■ 519

or a user-defi ned constructor with no formal parameters. Observe that without such a
constructor the approach suggested in Advanced Topic 9.1 is not possible.

Advanced Topic 9.2: Alternate Syntax

Some of the most commonly used alternate syntax and their equivalent syntax are pre-
sented in Table 9.2.

Attribute length

Th e length of an array is defi ned as the number of locations and this value is available in
an attribute length. You can access the length of an array in any expression using the
array name and the dot operator. You cannot change the value of length through an
assignment operator. In other words, if itemPrice is a double array,

itemPrice.length = 10; // illegal

is an illegal statement. However,

int size = itemPrice.length; // legal

is a legal statement. If the array reference variable is not instantiated using the new opera-
tor, length cannot be accessed. Once the array is instantiated with new operator, the
length can be accessed in a Java program (see Table 9.3).

TABLE 9.2 Commonly Used Alternate Syntax

Alternate Syntax Equivalent Syntax

double itemPrice[]; double[] itemPrice;

double itemPrice[], salePrice[]; double[] itemPrice;
double[] salePrice;

double[] itemPrice, salePrice; double[] itemPrice;
double[] salePrice;

double itemPrice[], salePrice; double[] itemPrice;
double salePrice;

double[] itemPrice double[] itemPrice = new double[4];
= {12.6, 78.45, 23.13, 0.0}; itemPrice[0] = 12.6;

itemPrice[1] = 78.45;
itemPrice[2] = 23.13;
itemPrice[3] = 0.0;

TABLE 9.3 Attribute Length of an Array

Java Statements Value of Length

double[] itemPrice; It is illegal to access
itemPrice.length

double[] itemPrice = null; It is illegal to access
itemPrice.length

double[] itemPrice = new double[0]; 0

double[] itemPrice = new double[10]; 10

CRC_C6547_CH009.indd 519CRC_C6547_CH009.indd 519 10/3/2008 1:03:23 PM10/3/2008 1:03:23 PM

Apago PDF Enhancer

520 ■ Java Programming Fundamentals

Example 9.5

Th e following Java application illustrates the attribute length. Lines 7 and 11 will
result in a syntax error and an execution error, respectively. Th ey need to be kept
commented for an error-free execution of the program.

/**

 Illustrates the length attribute

*/

public class LengthOfArray

{

 public static void main(String[] args)

 {

 double[] itemPrice;

 //System.out.println

 ("(7) itemPrice.length = " + itemPrice.length);

 itemPrice = new double[10];

 System.out.println

 ("(9) itemPrice.length = " + itemPrice.length);

 itemPrice = null;

 //System.out.println

 ("(11) itemPrice.length = " + itemPrice.length);

 itemPrice = new double[0];

 System.out.println

 ("(13) itemPrice.length = " + itemPrice.length);

 itemPrice = new double[20];

 System.out.println

 ("(15) itemPrice.length = " + itemPrice.length);

 }

}

Output

(9) itemPrice.length = 10

(13) itemPrice.length = 0

(15) itemPrice.length = 20

Self-Check

 11. Th e length of the array points of Self-Check 7 is available in .
 12. Th e last index location of the array points is given by the expression

.

CRC_C6547_CH009.indd 520CRC_C6547_CH009.indd 520 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

Simple Data Structures ■ 521

PROCESSING ONE-DIMENSIONAL ARRAYS
Some of the most commonly performed operations on a one-dimensional array are

To initialize the array with certain specifi c values
To initialize the array using user input
To output the array
To perform various numeric computations (if the array data is numeric in nature)
such as

Finding the sum
Finding the average

To search for an item satisfying certain condition such as
Th e smallest item
Th e largest item

All of the above operations require the ability to process each one of the array elements. Th e
repetition structures introduced in Chapter 5 are quite useful in processing each one of the
array elements in a systematic manner. For example, consider the following declarations:

double[] itemPrice = new double[20]; // double array of

 length 20

int index; // used for indexing

Th e repetition structure for

for(index = 0; index < itemPrice.length; index++)

{

 // Place the code for processing

 //

 // itemPrice[index]

 //

}

processes each element of the array itemPrice in the following order:

itemPrice[0], itemPrice[1], itemPrice[2], itemPrice[3], …,

 itemPrice[19].

Observe that at fi rst, index has a value 0. Th erefore, during the fi rst iteration of the above
loop, itemPrice[index] is itemPrice[0]. In the next iteration, index has the value 1.
Th erefore, itemPrice[index] is itemPrice[1], and so on. Th us, as index takes each
of the values from 0 to 19, itemPrice[index] becomes itemPrice[0], itemPrice[1],
itemPrice[2], itemPrice[3], …, and itemPrice[19], respectively.

•
•
•
•

•
•

•
•
•

CRC_C6547_CH009.indd 521CRC_C6547_CH009.indd 521 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

522 ■ Java Programming Fundamentals

Initialize Array with Certain Specifi c Values

Th e following example illustrates how to assign the same value to all elements of an array.

Example 9.6

For the sake of discussion, let us assume that we need to initialize itemPrice[0],
itemPrice[1], itemPrice[2], itemPrice[3], …, itemPrice[19] with
5.87. Th at is,

itemPrice[0] = 5.87;

itemPrice[1] = 5.87;

itemPrice[2] = 5.87;

...

itemPrice[19] = 5.87;

Th erefore, we have the following:

for (index = 0; index < itemPrice.length; index++)

{

 itemPrice[index] = 5.87;

}

Self-Check

 13. Write the Java statement to initialize every location of the array points of
Self-Check 7 by 50.67.

Enhanced for Statement

Java 5.0 introduced a new version of the for statement that can be used to process the ele-
ments of a collection such as an array, a Vector, an ArrayList, and so on. Th e Vector
class and ArrayList class are covered later in this chapter.

Th e syntax of the enhanced for statement is

for (dataType elementVar : collectionName)

 statement

and is equivalent to

for (dataType elementVar, int j;j < collectionName.length;

 j++)

{

 elementVar = collectionName[j];

 statement

}

CRC_C6547_CH009.indd 522CRC_C6547_CH009.indd 522 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

Simple Data Structures ■ 523

Th e statement

for (index = 0; index < itemPrice.length; index++)

{

 System.out.println(itemPrice[index]);

}

can be written using the enhanced for statement as follows:

for (double p : itemPrice)

{

 System.out.println(p);

}

Note 9.2 In the enhanced for loop, the element variable p is assigned the value
 itemPrice[0], itemPrice[1], and so on. In the (ordinary) for loop, the index vari-
able index is assigned the values 0, 1, 2, and so on.

Note 9.3 Th e enhanced for loop cannot be used to assign value to individual members
of an array. In other words, even though

for (double p : itemPrice)

{

 p = 10.5;

}

will not produce any syntax error, it will not assign 10.5 to itemPrice[0],
 itemPrice[1], and so on. To fully appreciate the underlying reason, consider the
 equivalent for statement.

for (double p, int j; j < itemPrice.length; j++)

{

 p = itemPrice[j];

 p = 10.5;

}

Observe that p and itemPrice[j] are two diff erent variables and they have dif-
ferent memory locations. Th erefore, any changes made to p will not change value at
itemPrice[j]. In particular, assigning 10.5 to p will not change the value stored at
itemPrice[j].

Self-Check

 14. True or false: Enhanced for loop can be used to assign values to array locations.

CRC_C6547_CH009.indd 523CRC_C6547_CH009.indd 523 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

524 ■ Java Programming Fundamentals

Initialize Array Locations with Different Values

Th e following example illustrates how to assign diff erent values to all elements of an
array.

Example 9.7

For the sake of discussion, let us assume that we need to initialize itemPrice[0],
itemPrice[1], itemPrice[2], itemPrice[3], …, itemPrice[19] with 5.87,
15.87, 25.87, and so on. Th at is,

itemPrice[0] = 5.87;

itemPrice[1] = 15.87; or itemPrice[1] = 5.87 + 10;
itemPrice[2] = 25.87; or itemPrice[1] = 5.87 + 20;
...

Considering Table 9.4 we have the following:

for (index = 0; index < itemPrice.length; index++)

{

 itemPrice[index] = 5.87 + 10 * index;

}

You could make use of the fact that value of itemPrice[index] is value of the previous
location itemPrice[index-1] plus 10. In other words, the above code can be replaced
by the following:

for (index = 0; index < itemPrice.length; index++)

{

 itemPrice[index] = itemPrice[index-1] + 10;

}

Self-Check

 15. Write the Java statement to initialize every location of the array points of
Self-Check 7 by the following sequence: 8.0, 13.1, 18.2, ….

TABLE 9.4 Array Values as a Function of Index

Index 5.87 + 10 * Index Assignment Statement

0 5.87 itemPrice[0] = 5.87;
1 15.87 itemPrice[1] = 15.87;
2 25.87 itemPrice[2] = 25.87;
19 195.87 itemPrice[19] = 195.87;

CRC_C6547_CH009.indd 524CRC_C6547_CH009.indd 524 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

Simple Data Structures ■ 525

Initialize Array Using User Input

Th e following example illustrates how to read input from the keyboard and store the
array.

Example 9.8

Let ScannedInfo be a Scanner object created to receive standard input stream
System.in. Th en the expression

ScannedInfo.parseDouble();

returns the next double value. Th us, we have the following repetition structure:

for (index = 0; index < itemPrice.length; index++)

{

 itemPrice[index] = ScannedInfo.parseDouble();

}

Note that there is no equivalent enhanced for loop. See Note 9.3.

Self-Check

 16. Write the Java statement to initialize every location of the array points of
Self-Check 7 using user input. Assume that ScannedInfo is a Scanner
object created to receive standard input stream System.in.

Output Array

Th e following example illustrates how to output the values in an array.

Example 9.9

Consider the array itemPrice.

for (index = 0; index < itemPrice.length; index++)

{

 System.out.print(itemPrice[index]+ " ");

}

Th e above segment will output all 20 values in one line. If you want to print 5 items
per line, then you could include a statement such as the following as the fi rst state-
ment of the for structure:

if (index % 5 == 0)

 System.out.println();

CRC_C6547_CH009.indd 525CRC_C6547_CH009.indd 525 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

526 ■ Java Programming Fundamentals

However, above statement will print a new line for index value 0. To exclude 0,
you could add the condition, index > 0. Th us, we have the following segment of
code:

int final ITEMS_PER_LINE = 5;

...

for (index = 0; index < itemPrice.length; index++)

{

 if (index % ITEMS_PER_LINE == 0 && index > 0)

 System.out.println();

 System.out.print(itemPrice[index]+ " ");

}

Self-Check

 17. Write the Java statement to output the array points of Self-Check 7, eight
items per line.

Perform Various Numeric Computations

Next example illustrates numeric computations on an array.

Example 9.10

In this example, we compute the sum and average of all elements of an array.

sum = 0;

for (index = 0; index < itemPrice.length; index++)

{

 sum = sum + itemPrice[index];

}

To compute the average, you need to make sure that number of items is more
than 0. Th us,

if (itemPrice.length > 0)

 average = sum / itemPrice.length;

else

 average = 0.0;

Note that in the above discussion, the array itemPrice is of type double.
Th erefore, the expression

sum / itemPrice.length;

is of type double. However, since the array elements are of type int and you have
declared sum as int type, you need to cast either sum or the length to double
before performing the division to avoid truncation due to integer division.

CRC_C6547_CH009.indd 526CRC_C6547_CH009.indd 526 10/3/2008 1:03:24 PM10/3/2008 1:03:24 PM

Apago PDF Enhancer

Simple Data Structures ■ 527

Self-Check

 18. Write the Java statement to compute the average of all elements in points of
Self-Check 7.

Search for Item

Th e following example illustrates searching for the smallest element of an array.

Example 9.11

In this example, we fi nd the index of the smallest number in an array. In the case
of multiple values, we fi nd the index of the fi rst smallest number in an array. Note
that once the index value is known you can determine the smallest value. Th e algo-
rithm to determine the index of the smallest element in an array can be described as
follows. Keep a variable minIndex of type int to keep track of the index value of
the smallest value seen so far in the array. Th erefore, as we start inspecting the array,
the fi rst item is the smallest item seen so far. Hence, at the beginning, minIndex
is initialized to 0. We then compare the element at minIndex with all other ele-
ments in the array. As we compare, there are two possible outcomes: (1) the element
being compared is smaller than the element at minIndex or (2) the element being
compared is not smaller than the element at minIndex. In the fi rst case, the ele-
ment at minIndex is no longer the smallest value seen so far. We just found a new
smaller value and hence we update minIndex. In the second case, the element at
minIndex is still the smallest value seen so far. Th erefore, minIndex remains
the same. Th us, we have the following segment of code for determining the smallest
value in the array itemPrice:

int minIndex;

...

minIndex = 0;

for (index = 1; index < itemPrice.length; index++)

 if (itemPrice[index]< itemPrice[minIndex])

 minIndex = index;

smallestValue = itemPrice[minIndex];

We illustrate the way above algorithm works using a sample data for the array
itemPrice. Only fi rst eight data values of the array and fi rst four iterations are
shown in Figure 9.7. As a challenge, a slightly diff erent variation of this algorithm is
implemented in findMin of Case Study 9.1. Even if you skip Case Study 9.1, it will
be benefi cial to check out findMin method and observe the diff erences.

Self-Check

 19. Write the Java statement to fi nd the largest element in the array points of
Self-Check 7.

CRC_C6547_CH009.indd 527CRC_C6547_CH009.indd 527 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

528 ■ Java Programming Fundamentals

CASE STUDY 9.1: MR. GRACE’S LATEST GRADING POLICY
Mr. Grace’s latest grading policy is to conduct six tests and then take the average of top fi ve
scores to decide the fi nal grade. He created a fi le in which each line has eight entries: fi rst
name, last name, and six test scores of the student. Mr. Grace decided to create a Student
class with four attributes:

private static final int ARRAY_SIZE = 6;

private String firstName;

private String lastName;

private double testScores[] = new double[ARRAY_SIZE];

private double gradeScore; // average of top ARRAY_SIZE-1

 // testScores

private String grade;

10.45 17.87 6.37 5.97 15.31 11.23 71.89 10.95itemPrice

Iteration 1

index = 1 minIndex = 0 itemPrice[index] < itemPrice[minIndex]

10.45 17.87 6.37 5.97 15.31 11.23 71.89 10.95itemPrice

Iteration 2

index = 2 minIndex = 0 itemPrice[index] < itemPrice[minIndex] is true

10.45 17.87 6.37 5.97 15.31 11.23 71.89 10.95itemPrice

Iteration 3

index = 3 minIndex = 2 itemPrice[index] < itemPrice[minIndex] is true

10.45 17.87 6.37 5.97 15.31 11.23 71.89 10.95itemPrice

Iteration 4

index = 4 minIndex = 3 itemPrice[index] < itemPrice[minIndex] is false

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

is false

FIGURE 9.7 Finding the smallest value in an array.

CRC_C6547_CH009.indd 528CRC_C6547_CH009.indd 528 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

Simple Data Structures ■ 529

Instead of providing accessor and mutator methods for every attribute, Mr. Grace decided
to provide three methods, and accessor and mutator methods only for attributes grade
Score and grade. (From a pedagogical point of view, our focus is not on get and set
methods. Further, readers can easily add them in case they prefer.)

Method setStudentInfo to set all attributes
Method computeGradeScore to compute gradeScore
Method createGradeReport to create a String that contains the necessary
information about a student, including gradeScore

Assume that the main creates a Scanner object ScannedInfo and is used as an
actual parameter in the setStudentInfo method. Th e setStudentInfo method
reads one line from the fi le and sets all the attributes of one student. Th us, we have the
following:

public void setStudentInfo(Scanner sc)

{

 int i;

 firstName = sc.next();

 lastName = sc.next() ;

 for (i = 0 ; i < testScores.length ; i++)

 testScores[i] = sc.nextDouble() ;

}

Now, the average of top fi ve out of six scores can be computed in three steps:

 1. Compute the sum of all six values
 2. Compute the minimum of all six values
 3. Compute the sum of top fi ve scores by subtracting the minimum value from the sum

of all six values and divide by (testScores.length - 1)

We implement each one of the above steps as a separate method. Since we need steps 1 and
2 for performing step 3 and not for any other purpose, we keep the associated methods
private. Th ese three methods are listed below:

private double computeSum()

{

 int i;

 double sum = 0;

 for (i = 0 ; i < testScores.length ; i++)

 sum = sum + testScores[i] ;

 return sum;

}

•
•
•

CRC_C6547_CH009.indd 529CRC_C6547_CH009.indd 529 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

530 ■ Java Programming Fundamentals

private double findMin()

{

 int i;

 double minimum = testScores[0];

 for (i = 1 ; i < testScores.length ; i++)

 if (testScores[i] < minimum)

 minimum = testScores[i];

 return minimum;

}

public void computeGradeScore()

{

 double adjustedTotal;

 adjustedTotal = computeSum() - findMin();

 gradeScore = adjustedTotal /(testScores.length - 1);

}

Our fi nal method returns a String of necessary information about a student. Th e main
application can use it to produce required output.

public String createGradeReport()

{

 int i;

 String str;

 DecimalFormat twoDecimalPlaces = new DecimalFormat("0.00");

 str = firstName + "\t"+ lastName + "\t";

 for (i = 0; i < testScores.length; i++)

 str = str + testScores[i] + "\t";

 str = str + twoDecimalPlaces.format(gradeScore);

 str = str + "\t" + grade;

 return str;

}

Now the application program creates an instance of the Student. For each student, the
program sets the data values, computes the grade score, and prints the information into
an output fi le. Th e program listing along with sample input and output follows. Observe
that in the program listing we have intentionally used enhanced for statements to
give the reader more examples of enhanced for statements. In particular, compare the
 createGradeReport presented in the programme listing.

CRC_C6547_CH009.indd 530CRC_C6547_CH009.indd 530 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

Simple Data Structures ■ 531

import java.util.*;

import java.text.DecimalFormat;

/**

 Keeps name, six test scores, grade score and letter grade

*/

public class Student

{

 private static final int ARRAY_SIZE = 6;

 private String firstName;

 private String lastName;

 private double testScores[] = new double[ARRAY_SIZE];

 private double gradeScore;

 private String grade;

 /**

 Loads student data to an instance of Student

 @param a scanner instance

 */

 public void setStudentInfo(Scanner sc)

 {

 firstName = sc.next();

 lastName = sc.next() ;

 for (int i = 0; i < testScores.length; i++)

 testScores[i] = sc.nextDouble() ;

 }

 /**

 Computes the sum of all test scores

 @return sum of all test scores

 */

 private double computeSum()

 {

 double sum = 0;

 for (double ts : testScores)

 sum = sum + ts ;

 return sum;

 }

CRC_C6547_CH009.indd 531CRC_C6547_CH009.indd 531 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

532 ■ Java Programming Fundamentals

 /**

 Computes the minimum of all test scores

 @return the minimum of all test scores

 */

 private double findMin()

 {

 double minimum = testScores[0];

 for (double ts : testScores)

 if (ts < minimum)

 minimum = ts;

 return minimum;

 }

 /**

 Computes the average test score ignoring the least

 score

 */

 public void computeGradeScore()

 {

 double adjustedTotal;

 adjustedTotal = computeSum() - findMin();

 gradeScore = adjustedTotal /(testScores.length - 1);

 }

 /**

 Create a String with all information on a student

 @return String with all information on a student

 */

 public String createGradeReport()

 {

 String str;

 DecimalFormat twoDecimalPlaces = new

 DecimalFormat("0.00");

 str = firstName + "\t"+ lastName + "\t";

 if (str.length() < 10) str = str+ "\t";

 for (double ts : testScores)

 str = str + ts + "\t";

 str = str + twoDecimalPlaces.format(gradeScore);

CRC_C6547_CH009.indd 532CRC_C6547_CH009.indd 532 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

Simple Data Structures ■ 533

 if (grade != null) str = str + "\t" + grade;

 return str;

 }

 /**

 Returns the average test score after ignoring the

 least

 @return average test score after ignoring the least

 */

 public double getGradeScore()

 {

 return gradeScore;

 }

 /**

 Returns the letter grade

 @return letter grade

 */

 public String getGrade()

 {

 return grade;

 }

 /**

 Mutator method for average test score

 @param inGradeScore new value of average test score

 */

 public void setGradeScore(double inGradeScore)

 {

 gradeScore = inGradeScore;

 }

 /**

 Mutator method for letter grade

 @param inGrade new value of letter grade

 */

 public void setGrade(String inGrade)

 {

 grade = inGrade;

 }

CRC_C6547_CH009.indd 533CRC_C6547_CH009.indd 533 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

534 ■ Java Programming Fundamentals

 /**

 toString method

 @return all information about student including

 letter grade

 */

 public String toString()

 {

 return createGradeReport();

 }

}

import java.io.*;

import java.util.Scanner;

/**

 Application program of Mr. Grace to assign grade

*/

public class StudentScores

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 Student student = new Student();

 Scanner ScannedInfo = new Scanner(new

 File("C:\\ studentData.dat"));

 PrintWriter output = new PrintWriter(new

 FileWriter("C:\\ studentData.out"));

 while (ScannedInfo.hasNext())

 {

 student.setStudentInfo(ScannedInfo);

 student.computeGradeScore();

 output.println(student.createGradeReport());

 }

 output.close();

 }

}

CRC_C6547_CH009.indd 534CRC_C6547_CH009.indd 534 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

Simple Data Structures ■ 535

Input File Content

Kim Clarke 70.50 69.85 90.25 100.00 81.75 100.00
Chris Jones 78.57 51.25 97.45 85.67 99.75 88.76
Brian Wills 85.08 92.45 67.45 71.57 50.92 72.00
Bruce Mathew 60.59 87.23 45.67 99.75 72.12 100.00
Mike Daub 56.60 45.89 78.34 64.91 66.12 70.45

Output

Kim Clarke 70.5 69.85 90.25 100.0 81.75 100.0 88.50
Chris Jones 78.57 51.25 97.45 85.67 99.75 88.76 90.04
Brian Wills 85.08 92.45 67.45 71.57 50.92 72.0 77.71
Bruce Mathew 60.59 87.23 45.67 99.75 72.12 100.0 83.94
Mike Daub 56.6 45.89 78.34 64.91 66.12 70.45 67.28

Advanced Topic 9.3: Array Index Out of Bounds Exception

Th e following statement

double[] itemPrice = new double[5];

creates fi ve contiguous memory locations

itemPrice[0], itemPrice[1], itemPrice[2], …, itemPrice[4].

If intExp is an integer expression, then itemPrice[intExp] exists only if intExp
is a value between the lower bound 0 and the upper bound 4. If intExp is a value not
between 0 and 4, itemPrice[intExp] does not exist and index is said to be out of
bounds. During program execution if an array index becomes out of bounds, Java throws
an ArrayIndexOutOfBoundException exception. It is the programmer’s responsi-
bility to provide the necessary exception handling code in their programs. If the exception
is not handled within the program, it terminates as shown in Example 9.12.

Example 9.12

/**

 Illustration of out of bounds exception

*/

public class ArrayIndexOutOfBounds

{

 public static void main (String[] args)

 {

 double[] sample = new double[5];

 int i;

CRC_C6547_CH009.indd 535CRC_C6547_CH009.indd 535 10/3/2008 1:03:25 PM10/3/2008 1:03:25 PM

Apago PDF Enhancer

536 ■ Java Programming Fundamentals

 for (i = 0; i <= 5; i++)

 {

 sample[i] = (3*i + 1.0) / 2;

 System.out.println(sample[i] + "\t");

 }

 }

}

Output

0.5

2.0

3.5

5.0

6.5

Exception in thread "main" java.lang.ArrayIndexOutOfBounds

 Exception: 5

 at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java:11)

In the above error message, (ArrayIndexOutOfBounds.java:11) indicates
the exact line in the fi le where the exception had occurred in the format file-
Name:lineNumber. Further, the number 5 appearing in the very fi rst line
indicates the index value that caused the exception. Th us, from the above error
message, you can infer that during the program execution the variable i became 5.
Th e statement

sample[i] = (3*i + 1.0) / 2;

caused an error due to the fact that sample[5] is not a valid array location. Excep-
tion handling is covered in Chapter 11.

Advanced Topic 9.4: Assignment and Relational Operators

You can use the assignment operator = and relational operators == and != in the context
of an array. Recall that

double[] itemPrice;

creates a reference variable itemPrice of type double array. Further,

itemPrice = new double[5];

creates 5 contiguous memory locations and initializes the reference variable itemPrice
with the reference or base address (a term used in the context of arrays, especially in other
programming languages) of the array object created.

CRC_C6547_CH009.indd 536CRC_C6547_CH009.indd 536 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

Simple Data Structures ■ 537

Consider the following statements:

double[] arrayOne = new double[5]; //(1)

double[] arrayTwo = new double[5]; //(2)

double[] arrayThree;

int i;

for (i = 0; i < arrayOne.length)

{

 arrayOne[i] = (10 * i + 12.45);

};

Th e situation can be visualized as shown in Figure 9.8.

Now the statement

arrayTwo = arrayOne;

assigns the reference variable arrayTwo with the value contained in the reference vari-
able arrayOne. Th us, both of them contain the reference of the same array (see Figure 9.9).
Th erefore, arrayOne[i] is same as arrayTwo[i] for i = 0, 1, 2, 3, 4. Note that
no separate array is created. Recall from Chapter 6 that this type of copying is known as
 shallow copying.

Observe that the array locations previously referenced by arrayTwo are no longer
accessible to the program. Th e garbage collector of Java will eventually reclaim the mem-
ory that became inaccessible to the program.

FIGURE 9.8 Copying an array—before.

arrayOne

12.45 42.4532.4522.45 52.45

arrayTwo

0.0 0.00.00.0 0.0

arrayThree

CRC_C6547_CH009.indd 537CRC_C6547_CH009.indd 537 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

538 ■ Java Programming Fundamentals

If you want to make a copy of the array object referenced by arrayOne, you must
allocate memory and perform an element-by-element copy using a repetition structure.
As mentioned in Chapter 6, this form of copying is known as deep copying. Th us, to deep
copy arrayOne to arrayThree, we need the following statements:

arrayThree = new double[arrayOne.length];

for (i = 0; i < arrayOne.length; i++)

 arrayThree[i] = arrayOne[i];

Once the deep copying is performed, we have the situation shown in Figure 9.10.

FIGURE 9.9 Shallow copying an array.

arrayOne

12.45 42.4532.4522.45 52.45

arrayTwo

0.0 0.00.00.0 0.0

arrayThree

(no longer

accessible)

FIGURE 9.10 Deep copying an array.

arrayOne

12.45 42.4532.4522.45 52.45

arrayTwo

arrayThree

12.45 42.4532.4522.45 52.45

CRC_C6547_CH009.indd 538CRC_C6547_CH009.indd 538 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

Simple Data Structures ■ 539

Similarly, comparing two arrays for equality in fact compares the reference variable.
Th us, the expression (arrayOne == arrayTwo) is true, since both arrayOne
and arrayTwo contain the reference of the same array. Note that the expression (array-
One == arrayThree) evaluates to false. If you want to compare element by element
for equality, you need to perform deep comparison. In this case, you start by checking
whether or not both arrays have identical length. If that is the case, as in the case of deep
copying, you need to use a repetition structure such as for to compare corresponding
individual elements for equality.

Th us, the code to compare two int arrays arrayOne and arrayThree can be writ-
ten as follows:

boolean equal;

equal = (arrayOne.length == arrayThree.length);

for (i = 0; (i < array.length && equal); i++)

 equal = (arrayOne[i] == arrayThree[i]);

if (equal)

 System.out.println("Arrays are identical");

else

 System.out.println("Arrays are not identical");

Advanced Topic 9.5: Role of Inheritance

So far in our presentation, we have insisted that all elements of an array must be of the
same data type. Even though the above-mentioned statement is true, it is not a major
restriction. For instance, let us assume you want to use an array to store three diff er-
ent types of employees: full-time, part-time, and sales. In this case, you could design a
class Employee and three subclasses FullTimeEmp, PartTimeEmp, and SalesEmp
and create an array currentEmployees of type Employee reference of length 100 as
shown below:

Employee[] currentEmployee = new Employee[100];

If fullTimeEmp is an instance of FullTimeEmp the following assignment

currentEmployee[10] = fullTimeEmp;

is legal and stores the reference fullTimeEmp at currentEmployee[10]. Recall
from Chapter 7 that you can always assign a subclass reference to a superclass reference.
However,

fullTimeEmp = currentEmployee[20];

CRC_C6547_CH009.indd 539CRC_C6547_CH009.indd 539 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

540 ■ Java Programming Fundamentals

is illegal. Once again, as explained in Chapter 7, you cannot assign superclass reference to a
subclass reference. If currentEmployee[20] is in fact referencing an object of the type
FullTimeEmp, then the following statement is legal:

fullTimeEmp = (FullTimeEmp) currentEmployee[20];

Th e next example illustrates the use of inheritance in arrays.

Example 9.13

import java.util.*;

import java.io.*;

/**

 Illustrates the use of inheritance in an array

*/

public class HeartlandCarsOfAmericaEmployeePayRoll

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 //Create reference variable of all three employee

 types

 Employee[] currentEmployees = new Employee[100];

 //Declare variables to input

 char inputEmployeeType;

 String inputFirstName;

 String inputLastName;

 double inputBaseSalary;

 double inputPayPerHour;

 int inputSalesVolume;

 int inputHoursWorked;

 int noOfEmployees;

 int idx;

 //Get two input values

 // Scanner ScannedInfo = new Scanner(System.in);

 Scanner ScannedInfo = new Scanner(new

 File("C:\\Employee.dat"));

 PrintWriter outFile = new PrintWriter(new

 FileWriter("C:\\payroll.dat"));

CRC_C6547_CH009.indd 540CRC_C6547_CH009.indd 540 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

Simple Data Structures ■ 541

 index = 0;

 while (ScannedInfo.hasNext())

 {

 inputEmployeeType = ScannedInfo.next().

 charAt(0);

 switch (inputEmployeeType)

 {

 case ‘F’ :

 case ‘f’ :

 inputFirstName = ScannedInfo.next();

 inputLastName = ScannedInfo.next();

 inputBaseSalary = ScannedInfo.

 nextDouble();

 inputHoursWorked = ScannedInfo.nextInt();

 //create a FullTimeEmployee object

 currentEmployees[idx]

 = new FullTimeEmployee(inputFirstName,

 inputLastName,inputBaseSalary,

 inputHoursWorked);

 break;

 case ‘P’ :

 case ‘p’ :

 inputFirstName = ScannedInfo.next();

 inputLastName = ScannedInfo.next();

 inputPayPerHour = ScannedInfo.

 nextDouble();

 inputHoursWorked = ScannedInfo.nextInt();

 //create a PartTimeEmployee object

 currentEmployees[idx]

 = new PartTimeEmployee(inputFirstName,

 inputLastName,inputPayPerHour,

 inputHoursWorked);

 break;

CRC_C6547_CH009.indd 541CRC_C6547_CH009.indd 541 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

542 ■ Java Programming Fundamentals

 case ‘S’ :

 case ‘s’ :

 inputFirstName = ScannedInfo.next();

 inputLastName = ScannedInfo.next();

 inputBaseSalary = ScannedInfo.

 nextDouble();

 inputSalesVolume = ScannedInfo.nextInt();

 //create a SalesEmployee object

 currentEmployees[idx]

 = new SalesEmployee(inputFirstName,

 inputLastName,inputBaseSalary,

 inputSalesVolume);

 break;

 default:

 System.out.println("Check data file.");

 return;

 } // End of switch

 idx++;

 } // End of while

 noOfEmployees = idx;

 for (idx = 0; idx < noOfEmployees; idx++)

 {

 //invoke the createPayStub method

 outFile.println(currentEmployees[idx].

 createPayStub());

 }

 outFile.close();

 } // End of main

} // End of class

CRC_C6547_CH009.indd 542CRC_C6547_CH009.indd 542 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

Simple Data Structures ■ 543

Advanced Topic 9.6: Passing Arrays as Parameters in Methods

As in the case of objects, arrays can be passed as parameters in methods. Th e follow-
ing method takes two double arrays and deep copies the second array into the fi rst
array:

public static void copy(double[] destination, double[] source)

{

 //works only if destination.length >= source.length

 //better option is let the copy method return destination

 int i;

 for (i = 0; i < source.length; i++)

 destination[i] = source[i];

}

Note 9.4 If a formal parameter is an array, then you need to include a pair of square
brackets without any specifi cation of size to distinguish it as a one-dimensional array.

Note 9.5 If an actual parameter is an array, then you do not use the pair of square brack-
ets. You use the array name to pass the reference.

Sometimes you may be interested in only part of the array. Let us write a method to fi nd
the sum of all values between two index values start and end.

public static double sum(double[] arr, int start, int end)

{

 int i;

 double total = 0;

 for(i = start; i <= end; i++)

 total = total + arr[i];

 return total;

}

Similarly, you can write methods for inputting and outputting values between two indices.

public static void getData(Scanner sc, double[] arr, int start,

 int end)

{

 int i;

 for(i = start; i <= end; i++)

 arr[i] = sc.nextDouble();

}

CRC_C6547_CH009.indd 543CRC_C6547_CH009.indd 543 10/3/2008 1:03:26 PM10/3/2008 1:03:26 PM

Apago PDF Enhancer

544 ■ Java Programming Fundamentals

public static void print(double[] arr, int start, int end)

{

 int i;

 for (i = start; i <= end; i++)

 System.out.print(arr[i] + "\t");

}

Th e next example illustrates the method invocation if one of the parameters is of the type
array. We do not provide many examples due to the following two reasons: (1) It is very rare
in an object-oriented paradigm that you would need to use an array as such. Quite oft en, the
array itself may be one of the attributes, and as such you may be passing objects as parameters.
(2) Java provides two classes ArrayList and Vector. Th ey are more fl exible data struc-
tures and thus many Java programmers use them instead of arrays. Instances of ArrayL-
ist and Vector are objects and, once again, you are passing objects as parameters.

Example 9.14

Th e following program creates an int array of size 25 and initializes the array
through user input. Th en the program prints the entire array in fi ve lines; each line
containing 5 consecutive array values along with the sum in each of those rows.

import java.io.*;

import java.util.Scanner;

import java.text.DecimalFormat;

/**

 Illustration of array as a parameter

*/

public class ArrayAsParameter

{

 /**

 Gets data from a Scanner object and stores it in an

 array

 @param sc input source; a scanner object

 @param arr the destination array name

 @param start the starting location of array

 @param end the starting location of array

 */

 public static void getData(

 Scanner sc, double[] arr, int start, int end)

 {

 int i;

 for (i = start; i <= end; i++)

 arr[i] = sc.nextDouble();

 }

CRC_C6547_CH009.indd 544CRC_C6547_CH009.indd 544 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

Simple Data Structures ■ 545

 /**

 Computes the sum of values in an array

 @param arr the array name

 @param start the starting location of array

 @param end the starting location of array

 */

 public static double sum(double[] arr, int start,

 int end)

 {

 int i;

 double total = 0;

 for(i = start; i <= end; i++)

 total = total + arr[i];

 return total;

 }

 /**

 prints an array

 @param arr the array name

 @param start the starting location of array

 @param end the starting location of array

 */

 public static void print(double[] arr, int start,

 int end)

 {

 int i;

 for (i = start; i <= end; i++)

 System.out.print(arr[i] + "\t");

 }

 public static void main (String[] args) throws

 IOException

 {

 double[] sample = new double[25];

 int i;

 Scanner ScannedInfo = new Scanner(System.in);

 DecimalFormat twoDecimalPlaces = new

 DecimalFormat("0.00");

 System.out.println("Enter 25 decimal values");

 getData(ScannedInfo, sample, 0, 24);

CRC_C6547_CH009.indd 545CRC_C6547_CH009.indd 545 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

546 ■ Java Programming Fundamentals

 System.out.println

 ("\nFive inputs per row and their sum

 follows:\n");

 for (i = 0; i < 5; i++)

 {

 print(sample, 5*i, 5*i + 4);

 System.out.println(

 twoDecimalPlaces.format(sum(sample, 5*i,

 5*i + 4)));

 }

 System.out.println();

 }

}

Output

Enter 25 decimal values

12.34 45.12 65.67 23.00 78.56 34.51 87.01 20.70 19.45 52.92 17.37 65.17
45.60 73.09 18.50 31.17 27.11 88.99 91.54 29.25 74.39 56.14 72.05 18.36
50.07

Five inputs per row and their sum are as follows:

12.34 45.12 65.67 23.0 78.56 224.69
34.51 87.01 20.7 19.45 52.92 214.59
17.37 65.17 45.6 73.09 18.5 219.73
31.17 27.11 88.99 91.54 29.25 268.06
74.39 56.14 72.05 18.36 50.07 271.01

Next example solves the same problem in a more object-oriented fashion.

Example 9.15

Th is example solves the same problem as in Example 9.14. Th e approach shows a
better design. Th is example is presented to illustrate the fact that quite oft en there
is no need for passing an array as an actual parameter. We have kept the names of
all variables and methods the same so that the interested reader can make an easy
comparison of program presented in Example 9.14 with the one presented here.

import java.util.Scanner;

/**

 Object parameter passing instead of an array

*/

public class ArrayAsParameterClass

{

 private double[] arr;

CRC_C6547_CH009.indd 546CRC_C6547_CH009.indd 546 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

Simple Data Structures ■ 547

 /**

 Constructor with size specification

 @param size length of the array

 */

 public ArrayAsParameterClass(int size)

 {

 arr = new double[size];

 }

 /**

 Gets data from a Scanner object and stores it in an

 array

 @param sc input source; a scanner object

 @param start the starting location of array

 @param end the starting location of array

 */

 public void getData(

 Scanner sc, int start, int end)

 {

 int i;

 for(i = start; i <= end; i++)

 arr[i] = sc.nextDouble();

 }

 /**

 Computes the sum of values in an array

 @param start the starting location of array

 @param end the starting location of array

 */

 public double sum(int start, int end)

 {

 int i;

 double total = 0;

 for (i = start; i <= end; i++)

 total = total + arr[i];

 return total;

 }

 /**

 prints an array

 @param start the starting location of array

CRC_C6547_CH009.indd 547CRC_C6547_CH009.indd 547 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

548 ■ Java Programming Fundamentals

 @param end the starting location of array

 */

 public void print(int start, int end)

 {

 int i;

 for (i = start; i <= end; i++)

 System.out.print(arr[i] + "\t");

 }

}

import java.io.*;

import java.util.Scanner;

import java.text.DecimalFormat;

/**

 Application program to illustrate object instead of array

*/

public class ArrayAsParameterClassApplication

{

 public static void main (String[] args) throws IOException

 {

 ArrayAsParameterClass sample = new

 ArrayAsParameterClass(25);

 int i;

 Scanner ScannedInfo = new Scanner(System.in);

 DecimalFormat twoDecimalPlaces = new

 DecimalFormat("0.00");

 System.out.println("Enter 25 decimal values");

 sample.getData(ScannedInfo, 0, 24);

 System.out.println(

 "\nFive inputs per row and their sum

 follows:\n");

 for (i = 0; i < 5; i++)

 {

 sample.print(5*i, 5*i + 4);

 System.out.println(

 twoDecimalPlaces.format(sample.sum(5*i,

 *i + 4)));

 }

 System.out.println();

 }

}

CRC_C6547_CH009.indd 548CRC_C6547_CH009.indd 548 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

Simple Data Structures ■ 549

Advanced Topic 9.7: Returning Arrays in Method Invocation

As in the case of objects, arrays can be the return type of a method. Th e following method
creates a new array, then deep copies the elements of source array between indices
start and end:

public static double[] subArrayCopy

 (double[] source, int start, int end)

{

 int i;

 double[] destination = null;

 destination = new double[end-start+1];

 for(i = 0; i < destination.length; i++)

 destination[i] = source[start + i];

 return destination;

}

Note 9.6 You need double[] to indicate the return type as a double array. However,
in the return statement all you need is the array name.

Th e next example illustrates the use of array as a return type. However, through better
design, returning an array can be completely eliminated and this is left as an exercise (see
Programming Exercise 7).

Example 9.16

Th e following program creates an int array of size 25 and initializes the array
through user input. Th en the program makes a deep copy of the array, copying 5
consecutive values at a time into fi ve new arrays.

import java.io.*;

import java.util.Scanner;

import java.text.DecimalFormat;

/**

 Program array as return type

*/

public class ArrayAsReturnType

{

 /**

 Gets data from a scanner object and stores it in an

 array

 @param sc input source; a scanner object

 @param arr the destination array name

CRC_C6547_CH009.indd 549CRC_C6547_CH009.indd 549 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

550 ■ Java Programming Fundamentals

 @param start the starting location of array

 @param end the starting location of array

 */

 public static void getData(

 Scanner sc, double[] arr, int start, int end)

 {

 int i;

 for(i = start; i <= end; i++)

 arr[i] = sc.nextDouble();

 }

 /**

 Copy a subarray of the source array

 @param arr the array name

 @param start the starting location of array

 @param end the starting location of array

 */

 public static double[] subArrayCopy

 (double[] source, int start, int end)

 {

 int i;

 double[] destination = null;

 destination = new double[end-start+1];

 for(i = 0; i < destination.length; i++)

 destination[i] = source[start + i];

 return destination;

 }

 /**

 prints an array

 @param arr the array name

 @param start the starting location of array

 @param end the starting location of array

 */

 public static void println(double[] arr, int start, int end)

 {

 int i;

 for(i = start; i <= end; i++)

 System.out.print(arr[i] + "\t");

 System.out.println();

 }

CRC_C6547_CH009.indd 550CRC_C6547_CH009.indd 550 10/3/2008 1:03:27 PM10/3/2008 1:03:27 PM

Apago PDF Enhancer

Simple Data Structures ■ 551

 public static void main (String[] args) throws IOException

 {

 double[] sample = new double[25];

 double[] sampleOne;

 int i;

 Scanner ScannedInfo = new Scanner(System.in);

 DecimalFormat twoDecimalPlaces = new

 DecimalFormat("0.00");

 System.out.println("Enter 25 decimal values");

 getData(ScannedInfo, sample, 0, 24);

 System.out.println(

 "\nInputs values are:\n");

 for (i = 0; i < 5; i++)

 {

 sampleOne = subArrayCopy(sample, 5*i, 5*i + 4);

 println(sampleOne, 0, 4);

 }

 System.out.println();

 }

}

Output

Enter 25 decimal values

12.34 45.12 65.67 23.00 78.56 34.51 87.01 20.70 19.45 52.92 17.37 65.17
45.60 73.09 18.50 31.17 27.11 88.99 91.54 29.25 74.39 56.14 72.05 18.36
50.07

Input values are

12.34 45.12 65.67 23.0 78.56
34.51 87.01 20.7 19.45 52.92
17.37 65.17 45.6 73.09 18.5
31.17 27.11 88.99 91.54 29.25
74.39 56.14 72.05 18.36 50.07

TWO-DIMENSIONAL ARRAY
In the previous section, you have seen one-dimensional arrays. Th e data type of each of
the elements of an array can be an array itself. Let us consider the following scenario. To
study the eff ect of eating habits of rabbits, a zoologist has decided to store the daily food
consumption of 40 rabbits for 180 days. Th us, there needs to be a one-dimensional array
of size 180 to keep track of each of those day’s data. Now each day’s data in fact consists
of 40 readings, one for each rabbit involved in the study. Th erefore, each one of the 180
array locations contains an array of 40 elements. Th us, if a two-dimensional array named

CRC_C6547_CH009.indd 551CRC_C6547_CH009.indd 551 10/3/2008 1:03:28 PM10/3/2008 1:03:28 PM

Apago PDF Enhancer

552 ■ Java Programming Fundamentals

scores is used to store the data, then scores[0], scores[1], …, scores[179]
are themselves arrays, each storing an array of length 40. Th erefore, it is meaningful to
talk about the elements of scores[0], scores[1], … scores[179]. Note that the
elements of the array scores[0] are known as scores[0][0], scores[0][1], …,
scores[0][39]. Similarly, the elements of scores[1] are known as scores[1][0],
scores[1][1], …, scores[1][39].

Declaring and Instantiating Array

Th e syntax template for declaring a two-dimensional array is

dataType[][] arrayName;

In the above declaration, dataType specifi es the type of data that can be kept in each of
the array locations, arrayName is the name of the array and the pair [][] distinguishes
this as a two-dimensional array declaration.

Th e following array declarations illustrate the use of various types in connection with a
two-dimensional array declaration:

char[][] page;

int[][] seasonScores;

double[][] scores;

String[][] section;

Employee[][] historyOfEmployees;

Recall that

double[][] scores;

creates the reference variable scores. You need to explicitly create an array object using
new operator and instantiate the reference variable scores.

Th e syntax template for creating a two-dimensional array object instantiating a refer-
ence variable arrayName is

arrayName = new dataType[IntExpOne][IntExpTwo];

where IntExpOne and IntExpTwo are the two expressions that evaluate to two non-
negative integer values.

For example,

score = new double[180][40];

will create an array of 180 by 40 locations.

CRC_C6547_CH009.indd 552CRC_C6547_CH009.indd 552 10/3/2008 1:03:28 PM10/3/2008 1:03:28 PM

Apago PDF Enhancer

Simple Data Structures ■ 553

Example 9.17

Consider the following Java statements:

double[][] temperature; //(1)

temperature = new double[7][3]; //(2)

Statement 1 creates a reference variable temperature as shown in Figure 9.11.
Statement 2 creates the structure shown in Figure 9.12.

Figure 9.12 shows the fi ner details of a two-dimensional array. Th us, this two-
dimensional array is a one-dimensional array of one-dimensional arrays. Note that
technically temperature is an array of size 7. Th erefore, temperature.length
has a value 7. Each of the one-dimensional arrays temperature[0], temper
ature[1], …, temperature[6] is a one-dimensional array of length 3. Conse-
quently, temperature[0].length, temperature[1].length, …, temper
ature[6].length exists and each has value 3.

Figure 9.13 is a simplifi ed view of Figure 9.12.
Recall that each of the array locations is initialized with value 0.0 (not shown in

Figure 9.13 for clarity). Statements 1 and 2 can be combined as shown below:

double[][] temperature = new double[7][3];

FIGURE 9.11 Two-dimensional array reference variable.

temperature

FIGURE 9.12 Two-dimensional array.

temperature[0]

temperature[1]

temperature[2]

temperature[3]

temperature[4]

temperature[5]

temperature[6]

temperature[0][0] temperature[0][1] temperature[0][2]

temperature[4][0] temperature[4][1] temperature[4][2]

temperature[5][0] temperature[5][1] temperature[5][2]

temperature[6][0] temperature[6][1] temperature[6][2]

temperature[3][0] temperature[3][1] temperature[3][2]

temperature[2][0] temperature[2][1] temperature[2][2]

temperature[1][0] temperature[1][1] temperature[1][2]

temperature

CRC_C6547_CH009.indd 553CRC_C6547_CH009.indd 553 10/3/2008 1:03:28 PM10/3/2008 1:03:28 PM

Apago PDF Enhancer

554 ■ Java Programming Fundamentals

As shown in Figure 9.13, the 21 (7 times 3) locations created by the new operator
are referenced using two indices. Th e fi rst index can be thought of as the row and the
second index as the column of the two-dimensional array. For instance, tempera
ture[1][0] references the row 1, column 0 location of the two- dimensional array
temperature. Similarly, temperature[5][1] references the row 5, column 1 location
of the two-dimensional array temperature and temperature[3][2] references the
row 3, column 2 location of the two-dimensional array temperature, respectively.

Now

temperature[1][0] = 70.56;

temperature[5][1] = 55.12;

temperature[3][2] = 68.12;

assigns 70.56, 55.12, and 68.12 to three locations temperature[1][0], tem-
perature[5][1], and temperature[3][2], respectively.

Self-Check

 20. Declare a two-dimensional array variance to store double values.
 21. Instantiate variance so that the two-dimensional array has 7 rows and 12

columns.
 22. Initialize the fi ft h row’s seventh column element of variance with 134.53.

Advanced Topic 9.8: Alternate Syntax

Some of the most commonly used alternate syntax and their equivalent syntax are
 presented in Table 9.5.

0

1

2

3

4

5

6

temperature

temperature[5][1] temperature[3][2]temperature[1][0]

0 1 2

FIGURE 9.13 Simplifi ed view of a two-dimensional array.

CRC_C6547_CH009.indd 554CRC_C6547_CH009.indd 554 10/3/2008 1:03:28 PM10/3/2008 1:03:28 PM

Apago PDF Enhancer

Simple Data Structures ■ 555

Advanced Topic 9.9: Ragged Array

In this subsection, we present the most general defi nition of a two-dimensional array.
 Consider the following Java statement:

double[][] knownValue

 = {{-17.45, 52.28},{-10.77},{13.82, 3.9, -8.9}}

Note that in the above declaration, row 0 has two columns, row 1 has one column, and
row 2 has three columns. In Java such a defi nition is legal. We can visualize the array
knownValue as shown in Figure 9.14.

Observe that knownValue.length is 3. Th e row 0 is of size 2 and thus known-
Value[0].length is 2. Similarly, the row 1 is of length 1 and thus knownValue[1].
length is 1. Th e row 2 has three elements and thus knownValue[2].length is 3.
Observe that all rows need not have same size and such an array is known as a ragged array.

TABLE 9.5 Alternate Syntax for a Two-Dimensional Array

Alternate Syntax Equivalent Syntax

double temperature[][]; double[][] temperature;

double temperature[][],
taxTbl[][];

double[][] temperature;
double[][] taxTbl;

double[][] temperature,
taxTbl;

double[][] temperature;
double[][] taxTbl;

double tbl[][], item[],
salePrice;

double[][] tbl;
double[] item;
double salePrice;

double[][] twoDaytemp = double[]twoDaytemp
{{87.5, 65.2, 70.7}, = new double[2][3];
{85.8, 63.9, 68.9}}; twoDaytemp[0][0] = 87.5;

twoDaytemp[0][1] = 65.2;
twoDaytemp[0][2] = 70.7;
twoDaytemp[1][0] = 85.8;
twoDaytemp[1][1] = 63.9;
twoDaytemp[1][2] = 68.9;

FIGURE 9.14 Ragged two-dimensional array.

knownValue[0]

knownValue[1]

knownValue[2]

− 17.45 52.28

knownValue[0][0] knownValue[0][1]

− 8.93.913.82

knownValue[2][0] knownValue[2][2]

− 10.77

knownValue[1][0]

knownValue

knownValue[2][1]

CRC_C6547_CH009.indd 555CRC_C6547_CH009.indd 555 10/3/2008 1:03:29 PM10/3/2008 1:03:29 PM

Apago PDF Enhancer

556 ■ Java Programming Fundamentals

You can create the ragged array shown in Figure 9.14 using the following Java state-
ments as well:

double[][] knownValue; // (1)

knownValue = new double[3][]; // (2)

knownValue[0] = new double[2]; // (3)

knownValue[0][0] = -17.45; // (3.0)

knownValue[0][1] = 52.28; // (3.1)

knownValue[1] = new double[1]; // (4)

knownValue[1][0] = -10.77; // (4.0)

knownValue[2] = new double[3]; // (5)

knownValue[2][0] = 13.82; // (5.0)

knownValue[2][1] = 3.9; // (5.1)

knownValue[2][2] = -8.9; // (5.2)

Figure 9.15 shows intermediate structures created aft er each of the Lines from 1–4.
Observe that Lines (3.0), (3.1), (4.0), (5.0), (5.1), and (5.2) initialize the array as shown in
Figure 9.14.

Advanced Topic 9.10: Processing Two-Dimensional Arrays

As you have noticed in our discussion on processing one-dimensional arrays, the central
idea is to visit each element of the array in a systematic manner. In the case of a two-
dimensional array, processing the entire array can be done either by processing row by row
or column by column. Apart from processing the entire array, certain applications may
need processing only certain specifi c rows or columns.

We assume the following declarations throughout this section:

int row;

int col;

double[][] rectMatrix = new double[4][5];

Processing Specifi c Row
Suppose you want to process all elements of row 2. Now elements of row 2 are

rectMatrix[2][0], rectMatrix[2][1], rectMatrix[2][2],

 rectMarix[2][3], rectMatrix[2][4]

Observe that in this case, the fi rst index remains the same and the second index assumes
the values 0, 1, 2, …, rectMatrix[row].length - 1. Th erefore, the necessary code
can be written as follows:

row = 2;

for (col = 0; col < rectMatrix[row].length; col++)

{

 //process rectMatrix[row][col];

}

CRC_C6547_CH009.indd 556CRC_C6547_CH009.indd 556 10/3/2008 1:03:29 PM10/3/2008 1:03:29 PM

Apago PDF Enhancer

Simple Data Structures ■ 557

You could adopt the above code to perform various row-processing tasks. For instance, the
following code will output the row 1:

row = 1;

for (col = 0; col < rectMatrix[row].length; col++)

{

 System.out.print(rectMatrix[row][col]);

}

System.out.println();

FIGURE 9.15 Intermediate stages of a ragged array creation.

knownValue

After Line 1 After Line 2

knownValue[0]

knownValue[1]

knownValue[2]

knownValue

After Line 3

After Line 4

knownValue[0]

knownValue[1]

knownValue[2]

− 17.45 52.28

knownValue[0][0] knownValue[0][1]
knownValue

knownValue[0]

knownValue[1]

knownValue[2]

− 17.45 52.28

knownValue[0][0] knownValue[0][1]

− 10.77

knownValue[1][0]

knownValue

CRC_C6547_CH009.indd 557CRC_C6547_CH009.indd 557 10/3/2008 1:03:29 PM10/3/2008 1:03:29 PM

Apago PDF Enhancer

558 ■ Java Programming Fundamentals

Similarly, the following code can compute the minColumn, the index value where the
minimum occurs in row 3:

int minColumn;

...

row = 3;

minColumn = 0;

for (col = 1; col < rectMatrix[row].length; col++)

{

 if (rectMatrix[row][col] < rectMatrix[row][minColumn])

 minColumn = col;

}

Processing Entire Array Row by Row
Suppose you want to process all elements of the array. In this case, you may process row by
row. Th erefore, the necessary code can be written as follows:

for (row = 0; row < rectMatrix.length; row++)

{

 //place any statements that needs to be executed

 //before processing the row with index value row

 for (col = 0; col < rectMatrix[row].length; col++)

 {

 //process rectMatrix[row][col];

 }

 // place any statements that needs to be executed

 //after processing row with index value row

}

You could adopt the above code to perform various row-processing tasks. For instance, the
following code will output the array row by row:

for (row = 0; row < rectMatrix.length; row++)

{

 for (col = 0; col < rectMatrix[row].length; col++)

 {

 System.out.print(rectMatrix[row][col]);

 }

 System.out.println();

}

Similarly, the following code can compute the minimum value in each row and place it
in one-dimensional array rowMin. Observe that rowMin[0] is used to keep minimum

CRC_C6547_CH009.indd 558CRC_C6547_CH009.indd 558 10/3/2008 1:03:29 PM10/3/2008 1:03:29 PM

Apago PDF Enhancer

Simple Data Structures ■ 559

value of row 0, rowMin[1] is used to keep minimum value of row 1, and so on. Note that
rowMin is a double array of length rectMatrix.length.

for (row = 0; row < rectMatrix.length; row++)

{

 minColumn = 0;

 for (col = 1; col < rectMatrix[row].length; col++)

 {

 if (rectMatrix[row][col] < rectMatrix[row][minColumn])

 minColumn = col;

 }

 rowMin[row] = rectMatrix[row][minColumn];

}

Processing Specifi c Column
For the sake of example, assume that you want to process all elements of column 2. Now
elements of the column 2 are

rectMatrix[0][2], rectMatrix[1][2], rectMatrix[2][2],

 rectMatrix[3][2]

Observe that in this case, the second index remains the same and the fi rst index assumes
the values 0, 1, 2, …, rectMatrix.length - 1. Th erefore, the necessary code can
be written as follows:

col = 2;

for (row = 0; row < rectMatrix.length; row++)

{

 //process rectMatrix[row][col];

}

You could adopt the above code to perform various row-processing tasks. For instance, the
following code will fi nd sum of all elements in column 1:

double sum;

...

col = 1;

sum = rectMatrix[0][col];

for (row = 1; row < rectMatrix.length; row++)

{

 sum = sum + rectMatrix[row][col];

}

CRC_C6547_CH009.indd 559CRC_C6547_CH009.indd 559 10/3/2008 1:03:29 PM10/3/2008 1:03:29 PM

Apago PDF Enhancer

560 ■ Java Programming Fundamentals

Processing Entire Array Column by Column
Suppose you want to process all elements of the array column by column. Th e necessary
code is

for (col = 0; col < rectMatrix[0].length; col++)

{

 // place any statements that needs to be executed

 //before processing the column with index value col

 for (row = 0; row < rectMatrix.length; row++)

 {

 //process rectMatrix[row][col];

 }

 // place any statements that needs to be executed

 //after processing column with index value col

}

Note 9.7 All the codes we have presented so far will work for ragged array as well.
However, the segment of code presented in this subsection will work only if all the rows
have the same number of columns. You may note that we have used rectMatrix[0].
length in the outer loop and thus implicitly assume that every row has the same number
of columns.

You could adapt the above code to fi nd the sum of every column and store it in a array
colSum. For instance, the following segment of code will fi nd sum of all elements in col-
umn 0 and store it in colSum[0] and so on. Assume that required variables and arrays
are properly declared.

for (col = 0; col < rectMatrix[0].length; col++)

{

 sum = rectMatrix[0][col];

 for (row = 1; row < rectMatrix.length; row++)

 {

 sum = sum + rectMatrix[row][col];

 }

 colSum[col] = sum;

}

Th e next segment of code can be used to determine the largest element in each row and
each column:

//Largest element in each row

for (row = 0; row < matrix.length; row++)

{

CRC_C6547_CH009.indd 560CRC_C6547_CH009.indd 560 10/3/2008 1:03:30 PM10/3/2008 1:03:30 PM

Apago PDF Enhancer

Simple Data Structures ■ 561

 largest = matrix[row][0]; //assume that the first element

 //of the row is the largest

 for (col = 1; col < matrix[0].length; col++)

 if (largest < matrix[row][col])

 largest = matrix[row][col];

 System.out.println("Largest element of row " + (row+1)

 + " = " + largest);

}

//Largest element in each column

for (col = 0; col < matrix[0].length; col++)

{

 largest = matrix[0][col]; //assume that the first

 element of

 //the column is the largest

 for (row = 1; row < matrix.length; row++)

 if (largest < matrix[row][col])

 largest = matrix[row][col];

 System.out.println("Largest element of col " + (col+1)

 + " = " + largest);

}

Advanced Topic 9.11: Passing Arrays as Parameter in Methods

If a formal parameter is a two-dimensional array, then you need to include two pairs of
square brackets without any specifi cations of size to distinguish it as a two-dimensional
array. As in the case of one-dimensional array, if an actual parameter is a two-dimensional
array, then you do not use the pair of square brackets. You use the array name to pass the
reference.

Th e fi rst method we present is the one for inputting the data into a two-dimensional
array.

public static void getData(Scanner sc, double[][] arr)

{

 int row;

 int col;

 for (row = 0; row < arr.length; row++)

 {

 for (col = 0; col < arr[row].length; col++)

 arr[row][col] = sc.nextDouble();

 }

}

CRC_C6547_CH009.indd 561CRC_C6547_CH009.indd 561 10/3/2008 1:03:30 PM10/3/2008 1:03:30 PM

Apago PDF Enhancer

562 ■ Java Programming Fundamentals

Another method that is quite useful in many situations is that of outputting, and hence we
present one such method.

public static void print(double[] arr)

{

 int row;

 int col;

 for (row = 0; row < arr.length; row++)

 {

 for (col = 0; col < arr[row].length; col++)

 System.out.print(arr[row][col] + "\t");

 System.out.println();

 }

}

Th e following method takes two int arrays and deep copies the second array into the fi rst
array.

public static void copy(double[][] destination, double[][]

 source)

{

 //works only if destination.length >= source.length

 //destination[row].length >= source[row].length

 //better option is let the copy method return destination

 int row;

 int col;

 destination = new double[source.length][];

 for(row = 0; row < source.length; row++)

 {

 destination[row] = new double[source[row].length];

 for(col = 0; col < source[row].length; col++)

 destination[row][col] = source[row][col];

 }

}

Observe that you specify destination and source as two-dimensional arrays by the
type declaration double[][].

CRC_C6547_CH009.indd 562CRC_C6547_CH009.indd 562 10/3/2008 1:03:30 PM10/3/2008 1:03:30 PM

Apago PDF Enhancer

Simple Data Structures ■ 563

Sometimes you may be interested in only part of the array. Let us write a method to fi nd
the smallest value in a 3 by 3 window centered at (r, c) (see Table 9.6).

public static double minimum(double[][] arr, int r, int c)

{

 int row;

 int col;

 double min = arr[r-1][c-1];

 for (row = r-1; row <= r+1; row++)

 for (col = c-1; col <= c+1; col++)

 if (arr[row][col] < min)

 min = arr[row][col];

 return min;

}

Example 9.18

Th e following program processes 7 days traffi c fl ow counted in the morning, lunch
time, evening, and night at an intersection. Th e aim of this program is to compute
the average traffi c for location by day. Another data we would like to collect is the
traffi c fl ow at a location averaged over all days by the time of the day. Th erefore,
we create a class TrafficStudy with three data members:

private static final int ROW_SIZE = 7;

private static final int COLUMN_SIZE = 4;

private int[][] traffic = new int[ROW_SIZE][COLUMN_SIZE];

private int[] dailyAveTraffic = new int[ROW_SIZE];

private int[] timeAveTraffic = new int[COLUMN_SIZE];

Th e class requires at least three public operations:

public void collectData(Scanner sc); // populate the array

public void analyzeData(); // compute averages

public String createTrafficReport(); // create traffic report

TABLE 9.6 Th e 3 by 3 Window Centered at (r, c)

(r-1, c-1) (r-1, c) (r-1, c+1)
(r, c-1) (r, c) (r, c+1)
(r+1, c-1) (r+1, c) (r+1, c+1)

CRC_C6547_CH009.indd 563CRC_C6547_CH009.indd 563 10/3/2008 1:03:30 PM10/3/2008 1:03:30 PM

Apago PDF Enhancer

564 ■ Java Programming Fundamentals

Of these, collectData and createTrafficReport are quite straightforward.
Th erefore, we list the code without any further explanation.

public void collectData(Scanner sc)

{

 int row;

 int col;

 for (row = 0; row < traffic.length; row++)

 {

 for (col = 0; col < traffic[row].length; col++)

 traffic[row][col] = sc.nextInt();

 }

}

public String createTrafficReport()

{

 int row;

 int col;

 String str;

 str =

 "\t\tMorning\t\tLunch\t\tEvening\tNight\t\tAverage\n";

 for (row = 0; row < traffic.length; row++)

 {

 str = str + "Day "+ row + " :\t\t";

 for (col = 0; col < traffic[row].length; col++)

 str = str + traffic[row][col] + "\t\t";

 str = str + dailyAveTraffic[row]+ "\n";

 }

 str = str + "Average"+ " :\t";

 for (row = 0; row < timeAveTraffic.length; row++)

 str = str + timeAveTraffic[row] + "\t\t";

 return str;

}

Now analyzeData needs to do the following. First, it must fi nd the average
along each row and store it in the array dailyAveTraffic. Th erefore, we need
to process row by row, and for each row we need to add all column values and
divide the sum by traffic[row].length. Similarly, the average along each col-
umn needs to be computed and stored in the array timeAveTraffic. Th erefore,

CRC_C6547_CH009.indd 564CRC_C6547_CH009.indd 564 10/3/2008 1:03:30 PM10/3/2008 1:03:30 PM

Apago PDF Enhancer

Simple Data Structures ■ 565

we need to process column by column, and for each column we need to add all
row values and divide the sum by traffic.length. Observe the use of static
method Math.round. Th us, we have the following:

public void analyzeData()

{

 int row;

 int col;

 int sum;

 for (row = 0; row < traffic.length; row++)

 {

 sum = 0;

 for (col = 0; col < traffic[row].length; col++)

 sum = sum + traffic[row][col];

 dailyAveTraffic[row]

 = Math.round(sum / traffic[row].length);

 }

 for (col = 0; col < timeAveTraffic.length; col++)

 {

 sum = 0;

 for (row = 0; row < traffic.length; row++)

 sum = sum + traffic[row][col];

 timeAveTraffic[col]

 = Math.round(sum / traffic. length);

 }

}

Th e application program just needs to create an instance of TrafficStudy
class and invoke the methods collectData, analyzeData, and create
TrafficReport in sequence. Th us, we have the complete program listing.

import java.util.*;

/**

 Data analysis program for traffic study

*/

public class TrafficStudy

{

 private static final int ROW_SIZE = 7;

 private static final int COLUMN_SIZE = 4;

CRC_C6547_CH009.indd 565CRC_C6547_CH009.indd 565 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

566 ■ Java Programming Fundamentals

 private int[][] traffic = new int[ROW_SIZE][COLUMN_SIZE];

 private int[] dailyAveTraffic = new int[ROW_SIZE];

 private int[] timeAveTraffic = new int[COLUMN_SIZE];

 /**

 Stores data into a two-dimensional array

 @param sc a Scanner object

 */

 public void collectData(Scanner sc)

 {

 int row;

 int col;

 for (row = 0; row < traffic.length; row++)

 {

 for (col = 0; col < traffic[row].length; col++)

 traffic[row][col] = sc.nextInt();

 }

 }

 /**

 Analyze data

 */

 public void analyzeData()

 {

 int row;

 int col;

 int sum;

 for (row = 0; row < traffic.length; row++)

 {

 sum = 0;

 for (col = 0; col < traffic[row].length; col++)

 sum = sum + traffic[row][col];

 dailyAveTraffic[row]

 = Math.round(sum / traffic[row].length);

 }

 for (col = 0; col < timeAveTraffic.length; col++)

 { sum = 0;

 for (row = 0; row < traffic.length; row++)

CRC_C6547_CH009.indd 566CRC_C6547_CH009.indd 566 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

Simple Data Structures ■ 567

 sum = sum + traffic[row][col];

 timeAveTraffic[col]

 = Math.round(sum / traffic. length);

 }

 }

 /**

 Create study report as a String

 @return study report

 */

 public String createTrafficReport()

 {

 int row;

 int col;

 String str;

 str =

 "\t\tMorning\t\tLunch\t\tEvening\tNight\t\tAverage\n";

 for (row = 0; row < traffic.length; row++)

 {

 str = str + "Day "+ row + " :\t\t";

 for (col = 0; col < traffic[row].length; col++)

 str = str + traffic[row][col] + "\t\t";

 str = str + dailyAveTraffic[row]+ "\n";

 }

 str = str + "Average"+ " :\t";

 for (row = 0; row < timeAveTraffic.length; row++)

 str = str + timeAveTraffic[row] + "\t\t";

 return str;

 }

}

import java.io.*;

import java.util.Scanner;

/**

 Application program for traffic study

*/

CRC_C6547_CH009.indd 567CRC_C6547_CH009.indd 567 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

568 ■ Java Programming Fundamentals

public class TrafficStudyApplication

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 TrafficStudy trafficStudy = new TrafficStudy();

 Scanner ScannedInfo

 = new Scanner(new File("C:\\TrafficData. dat"));

 PrintWriter output

 = new PrintWriter(new FileWriter

 ("C:\\TrafficData.out"));

 trafficStudy.collectData(ScannedInfo);

 trafficStudy.analyzeData();

 output.println(trafficStudy.createTrafficReport());

 output.close();

 }

}

Output

Morning Lunch Evening Night Average

Day 0 574 389 697 215 468
Day 1 612 401 756 105 468
Day 2 655 399 809 206 517
Day 3 525 507 863 276 542
Day 4 634 472 742 241 522
Day 5 629 475 837 176 529
Day 6 598 487 787 281 538
Average 603 447 784 214

Advanced Topic 9.12: Returning Arrays in Method Invocation

Th e following method creates a new array, then performs a deep copy of the rectangular
subarray bounded by indices (startRow, startCol) and (endRow, endCol):

public static double[][] copy(double[][] source,

 int startRow, int startCol, int endRow, int endCol)
{

 int row;

 int col;

 double[][] destination = null;

 destination = new double[endRow-startRow+1][];

 for (row = 0; row < destination.length; row++)

CRC_C6547_CH009.indd 568CRC_C6547_CH009.indd 568 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

Simple Data Structures ■ 569

 {

 destination[row] = new double[endCol-startCol+1];

 for (col = 0; col < destination[row].length; col++)

 destination[row][col]

 = source[startRow + row][startCol+col];

 }

 return destination;

}

You need double[][] to indicate that the return type is a double two-dimensional
array. However, in the return statement all you need is the array name.

Th e next example illustrates the use of two-dimensional array as a return type.

Example 9.19

Th e program creates an int array of size 5 by 4 and initializes using user input.
Next, the program performs a deep copy of the rectangular subarray bounded by
(1,2) and (4,4).

import java.io.*;

import java.util.Scanner;

import java.text.DecimalFormat;

/**

 Illustration of array as a parameter

*/

public class TwoDimArrayAsParameter

{

 /**

 Gets data from a scanner object and stores it in an

 array

 @param sc input source; a scanner object

 @param arr the destination array name

 */

 public static void getData(Scanner sc, double[][] arr)

 {

 int row;

 int col;

 for (row = 0; row < arr.length; row++)

 {

 for (col = 0; col < arr[row].length; col++)

 arr[row][col] = sc.nextDouble();

 }

 }

CRC_C6547_CH009.indd 569CRC_C6547_CH009.indd 569 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

570 ■ Java Programming Fundamentals

 /**

 copy part of source 2-dim. array to destination

 2-dim. array

 @param source array with data

 @param startRow starting row of source

 @param startCol starting column of source

 @param endRow ending row of source

 @param endCol ending column of source

 @return destination array

 */

 public static double[][] copy(double[][] source,

 int startRow, int startCol, int endRow, int endCol)

 {

 int row;

 int col;

 double[][] destination = null;

 destination = new double[endRow-startRow+1][];

 for(row = 0; row < destination.length; row++)

 {

 destination[row] = new

 double[endCol-startCol+1];

 for(col = 0; col < destination[row].length; col++)

 destination[row][col]

 = source[startRow + row][startCol+col];

 }

 return destination;

 }

 /**

 print a two-dim. array

 */

 public static void print(double[][] arr)

 {

 int row;

 int col;

 for (row = 0; row < arr.length; row++)

 {

 for (col = 0; col < arr[row].length; col++)

 System.out.print(arr[row][col] + "\t");

 System.out.println();

 }

 }

CRC_C6547_CH009.indd 570CRC_C6547_CH009.indd 570 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

Simple Data Structures ■ 571

 public static void main (String[] args) throws IOException

 {

 double[][] sample = new double[5][4];

 Scanner ScannedInfo = new Scanner(System.in);

 DecimalFormat twoDecimalPlaces = new

 DecimalFormat("0.00");

 System.out.println("Enter 20 decimal values");

 getData(ScannedInfo, sample);

 System.out.println

 ("\nFive inputs per row and their sum

 follows:\n");

 print(sample);

 System.out.println

 ("\nSubarray (1,0) to (4,3) created is:\n");

 print(copy(sample,1,0,4,3));

 }

}

Output

Enter 20 decimal values

12.34 45.12 65.67 23.00 78.56 34.51 87.01 20.70 19.45 52.92 17.37 65.17
45.60 73.09 18.50 31.17 27.11 88.99 91.54 29.25

Five inputs per row and their sum are as follows:

12.34 45.12 65.67 23.0
78.56 34.51 87.01 20.7
19.45 52.92 17.37 65.17
45.6 73.09 18.5 31.17
27.11 88.99 91.54 29.25

Subarray (1,0) to (4,3) created is

78.56 34.51 87.01 20.7
19.45 52.92 17.37 65.17
45.6 73.09 18.5 31.17
27.11 88.99 91.54 29.25

Advanced Topic 9.13: Multidimensional Array

A two-dimensional array is an array of one-dimensional arrays. A three-dimensional array
can now be defi ned as an array of two-dimensional arrays or an array of array of arrays.
Th us, it is possible to defi ne arrays of any dimension.

CRC_C6547_CH009.indd 571CRC_C6547_CH009.indd 571 10/3/2008 1:03:31 PM10/3/2008 1:03:31 PM

Apago PDF Enhancer

572 ■ Java Programming Fundamentals

Th e syntax for declaring an n-dimensional array is

dataType[][]...[] arrayName;

Th e syntax for instantiating an n-dimensional array is

arrayName = new dataType[IE_1][IE_2]...[IE_n];

Th e above two statements can be combined as follows:

dataType[][]...[] arrayName= new dataType[IE_1][IE_2]...[IE_n];

where IE_1, IE_2, …,IE_n are constant expressions that evaluate to nonnegative inte-
ger values. Individual elements of the array are accessed using the array name and n indi-
ces. Further, you need n nested loops to visit all the elements of an n-dimensional array.

To illustrate these concepts, we now revisit the traffi c study introduced in Example 9.18.
Th e study involved analyzing the traffi c fl ow at a certain intersection 7 days with four read-
ings per day. Th us, we created a two-dimensional array with 7 rows and 4 columns. Let us
now modify our program so that study is carried out at 5 intersections.

Th erefore, we use a three-dimensional array weeklyTrafficData to keep track of
data. Th e following Java statement

int[][][] weeklyTrafficData = new int [5][7][4];

declares and instantiates a three-dimensional array weeklyTrafficData. Observe that
the size of the fi rst dimension is 5 and represents fi ve intersections in the city. Th e size of the
second dimension is 7 and represents 7 days of the week. Th e size of the third dimension is
4 and represents four readings. Th us, the array element weeklyTrafficData[2][3][0]
denotes the fi rst reading for day 3 at intersection 2.

Th e following nested repetition structure can be used to output the data:

for (loc = 0; loc < weeklyTrafficData.length; loc++)

{

 // perform initializations for an intersection

 for (day = 0; day < weeklyTrafficData[loc].length; day++)

 {

 // perform initializations for a day

 for (time = 0; time < weeklyTrafficData[loc][day].

 length; time++)

 {

 // process the array element

 // weeklyTrafficData[loc][day][time]

 }

 // perform additional steps for a day

 }

 // perform additional steps for an intersection

}

CRC_C6547_CH009.indd 572CRC_C6547_CH009.indd 572 10/3/2008 1:03:32 PM10/3/2008 1:03:32 PM

Apago PDF Enhancer

Simple Data Structures ■ 573

We now summarize the major diff erences among a variable, a one-dimensional array, a
two-dimensional array, and a three-dimensional array in Table 9.7.

Vector AND ArrayList CLASSES
In this chapter, you have seen arrays, a data structure that allow us to store and process
items of the same type. As you have seen in Example 9.13, the restriction that an array must
store items of the same type can be managed through the introduction of a superclass. How-
ever, arrays have their limitations. First, you must know the size of the array at the time of
creation. Since an array size remains fi xed, a predetermined number of elements alone can
be stored in an array. Second, to insert an element at a specifi c index location you need to
make room by shift ing elements of the array. Removing an element from a specifi c index
position in the array involves shift ing elements of the array in the opposite direction.

Java provides two classes Vector and ArrayList to address these issues. Vector
(ArrayList) objects can grow and shrink dynamically. As a user of the Vector (Array
List) class, you need not be concerned with the size. Similarly, the Vector (ArrayList)
allows you to insert at and delete from any position. Once again, as a user of the Vector
(ArrayList) class, you need not be concerned with shift ing the elements of a Vector
(ArrayList) object. Internally, Vector (ArrayList) class is implemented using an
array. While Vector is thread-safe, the ArrayList is not. Th e concept of thread-safety
is far beyond the scope of this textbook and hence we do not attempt to explain. While it is
enough to present either ArrayList or the Vector class, both are presented to illustrate
the concept of an abstract data type (see Advanced Topic 9.14).

TABLE 9.7 Diff erences among a Variable and Arrays

Arrays

Variable One-Dimensional Two-Dimensional Th ree-Dimensional

Declaration int rain; int[] rain; int[][] rain; int[][][] rain;
Instantiation rain = new

int[2];
rain = new
int[2][4];

rain = new
int[2][4][3];

Declaration and
instantiation

int[] rain =
new int[2];

int[][]
rain = new
int[2][4];

int[][][] = new
int[2][4][3];

Declaration and
initialization

int
rain = 8;

int[] rain =
new {6, 8};

int[][]
rain =
{{2,3,1,4},
{5,7,8,6}}

int[][] rain =
{{{6,8,1},{7,2,1},
{1,2,3},{4,7,8}},
{{7,2,9},{1,9,2},
{6,5,8},{5,6,8}}}

Formal
parameter /
Return type
specifi cation

int int[] int[][] int[][][]

Actual parameter
/ Variable in
return
statement

rain (rain
is a variable)

rain (rain is a
one-dimensional
array)

rain (rain is a
two-dimensional
array)

rain (rain is a three-
dimensional array)

CRC_C6547_CH009.indd 573CRC_C6547_CH009.indd 573 10/3/2008 1:03:32 PM10/3/2008 1:03:32 PM

Apago PDF Enhancer

574 ■ Java Programming Fundamentals

Table 9.8 lists selected constructors and methods of both the classes. Interested reader
is invited to visit Java Collections Framework at http://java.sun.com/javase/6/
docs/api/index.html to get a much broader view of the subject.

Self-Check

 23. Vector (ArrayList) objects can and dynamically.
 24. True or false: Th e Vector (ArrayList) allows you to insert at and delete

from any position.

Wrapper Classes
Every component of a Vector (ArrayList) object is an Object reference. Th erefore,
primitive data type values cannot be directly assigned to a Vector element. Th is is made
possible through wrapper classes. Corresponding to each primitive data type, there is a
wrapper class. For example, corresponding to int, we have the Integer class. Table 9.9
lists all primitive data types and their corresponding wrapper classes.

TABLE 9.8 Th e ArrayList<E> and Vector<E> Classes

Constructor/Operation Explanation

public ArrayList() Constructs an empty ArrayList of size 10
public Vector() Constructs an empty Vector of size 10
public ArrayList(int capacity) Creates an ArrayList of size capacity
public Vector(int capacity) Creates a Vector of size capacity
public boolean add(E e) Adds the object e at the end
public void add(int idx, E e) Inserts the object e at index location idx
public boolean
contains(Object obj)

If the ArrayList (Vector) contains the object obj, then
true is returned; else false is returned

public E get(int idx) Returns element at location idx
public int indexOf
(Object obj)

Returns the index of the fi rst occurrence of the object obj.
Returns -1 if object is not in the ArrayList (Vector)

public boolean is Empty() If the ArrayList (Vector) is empty, true is returned;
else false is returned

public int lastIndexOf
(Object obj)

Returns the index of the last occurrence of the object obj.
Returns -1 if object is not in the ArrayList (Vector)

public E remove(int idx) Removes the element at idx and returns it
public void set(int idx, E e) Replaces the element at idx by e
public int size() Returns the number of elements in the ArrayList (Vector)

TABLE 9.9 Wrapper Classes

Primitive Type Wrapper Class

boolean Boolean
byte Byte
char Character
short Short
int Integer
long Long
float Float
double Double

CRC_C6547_CH009.indd 574CRC_C6547_CH009.indd 574 10/3/2008 1:03:32 PM10/3/2008 1:03:32 PM

http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html

Apago PDF Enhancer

Simple Data Structures ■ 575

For the rest of this chapter, for any statement we make about Vector, there is a similar
and equivalent statement involving ArrayList. Th erefore, we explain various concepts
through Vector class.

Th e Integer class can store one int value. Th erefore, if you want to create a Vector
to store int values, you need to create a Vector that can store Integer objects.

Vector<Integer> sampleVector = new Vector<Integer>();

In the above-mentioned statement, we used the type parameter Integer to create a Vec-
tor reference that can store Integer references. Th erefore, sampleVector is called a
parameterized Vector.

Th e following statement creates an Integer object with int value 10 and adds at the
end of sampleVector:

sampleVector.add(10);

Note that the above-mentioned statement is in fact equivalent to the following:

sampleVector.add(new Integer(10));

Th is feature of the Java language, introduced in Java 5.0, is known as auto-boxing. Let us
add four more integers into sampleVector.

sampleVector.add(21);

sampleVector.add(15);

sampleVector.add(31);

sampleVector.add(41);

Th e sampleVector now has fi ve items as shown below:

[10, 21, 15, 31, 41].

Now index of 21 (or new Integer(21)) is 1. Similarly, both statements

sampleVector.contains(21)

and

sampleVector.contains(new Integer(21))

evaluate to true. However, the following expressions are not equivalent:

sampleVector.get(1) == 21 //(1)

sampleVector.get(1) == new Integer(21) //(2)

Note that in Line 1, Java compiler performs an auto-unboxing of the object returned by sam
pleVector.get(1) and compares int 21 with int 21. Th us, Line 1 evaluates to
true. In Case 2, such an unboxing is not necessary and thus the comparison is between
two object references. Hence Case 2 evaluates to false. Auto-unboxing also takes place

CRC_C6547_CH009.indd 575CRC_C6547_CH009.indd 575 10/3/2008 1:03:32 PM10/3/2008 1:03:32 PM

Apago PDF Enhancer

576 ■ Java Programming Fundamentals

during numeric computation. For example, consider the following code to compute the
sum of all values in the sampleVector:

sum = 0;

for (idx = 0; idx < sampleVector.size(); idx++)

 sum = sum + sampleVector.get(idx);

If you want to increment the second item by 5, you should fi rst retrieve the item at 2. Th is
can be accomplished by

sampleVector.get(2)

Next, we add 5 to it by

sampleVector.get(2) + 5 // (1)

and then replace the current item at location 2 by sampleVector.get(2) + 5. Th us, we
have the following:

sampleVector.set(2, sampleVector.get(2) + 5); //(2)

Observe that there is an auto-unboxing performed in Line 1 and there is an auto-boxing
done at Line 2. Similarly, adding element at location 3 to element at location 4 can be
accomplished as follows:

sampleVector.set(4, sampleVector.get(3) + sampleVector.get(4));

Note that two auto-unboxing and one auto-boxing are performed during the execution of
this statement.

Th e class Vector (ArrayList) is in the package java.util. Th erefore, your pro-
gram must import it using statement

import java.util.*;

or

import java.util.Vector; (import java.util.ArrayList;)

Example 9.20

In this example, we illustrate various methods of the Vector class. Since, these meth-
ods are also in the ArrayList class, the ArrayList class version can be obtained
by replacing Vector by ArrayList. Th is example will also illustrate auto- unboxing
and auto-boxing feature of the Java language.

import java.io.*;

import java.util.*;

/**

 Illustrate the Vector class

*/

CRC_C6547_CH009.indd 576CRC_C6547_CH009.indd 576 10/3/2008 1:03:32 PM10/3/2008 1:03:32 PM

Apago PDF Enhancer

Simple Data Structures ■ 577

public class VectorIllustrated

{

 public static void main(String[] arg)

 {

 int idx;

 int sum;

 Vector<Integer> sampleVector = new Vector<Integer>();

 sampleVector.add(10);

 sampleVector.add(21);

 sampleVector.add(15);

 sampleVector.add(31);

 sampleVector.add(41);

 System.out.println("After adding five "

 + "elements to sampleVector");

 System.out.println("sampleVector: "

 + sampleVector);

 System.out.println();

 System.out.println("indexOf(21) is "

 + sampleVector.indexOf(21));

 System.out.println("indexOf(new Integer(21)) is "

 + sampleVector.indexOf(new Integer(21)));

 System.out.println();

 System.out.println("sampleVector contains 21 is a "

 + sampleVector.contains(21)

 +" statement");

 System.out.println(

 "sampleVector contains(new Integer(21)) is a "

 + sampleVector.contains(new Integer(21))

 +" statement");

 System.out.println();

 System.out.println("sampleVector.get(1) == 21 is a "

 + (sampleVector.get(1) == 21)

 +" statement");

 System.out.println(

 "sampleVector.get(1) == new Integer(21) is a "

 + (sampleVector.get(1) == new Integer(21))

 +" statement");

 System.out.println();

CRC_C6547_CH009.indd 577CRC_C6547_CH009.indd 577 10/3/2008 1:03:32 PM10/3/2008 1:03:32 PM

Apago PDF Enhancer

578 ■ Java Programming Fundamentals

 sampleVector.add(3, 77);

 System.out.println("After adding 77 "

 + "at position 3");

 System.out.println("sampleVector: "

 + sampleVector);

 System.out.println();

 sampleVector.remove(2);

 System.out.println("After removing item at 2 ");

 System.out.println("sampleVector: "

 + sampleVector);

 System.out.println();

 System.out.println("Size of sampleVector is "

 + sampleVector.size());

 sum = 0;

 for (idx = 0; idx < sampleVector.size(); idx++)

 sum = sum + sampleVector.get(idx);

 System.out.println();

 sampleVector.add(0, sum);

 System.out.println(

 "After inserting the sum of all numbers at index 0");

 System.out.println("sampleVector: "

 + sampleVector);

 System.out.println();

 sampleVector.set(2, sampleVector.get(2) + 5);

 System.out.println(

 "After incrementing second item by 5");

 System.out.println("sampleVector: "

 + sampleVector);

 System.out.println();

 sampleVector.set(4,

 sampleVector.get(3) + sampleVector. get(4));

CRC_C6547_CH009.indd 578CRC_C6547_CH009.indd 578 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

Simple Data Structures ■ 579

 System.out.println(

 "Add third item to the fourth item");

 System.out.println("sampleVector: "

 + sampleVector);

 }

}

Output

After adding five elements to sampleVector

sampleVector: [10, 21, 15, 31, 41]

indexOf(21) is 1

indexOf(new Integer(21)) is 1

sampleVector contains 21 is a true statement

sampleVector contains(new Integer(21)) is a true statement

sampleVector.get(1) == 21 is a true statement

sampleVector.get(1) == new Integer(21) is a false statement

After adding 77 at position 3

sampleVector: [10, 21, 15, 77, 31, 41]

After removing item at 2

sampleVector: [10, 21, 77, 31, 41]

Size of sampleVector is 5

After inserting the sum of all numbers at index 0

sampleVector: [180, 10, 21, 77, 31, 41]

After incrementing second item by 5

sampleVector: [180, 10, 26, 77, 31, 41]

Add third item to the fourth item

sampleVector: [180, 10, 26, 77, 108, 41]

Example 9.21

In this example, we illustrate the use of ArrayList in place of an array. Th e
ArrayList version of Example 9.13 is presented. For easy comparison, we have

CRC_C6547_CH009.indd 579CRC_C6547_CH009.indd 579 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

580 ■ Java Programming Fundamentals

kept statements that warranted the required modifi cation commented. Th erefore,
for the sake of clarity, other comments are omitted. Note that if we replace Array-
List by Vector, you get the Vector class version.

import java.util.*;

import java.io.*;

public class HeartlandCarsOfAmericaVector

{

 public static void main (String[] args) throws

 FileNotFoundException, IOException

 {

 /*

 Employee[] currentEmployees = new Employee[100];

 */

 ArrayList<Employee> currentEmployees

 = new ArrayList <Employee>();

 char inputEmployeeType;

 String inputFirstName;

 String inputLastName;

 double inputBaseSalary;

 double inputPayPerHour;

 int inputSalesVolume;

 int inputHoursWorked;

 int noOfEmployees;

 int idx;

 Scanner ScannedInfo = new Scanner(

 new File("C:\\Employee.dat"));

 PrintWriter outFile = new PrintWriter(

 new FileWriter("C:\\payroll.dat"));

 while (ScannedInfo.hasNext())

 {

 inputEmployeeType = ScannedInfo.next().

 charAt(0);

CRC_C6547_CH009.indd 580CRC_C6547_CH009.indd 580 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

Simple Data Structures ■ 581

 switch (inputEmployeeType)

 {

 case ‘F’ :

 case ‘f’ :

 inputFirstName = ScannedInfo.next();

 inputLastName = ScannedInfo.next();

 inputBaseSalary = ScannedInfo.

 nextDouble();

 inputHoursWorked = ScannedInfo.nextInt();

 /*

 currentEmployees[idx]= new

 FullTimeEmployee(inputFirstName,

 inputLastName, inputBaseSalary,

 inputHoursWorked);

 */

 currentEmployees.add(new

 FullTimeEmployee(inputFirstName,

 inputLastName, inputBaseSalary,

 inputHoursWorked));

 break;

 case ‘P’ :

 case ‘p’ :

 inputFirstName = ScannedInfo.next();

 inputLastName = ScannedInfo.next();

 inputPayPerHour = ScannedInfo.

 nextDouble();

 inputHoursWorked = ScannedInfo.nextInt();

 /*

 currentEmployees[idx]= new

 PartTimeEmployee(inputFirstName,

 inputLastName, inputPayPerHour,

 inputHoursWorked);

CRC_C6547_CH009.indd 581CRC_C6547_CH009.indd 581 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

582 ■ Java Programming Fundamentals

 */

 currentEmployees.add(new

 PartTimeEmployee(inputFirstName,

 inputLastName, inputPayPerHour,

 inputHoursWorked));

 break;

 case ‘S’ :

 case ‘s’ :

 inputFirstName = ScannedInfo.next();

 inputLastName = ScannedInfo.next();

 inputBaseSalary = ScannedInfo.

 nextDouble();

 inputSalesVolume = ScannedInfo.nextInt();

 /*

 currentEmployees[idx] = new

 SalesEmployee(inputFirstName,

 inputLastName, inputBaseSalary,

 inputSalesVolume);

 */

 currentEmployees.add(new

 SalesEmployee(inputFirstName,

 inputLastName, inputBaseSalary,

 inputSalesVolume));

 break;

 default:

 System.out.println("Check data file.");

 return;

 }

 }

 /*

 for (idx = 0; idx < noOfEmployees; idx++)

 */

 for (idx = 0; idx < currentEmployees.size() ; idx++)

 {

 /*

CRC_C6547_CH009.indd 582CRC_C6547_CH009.indd 582 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

Simple Data Structures ■ 583

 outFile.println

 (currentEmployees[idx].createPay Stub());

 */

 outFile.println(

 currentEmployees.elementAt(idx).

 createPayStub());

 }

 outFile.close();

 }

}

A better solution is still possible! Introduce a new class, EmployeeList, which
has an attribute that is either an array or Vector or ArrayList of Employee
instances. Th en use that class in the application program. See Programming Exer-
cise 9.6. A similar approach is employed in Case Study 9.2.

Self-Check

 25. Th e wrapper class corresponding to int is and the wrapper class
corresponding to char is .

 26. Th e method inserts the element in the Vector (ArrayList) and
 method replaces the element in the Vector (ArrayList).

Advanced Topic 9.14: Abstract Data Types

Both ArrayList and Vector allow random access to all elements. You can access any
element by specifying an integer index, you can replace any value by specifying an index,
and you can insert a new item at a specifi ed location using the index. Th us, both Array
List and Vector seem to have many identical services (see Table 9.8). Th e reason is both
Vector and ArrayList are concrete implementations of an abstract data type (ADT)
list.

ADT is the very fi rst attempt to distinguish the structure and operations on data from
the data itself. For a better understanding of the concept, consider the following:

 1. Contact information stored in your e-mail soft ware
 2. A set of index cards with various recipes arranged in alphabetical order
 3. A deck of business cards of all the medical representatives in a doctor’s offi ce

CRC_C6547_CH009.indd 583CRC_C6547_CH009.indd 583 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

584 ■ Java Programming Fundamentals

Although the data maintained and the way it is maintained is diff erent, all three items
listed above have the same structure. In particular, observe the following commonalities
among them:

 1. Each is a collection of elements of certain type.
 2. Th ere is an inherent ordering of elements. Th us, there is a fi rst element, there is a last

element; given an element other than the last element, there is a “next” element; given
an element other than the fi rst element, there is a “previous” element.

 3. Any element in the collection can be accessed randomly.
 4. A new element can be added to the collection. Th us, a new item can be added as the

fi rst or the last item or anywhere in between.
 5. An existing element can be removed from the collection.
 6. It is possible to determine whether or not an item is currently in the collection.
 7. An existing element can be updated or replaced by a new item.

A collection satisfying the above seven properties is commonly known as a list. Th us, list
is an abstract concept. It can be implemented in many diff erent ways. In particular, both
ArrayList and Vector are two specifi c implementations of the ADT list.

CASE STUDY 9.2: MR. GRACE’S GRADE SHEET
Recall that Mr. Grace has decided to assign his letter grade based on class average. See
Table 9.1 for his latest grading policy. To implement his new grading policy, he started out
creating a new class Course with the following attributes:

courseNumber : a String,
courseTitle : a String
term : a String
numberOfStudents : an int
courseAverage : a double
StudentList : an array of Student

To simplify his work, Mr. Grace decided to have three public methods

 1. loadData to read a fi le and load data into the Course class instance
 2. assignGrade to assign grade to every student
 3. printGradeSheet to write the grade sheet for the course in a fi le

instead of traditional get and set methods. (Pedagogically, this example illustrates the use
of array of classes where class itself may contain an attribute that is an array. Our focus is
on those issues. Further, by now the reader may know how to create get and set methods.)
To simplify the method assignGrade, Mr. Grace decided to include a helper function
computeCourseAverage.

CRC_C6547_CH009.indd 584CRC_C6547_CH009.indd 584 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

Simple Data Structures ■ 585

Th e program listing is quite easy to follow. However, additional assistance is provided
as the solution to Exercise 8.

import java.io.*;

import java.util.*;

/**

 Keeps information on all students in a course

*/

public class Course

{

 private static final int CLASS_SIZE = 25; // Maximum

 class size

 private String courseNumber; // Course

 Number

 private String courseTitle; // Course

 Title

 private String term; // Course

 term

 private int numberOfStudents;

 private double courseAverage;

 private Student StudentList[] = new Student[CLASS_SIZE];

 // An array to keep

 student information

 /**

 stores data values

 @param sc a scanner object

 */

 public void loadData(Scanner sc)

 {

 Student st;

 int i = 0;

 courseNumber = sc.nextLine();

 courseTitle = sc.nextLine();

 term = sc.nextLine();

 while (sc.hasNext())

 {

 st = new Student();

 st.setStudentInfo(sc);

CRC_C6547_CH009.indd 585CRC_C6547_CH009.indd 585 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

586 ■ Java Programming Fundamentals

 StudentList[i] = st;

 i++;

 }

 numberOfStudents = i;

 }

 /**

 Computes the class average

 */

 private void computeCourseAverage()

 {

 int i;

 double sum = 0;

 for (i = 0; i < numberOfStudents; i++)

 {

 StudentList[i].computeGradeScore();

 sum = sum + StudentList[i].getGradeScore();

 }

 courseAverage = sum / numberOfStudents;

 }

 /**

 Assign grade to all students

 */

 public void assignGrade()

 {

 int i;

 double temp;

 computeCourseAverage();

 for (i = 0; i < numberOfStudents; i++)

 {

 temp = StudentList[i].getGradeScore();

 if (temp > 1.3 * courseAverage)

 StudentList[i].setGrade("A");

 else if (temp > 1.1 * courseAverage)

 StudentList[i].setGrade("B");

 else if (temp > 0.9 * courseAverage)

 StudentList[i].setGrade("C");

CRC_C6547_CH009.indd 586CRC_C6547_CH009.indd 586 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

Simple Data Structures ■ 587

 else if (temp > 0.7 * courseAverage)

 StudentList[i].setGrade("D");

 else

 StudentList[i].setGrade("F");

 }

 }

 /**

 Prints grade sheet

 @param output a PrintWriter object

 */

 public void printGradeSheet(PrintWriter output)

 {

 int i;

 output.println("\t\t\t" + courseNumber);

 output.println("\t\t\t" + courseTitle);

 output.println("\t\t\t" + term);

 output.println("\t\t\tClass Average is " +

 courseAverage);

 for (i = 0; i < numberOfStudents; i++)

 {

 output.println(StudentList[i]);

 }

 }

}

import java.io.*;

import java.util.Scanner;

/**

 Application program that grades all students

*/

public class CourseGraded

{

 public static void main (String[] args)

 throws FileNotFoundException, IOException

CRC_C6547_CH009.indd 587CRC_C6547_CH009.indd 587 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

588 ■ Java Programming Fundamentals

 {

 Scanner scannedInfo

 = new Scanner(new File("C:\\courseData.dat"));

 PrintWriter outFile

 = new PrintWriter(new FileWriter

 ("C:\\courseData.out"));

 Course crs = new Course();

 crs.loadData(scannedInfo);

 crs.assignGrade();

 crs.printGradeSheet(outFile);

 outFile.close();

 }

}

CourseData.dat fi le:

CSC 221

Java Programming

Fall 2008

Kim Clarke 70.50 69.85 90.25 100.0 81.75 100.0

Chris Jones 78.57 51.25 97.45 85.67 99.75 88.76

Brian Wills 85.08 92.45 67.45 71.57 50.92 72.00

Bruce Mathew 60.59 87.23 45.67 99.75 72.12 100.0

Mike Daub 56.60 45.89 78.34 64.91 66.12 70.45

CourseData.out fi le:

CSC 221

Java Programming

Fall 2008

Class Average is 81.4944

Kim Clarke 70.5 69.85 90.25 100.0 81.75 100.0 88.50 C

Chris Jones 78.57 51.25 97.45 85.67 99.75 88.76 90.04 B

Brian Wills 85.08 92.45 67.45 71.57 50.92 72.0 77.71 C

Bruce Mathew 60.59 87.23 45.67 99.75 72.12 100.0 83.94 C

REVIEW
 1. An array is a named collection of contiguous storage locations that can store data

items of the same type.
 2. Each element of an array is referred to by the array name along with its position or

index.

CRC_C6547_CH009.indd 588CRC_C6547_CH009.indd 588 10/3/2008 1:03:33 PM10/3/2008 1:03:33 PM

Apago PDF Enhancer

Simple Data Structures ■ 589

 3. In the case of primitive data types, the array locations are initialized with default
values. Th us, integral arrays are initialized by 0, fl oating point arrays by 0.0, and
boolean arrays by false.

 4. In the case of object references, the array locations are initialized by null.
 5. In the case object references, the array locations need to be instantiated.
 6. Th e length of an array is defi ned as the number of locations and this value is available

in an attribute length.
 7. During program execution if an array index becomes out of bounds, Java throws an

Array IndexOutOfBoundException exception.
 8. Th e assignment operator = and relational operators == and != can be used in the

context of an array.
 9. Th e assignment operator copies the reference of one array to the other. Th is form of

copying is known as shallow copying.
 10. To make a copy of an array object, memory has to be allocated. Further, an element-

by- element copying using a repetition structure is required. Th is form of copying is
known as deep copying.

 11. Th e relational operators compare array references only.
 12. A two-dimensional array is an array of one-dimensional arrays.
 13. A three-dimensional array is an array of two-dimensional arrays or an array of array

of arrays.
 14. Insertion and deletion of an element in an arbitrary location of an array is not

effi cient.
 15. In the case of a Vector, there is a default size of 10.
 16. A Vector is thread-safe, whereas ArrayList is not.
 17. Corresponding to each primitive data type, there is a wrapper class.
 18. Th e wrapper class for int is Integer.
 19. Th e wrapper class for char is Character.

EXERCISES
 1. Mark the following statements as true or false:
 a. You must know the array size to create an array.
 b. Index can be of any numeric value.
 c. An array is created using new operator.
 d. You can store a double value in an int array.
 e. You can store an int value in a double array.
 f. Th e array length is the same as the upper bound of the array.
 g. Th e lower bound of all arrays is 0.

CRC_C6547_CH009.indd 589CRC_C6547_CH009.indd 589 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

590 ■ Java Programming Fundamentals

 h. A boolean array is never initialized by the system.
 i. You can increase the size of an array inside your program.
 j. Th e array name contains the reference of the array object.
 k. If cost is a double array, then both cost and cost[0] references to the

fi rst item in the array cost.
 l. If cost is a double array, then cost[10] refers to the ninth item in the array

cost.
 m. Let costOne and costTwo be two double arrays of the same size. Th en

costOne = costTwo; copies every element of array costTwo into array
costOne.

 n. Let costOne and costTwo be two double arrays of the same size. If costOne.
equals(costTwo) is true, then costOne == costTwo is also true.

 o. Let cost be a two-dimensional array having three rows and four columns. Th en
cost[2][4] is the eighth element of the array.

 p. Th e default size of a Vector is 10.
 q. Th e default size of an ArrayList is 10.
 r. Th e size of a Vector is available in an attribute length.
 2. Write Java statements that accomplish the following tasks. For each part, repeat

it for a Vector and an ArrayList. If a certain task cannot be accomplished,
explain.

 a. Declare an array named priceList to store 100 int values.
 b. Initialize the 10th item of the priceList with 18.5.
 c. Place the value 20.7 as the last item.
 d. Place the value 30.1 as the fi rst item.
 e. Make the fi ft h item the sum of the fourth and the sixth items.
 f. Increment the second item by 12.9.
 g. Print all values; seven items per row.
 h. Initialize the fi rst and second values by 1.0. All other values are initialized as the

sum of the previous two values.
 i. Declare an array named productList to store 100 String values.
 3. Consider the program segment presented in Example 9.9. For each part, if the answer

is yes, rewrite the segment of code in Example 9.9.
 a. Is it possible to rewrite it using the enhanced loop statement?
 b. Is it possible to rewrite it so that the if statement is the last statement inside the

block statement.
 c. Is it possible to rewrite it so that alternate lines have 7 and 11 items each.

CRC_C6547_CH009.indd 590CRC_C6547_CH009.indd 590 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

Simple Data Structures ■ 591

 4. Write method headings as specifi ed:
 a. Method name: trial; two formal parameters: one-dimensional array of type

double, int; return type: one-dimensional array of type String
 b. Method name: tester; two formal parameters: two-dimensional array of type

double, one-dimensional array of type char; return type: two-dimensional
array of type double

 c. Method name: testing; three formal parameters: one-dimensional array of
type int, two-dimensional array of type double, two-dimensional array of
type String; return type: void

 d. Method name: test; three formal parameters: two-dimensional array of type
int, two-dimensional array of type int, one-dimensional array of type dou-
ble; return type: one-dimensional array of type char

 5. Write Java statements to invoke each of the methods in Exercise 4 if the methods are
all static and belong to a class GeneralUtil. Show the necessary declarations
and instantiations. However, you need not initialize any array.

 6. Repeat Exercise 5. Assume that methods are members of a class SpecialUtil and
they are not static.

 7. Consider the following declarations:

double[][] cost = new double[4][3];

int i, k, j;

What are the values stored in the array cost if each one of these segments are exe-
cuted immediately aft er the above shown statements. If there is any error in the state-
ment, indicate it.

a. for (j = 0; j < cost.length; j = j + 2)
 for (k = 0; k < cost[0].length; k = k + 3)

 cost[j][k] = k * 10 + j;

b. for (j = 0; j < cost.length; j = (j + 2) % cost.length)
 for (k = 0; k < cost[0].length;

 k = (k + 3) % cost[0].length, i++)

 cost[j][k] = i;

c. for (k = 0;k < cost[2].length; k++)
 for (j = 1; j < k; j++)

 cost[j][k] = k/j;

d. for (k = 0;k < cost[2].length; k++)
 for (j = cost.length; j > k; j++)

 cost[j][k] = k + j;

CRC_C6547_CH009.indd 591CRC_C6547_CH009.indd 591 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

592 ■ Java Programming Fundamentals

 8. Explain each of the methods in the class Course, part of Mr. Grace’s grade sheet
program presented in Case Study 9.2.

 9. Assume that the loadData method in the class Course, part of Mr. Grace’s grade
sheet program, is replaced with the following method:

public void loadData(Scanner sc)

{

 Student st;

 int i = 0;

 courseNumber = sc.nextLine();

 courseTitle = sc.nextLine();

 term = sc.nextLine();

 st = new Student();

 while (sc.hasNext())

 {

 st.setStudentInfo(sc);

 StudentList[i] = st;

 i++;

 }

 numberOfStudents = i;

}

 a. Is there a compilation error? Justify your answer.
 b. Is there a logical error? Justify your answer.
 10. Assume that the loadData method in the class Course, part of Mr. Grace’s grade

sheet program, is replaced with the following method:

public void loadData(Scanner sc)

{

 int i = 0;

 courseNumber = sc.nextLine();

 courseTitle = sc.nextLine();

 term = sc.nextLine();

 while (sc.hasNext())

 {

 StudentList[i] = new Student();

 StudentList[i].setStudentInfo(sc);

 i++;

 }

 numberOfStudents = i;

}

CRC_C6547_CH009.indd 592CRC_C6547_CH009.indd 592 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

Simple Data Structures ■ 593

 a. Is there a compilation error? Justify your answer.
 b. Is there a logical error? Justify your answer.
 11. Consider the following segment of code:

public class HiThere

{

 public static void main (String[] args)

 {

 int[] test = new int[10];

 for (int k : test)

 {

 k = 10;

 }

 for (int k : test)

 {

 System.out.println("\t" + k);

 }

 }

}

 a. Is there a compilation error? Justify your answer and correct it.
 b. Is there a logical error? Justify your answer and correct it.
 12. What is wrong with the approach mentioned in Advanced Topic 9.1 to address

 Common Programming Error 9.1. How is it diff erent from the loadData method
of Mr. Grace’s grade sheet program?

PROGRAMMING EXERCISES
 1. Given an array of double values, create another array of cumulative sums. For exam-

ple, if 5.0, 6.5, 7.3, and 10.2 are the values, then their cumulative sums are 5.0, 11.5,
18.8, and 29.0.

 2. One of the oldest approach to break a code is to perform a frequency count of letters.
Write a program to perform a frequency count by reading the text from a fi le. Your
program should output how many A’s are there in the text, how many B’s are there,
and so on. Note that the program will not make any distinction between uppercase
and lowercase letters.

 3. Consider an int array first with possibly repeated values. Create a new array
second that has each number in the first appear exactly once in their order of
appearance. For example, if values in first are 10, 20, 6, 7, 10, 8, 5, 6, 4, 7, 1, then the
second has 10, 20, 6, 7, 8, 5, 4, 1.

 4. Consider an int array first with possibly repeated values. Write a program to
perform the frequency count.

CRC_C6547_CH009.indd 593CRC_C6547_CH009.indd 593 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

594 ■ Java Programming Fundamentals

 5. Based on the remainder obtained upon division by k, the integers in an array can be
grouped into k disjoint sets. Write a program to print all groups.

 6. Consider Example 9.21. Introduce a new class, EmployeeList, which has an attri-
bute that is either an array or Vector or ArrayList of Employees. Th en use that
class to create the application program that implements the new policy of giving an
extra $500.00 for the employee with maximum sales.

 7. Redesign the classes of Example 9.16 so that you can eliminate the need for returning
an array in methods.

 8. Use ArrayList in place of arrays in both Student and Course classes of Mr.
Grace’s grade sheet.

 9. A two-dimensional array with equal number of rows and columns fi lled with distinct
integers is a magic square if the sum of the elements in each row, in each column,
and in the two diagonals have the same value. Write a program to test whether or
not a two-dimensional array is a magic square. Assume that user is supposed to enter
numbers row by row. Th e program must do the following:

 a. Prompt user for enough number of integers
 b. Verify that the integers are distinct
 c. Test whether or not it is a magic square
 10. A two-dimensional array with n rows and n columns fi lled with integers is a Latin

square if each row and each column has all the numbers from 1 to n. A Latin square
has a transversal, if all the elements in the diagonal are also distinct. Write a program
to verify whether or not a square two-dimensional array is a Latin square. Assume
that user is supposed to enter numbers column by column. Th e program must do the
following:

 a. Prompt user for enough number of integers
 b. Test whether or not it is a Latin square
 c. If it is a Latin square, then test whether or not it has a diagonal
 11. Write a program to verify whether or not a 9 by 9 grid is a sudoku. (Hint: In a sudoku

grid, every row has all the numbers from 1 to 9, every column has all the numbers
from 1 to 9, and every block has all the numbers from 1 to 9. Blocks are nonoverlap-
ping 3 by 3 subarrays and there are nine blocks in a sudoku grid.

 12. Modify Mr. Grace’s grade sheet program so that the class average is computed for all
the tests and printed as part of the grade sheet.

 13. Create a class PainterEstimater to help painters determine the total surface
area. Th e total surface is divided into various geometric shapes. Th us, PainterEs-
timater has an array of GeometricFigure objects. See Programming Exercise
14 of Chapter 7 for details on GeometricFigure.

 14. Implement the following simple clustering algorithm. As a new point is entered by
the user, check whether or not it lies within any cluster. If so, mark it with the cluster

CRC_C6547_CH009.indd 594CRC_C6547_CH009.indd 594 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

Simple Data Structures ■ 595

number. If it does not fall in any existing cluster, start a new cluster with the new
point as center and radius, r, that is specifi ed by the user and is the same for all
clusters.

 15. Implement a slightly more sophisticated clustering algorithm. Implement all the steps
in Programming Exercise 14 to determine the centers and number of clusters. Once all
the cluster centers are determined, all the points are processed once more to determine
the cluster they belong to. A point belongs to a cluster whose center is the closest.

ANSWERS TO SELF-CHECK
 1. contiguous fi xed-length, same type
 2. array name, index
 3. 0
 4. integer expression
 5. double[] points;
 6. Student[] classList;
 7. points = new double[25];
 8. default
 9. points[2] = 23.5;
 10. points[8] = 5 * points[6];
 11. points.length
 12. points.length – 1;
 13. for (int i = 0; i < points.length; i++)

 points[i] = 50.67;

 14. False
 15. for (int i = 0; i < points.length; i++)

 points[i] = 8.0 + i*5.;

 16. for (int i = 0; i < points.length; i++)
 points[i] = ScannedInfo.parseDouble();

 17. int final ITEMS _ PER _ LINE = 8;
 for (int i = 0; i < points.length; i++)

 {

 if (i % ITEMS_PER_LINE == 0 && i > 0)

 System.out.println();

 System.out.print(points[i]+ " ");

 }

CRC_C6547_CH009.indd 595CRC_C6547_CH009.indd 595 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

596 ■ Java Programming Fundamentals

 18. int sum = 0;
 for (int i = 0; i < points.length; i++)

 sum = sum + points[i];

 if (points.length > 0)

 average = sum / points.length;

 else

 average = 0.0;

 19. int maxIndex = 0;
 for (int i = 1; i < points.length; i++)

 if (points[maxIndex] < points[i])

 maxIndex = i;

 largestValue = points[maxIndex];

 20. double[][] = variance;
 21. variance = new double [7][12];
 22. variance[4][6] = 134.53;
 23. grow, shrink
 24. True
 25. Integer, Character
 26. add, set

CRC_C6547_CH009.indd 596CRC_C6547_CH009.indd 596 10/3/2008 1:03:34 PM10/3/2008 1:03:34 PM

Apago PDF Enhancer

597

C H A P T E R 1 0

Search and Sort

In this chapter you learn

Fundamental concepts
Worst-case, average-case, and best-case time complexity; space complexity

Programming skills
Adopt and use search algorithms such as linear search and binary search
Adopt and use sort algorithms such as selection sort, insertion sort, and bubble sort
Empirical method of measuring the performance of an algorithm and compare it
with known time complexity measures

Searching and sorting are the two most common tasks in data processing. Can you imag-
ine a telephone directory without names listed in sorted order? Sorting is also quite useful
for ordinary folks such as Ms. Smart and Mr. Grace. If Ms. Smart needs to identify all sales
personnel in the top 10 percentile, then she needs to sort the list of sales personnel based
on their sales. Similarly, if Mr. Grace needs to identify all students in the class in the bot-
tom 25 percentile, then he needs to sort the list of students based on their cumulative test
scores. A sorting algorithm permutes or rearranges the elements of a collection either in an
ascending or a descending order. Many sorting algorithms are known. In this chapter, you
will be introduced to three diff erent sorting algorithms: selection sort, insertion sort, and
bubble sort. Once you have a sorted list, searching for an item becomes quite effi cient. Th is
chapter presents three search algorithms: linear search on an unsorted array, linear search
on a sorted array, and binary search on a sorted array. All these algorithms are illustrated
using int array for simplicity. However, once you master the algorithm, it is quite easy to
adapt to another situation. In Case Study 10.1, Mr. Grace’s grade sheet demonstrates how
easy it is to adopt a sort algorithm to use in the case of array of objects.

Java has a class java.util.Arrays that contains many utility methods. However,
we need certain utility methods that are not in java.util.Arrays. Th erefore, we begin
this chapter with a utility class of our own. To use this class, all that is required is to keep

•
•

•
•
•
•

CRC_C6547_CH010.indd 597CRC_C6547_CH010.indd 597 10/1/2008 6:09:53 PM10/1/2008 6:09:53 PM

Apago PDF Enhancer

598 ■ Java Programming Fundamentals

this class in the same folder that has your application program. Another option is to cre-
ate a package and use it as explained in Chapter 6. Th ere are four diff erent utility meth-
ods. Th ree of them are overloaded methods createAndSet. Th ese three methods let
the user specify the size of the array and initialize it. Th e fi rst createAndSet can be
used to get data from the user. Th e second createAndSet initializes the array using
a random number generator. Th e third createAndSet initializes the array using an
arithmetic progression specifi ed by the user. Th e only other method in our utility class is
 printArray. Th e printArray method lets the user specify the number of items per
line and is the only output utility of the class.

import java.util.Random;

import java.util.Scanner;

/**

 This class contains many utility methods

 for array initialization and printing

*/

public class ArrayUtility

{

 private static Random randomGenerator

 = new Random();

 /**

 Creates an int array and initializes with

 user input

 @param length the length of the array

 @param sc reference of the input Scanner

 @return reference of the int array of

 size length initialized with user input

 */

 public static int[] createAndSet(int length, Scanner sc)

 {

 int[] oneDim = new int[length];

 for (int i = 0; i < length; i++)

 {

 oneDim[i] = sc.nextInt();

 }

 return oneDim;

 }

 /**

 Creates an int array and initializes with

 random input

 @param length the length of the array

CRC_C6547_CH010.indd 598CRC_C6547_CH010.indd 598 10/1/2008 6:09:55 PM10/1/2008 6:09:55 PM

Apago PDF Enhancer

Search and Sort ■ 599

 @param limit is the largest random number

 @return reference of the int array of

 size length initialized with user input

 */

 public static int[] createAndSet(int length, int limit)

 {

 int[] oneDim = new int[length];

 for (int i = 0; i < length; i++)

 {

 oneDim[i] = randomGenerator.nextInt(limit);

 }

 return oneDim;

 }

 /**

 Creates an int array and initializes with

 user specified arithmetic progression

 @param length the length of the array

 @param first value for index 0

 @param inc the difference between any two

 adjacent index locations

 @return reference of the int array of

 size length initialized with user input

 */

 public static int[] createAndSet(int length, int first, int

 inc)

 {

 int[] oneDim = new int[length];

 for (int i = 0; i < length; i++)

 {

 oneDim[i] = first + inc * i;

 }

 return oneDim;

 }

 /**

 output the array

 @param arr array to be printed

 @param itemsPerLine number of integers per line

 */

 public static void printArray(int[] arr, int itemsPerLine)

 {

 if (itemsPerLine <= 0)

 itemsPerLine = 10;

CRC_C6547_CH010.indd 599CRC_C6547_CH010.indd 599 10/1/2008 6:09:55 PM10/1/2008 6:09:55 PM

Apago PDF Enhancer

600 ■ Java Programming Fundamentals

 for (int i = 0; i < arr.length; i++)

 {

 if (i % itemsPerLine == 0 && i > 0)

 System.out.println();

 System.out.print(arr[i]+ "\t");

 }

 System.out.println();

 }

}

SEARCH ALGORITHMS
Linear search algorithms can be written for a sorted and an unsorted array. In the case
of an unsorted array, you need to compare every item in the array to determine whether
or not a specifi ed item is in the array. In the case of an ascending order sorted array, once
an item that is greater than the one you are searching for is encountered, there is no need
to search any further. In the case of sorted array, there is a better algorithm called binary
search. In this chapter, linear search for unsorted array, linear search for sorted array, and
binary search for sorted array are presented.

We shall use the term search item to denote the item we are searching for. If the search
item is found, the method will return the index location, and if the search item is not
found, the method will return -1.

Self-Check

 1. is a better algorithm than .
 2. To use the array must be in sorted order.

Linear Search

Linear search algorithm is probably the simplest of all search algorithms. Given a search
item, the algorithm systematically checks the elements of the array for equality. Before
presenting the program, let us consider some examples.

Example 10.1

In this example, we illustrate the behavior of the linear search algorithm using an
unsorted array L with 8 elements as shown below:

7 10 8 21 35 17 26 3

0 654321 7

Let the search item be 22. Since 22 is not in the array, algorithm returns -1.
However, if search item is 35, the algorithm returns 4.

CRC_C6547_CH010.indd 600CRC_C6547_CH010.indd 600 10/1/2008 6:09:55 PM10/1/2008 6:09:55 PM

Apago PDF Enhancer

Search and Sort ■ 601

If the search item is in the array, then once it is found there is no need to search
any more. However, if the search item is not in the array, then you need to compare
every item of the array with the search item to conclude that search item is not in
the array. Th us, if the search item is in the array, on average, you need to search only
half the array and if the search item is not in the array, then you need to search the
entire array.

Example 10.2

Th is example illustrates the linear search algorithm using the array L of Example 10.1
and search item 22. Assume that searchItem is a parameter variable of the
method and thus searchItem is 22.

Let the index value be 0. Now L[0] is 7 and thus (L[0] == searchItem)
is false. Increment the index by 1. Note that L[1] is 10 and thus (L[1] ==
searchItem) is false. Note that (L[i] == searchItem) is false for
i = 2, 3, ..., 7. Since you have compared all items and the searchItem is not
found, the method returns -1 (Table 10.1).

Example 10.3

Th is example illustrates the linear search algorithm using the array L of Example 10.1
and search item 35. As in Example 10.2, assume that searchItem is a parameter
variable of the method and thus searchItem is 35.

Observe that (L[i] == searchItem) is false for i = 0, 1, 2, 3 and (L[4] ==
 searchItem) is true. Th erefore, the method stops comparing elements of the
array and returns 4 (Table 10.2). Th e program and the test run are as follows:

import java.util.Scanner;

/**

 Linear search algorithm

TABLE 10.1 Linear Search: Search Item not
Found

searchItem is 22

i L[i] L[i] == searchItem

0 7 7 == 22 is false
1 10 10 == 22 is false
2 8 8 == 22 is false
3 21 21 == 22 is false
4 35 35 == 22 is false
5 17 17 == 22 is false
6 26 26 == 22 is false
7 3 3 == 22 is false

searchItem not found. return -1;

TABLE 10.2 Linear Search: Search Item
Found

searchItem is 35

i L[i] L[i] == searchItem

0 7 7 == 35 is false
1 10 10 == 35 is false
2 8 8 == 35 is false
3 21 21 == 35 is false
4 35 35 == 35 is true

searchItem found. return 4;

CRC_C6547_CH010.indd 601CRC_C6547_CH010.indd 601 10/1/2008 6:09:55 PM10/1/2008 6:09:55 PM

Apago PDF Enhancer

602 ■ Java Programming Fundamentals

*/

public class LinearSearch

{

 private int[] intData;

 /**

 Constructor

 @param inOutArray the array of integers

 */

 public LinearSearch(int[] inOutArray)

 {

 intData = inOutArray;

 }

 /**

 Searches the attribute inData for search item

 @param searchItem the search item

 @return index of search item if found and

 -1 if search item is not in the array

 */

 public int linearSearch(int searchItem)

 {

 for (int i = 0; i < intData.length; i++)

 {

 if (intData[i] == searchItem)

 return i;

 }

 return -1;

 }

}

import java.util.Scanner;

/**

 This is a test program for LinearSearch class

*/

public class LinearSearchApplication

{

 public static void main(String[] args)

 {

 int arraySize = 0;

 int numItems = 0;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter the number of integers : ");

CRC_C6547_CH010.indd 602CRC_C6547_CH010.indd 602 10/1/2008 6:09:55 PM10/1/2008 6:09:55 PM

Apago PDF Enhancer

Search and Sort ■ 603

 arraySize = scannedInfo.nextInt();

 System.out.println

("Enter "+ arraySize +" integers\n");

 int[] testArray

 = ArrayUtility.createAndSet

 (arraySize, scannedInfo);

 System.out.println();

 System.out.print("Enter number of items per line : ");

 numItems = scannedInfo.nextInt();

 ArrayUtility.printArray(testArray, numItems);

 System.out.println();

 LinearSearch searchObject = new

 LinearSearch(testArray);

 for (int i = 0; i < 4; i++)

 {

 System.out.print("Enter the item to be searched");

 int item = scannedInfo.nextInt();

 int index = searchObject.linearSearch(item);

 if (index == –1)

 System.out.println

 ("The item "+ item +" not found");

 else

 System.out.println

 ("The item "+ item +" found at "+ index);

 }

 }

}

Output

Enter the number of integers: 20

Enter 20 integers

23 17 38 67 45 52 11 8 5 79
59 42 33 29 81 90 66 15 88 49

Enter number of items per line: 8

23 17 38 67 45 52 11 8
5 79 59 42 33 29 81 90
66 15 88 49

Enter the item to be searched 10
The item 10 not found
Enter the item to be searched 11

CRC_C6547_CH010.indd 603CRC_C6547_CH010.indd 603 10/1/2008 6:09:55 PM10/1/2008 6:09:55 PM

Apago PDF Enhancer

604 ■ Java Programming Fundamentals

The item 11 found at 6
Enter the item to be searched 1
The item 1 not found
Enter the item to be searched 91
The item 91 not found

As you have seen in Example 10.2, in the case of an unsorted array, if the search
item is not in the array, the entire array needs to be searched. Th is can be remedied,
if the array is sorted. For example, if the array is sorted and the items are in ascend-
ing order, then once an item larger than the search item is encountered there is no
need to search anymore.

Example 10.4

Consider the sorted array L. Let the search item be 22. Assume that searchItem
is a parameter variable of the method and thus searchItem is 22.

7 10 18 21 35 45 48 50

0 2 3 4 6 71 5

Let the index value be 0. Now L[0] is 7 and thus both (L[i] == searchItem)
and (L[i] > searchItem) are false. Increment the index by 1. Note that L[1]
is 10 and thus (L[i] == searchItem) and (L[i] > searchItem) are false.
Both (L[i] == searchItem) and (L[i] > searchItem) are false for i = 2
and i = 3 as well. Since 35 is greater than the search item, the searchItem is not
in the array. Th e boolean expression (L[i] > searchItem) is true and search
ends by returning –1 (Table 10.3).

Example 10.5

Consider the sorted array L of Example 10.4. Let the search item be 21.
Note that both (L[i] == searchItem) and (L[i] > searchItem) are false

for i = 0, 1, 2. For i = 3, (L[i] == searchItem) is true. Th erefore, the method
returns 3 (Table 10.4).

TABLE 10.3 Sorted Array: Search Item Not Found

searchItem is 22

i L[i] L[i] == searchItem L[i] > searchItem

0 7 7 == 22 is false 7 > 22 is false
1 10 10 == 22 is false 10 > 22 is false
2 18 18 == 22 is false 18 > 22 is false
3 21 21 == 22 is false 21 > 22 is false
4 35 35 == 22 is false 35 > 22 is true

searchItem not found. return -1;

CRC_C6547_CH010.indd 604CRC_C6547_CH010.indd 604 10/1/2008 6:09:56 PM10/1/2008 6:09:56 PM

Apago PDF Enhancer

Search and Sort ■ 605

Th e linearSearch method for an array sorted in ascending order can be
 written as follows:

public int linearSearch(int searchItem)

{

 for (int i = 0; i < intData.length; i++)

 {

 if (intData[i] == searchItem)

 return i;

 if (intData[i] > searchItem)

 return -1;

 }

 return -1;

}

Self-Check

 3. What is the minimum change you will have to make so that the linearSearch
method for an array sorted in ascending order will become a linearSearch
method for an array sorted in descending order?

 4. Is the order of if statements appearing in the linearSearch method for an
array sorted in ascending order important?

Binary Search

Th e binary search is the most effi cient search algorithm on a sorted array. Th e array can be
ordered in either an ascending or a descending manner. For the sake of discussion, assume
that the array is sorted in an ascending order.

Most of you may be familiar with the following guessing game, quite oft en seen in
popular game shows. Th ere are two players. Player 1 picks a number between 1 and 1000
and keeps it as a secret. Player 2 has to guess the secret number correctly with minimum
number of false guesses. Every time player 2 makes a guess, player 1 will say “higher” if
the secret number is higher than what player 2 has guessed, “lower” if the secret number
is lower than what player 2 has guessed, and “correct” if the secret number is the same as
what player 2 has guessed. Th e best strategy in this situation is to guess the “middle value.”

TABLE 10.4 Sorted Array: Search Item Found

searchItem is 21

i L[i] L[i] == searchItem L[i] > searchItem

0 7 7 == 21 is false 7 > 21 is false
1 10 10 == 21 is false 10 > 21 is false
2 18 18 == 21 is false 18 > 21 is false
3 21 21 == 21 is true 21 > 21 is false

searchItem found. return 3;

CRC_C6547_CH010.indd 605CRC_C6547_CH010.indd 605 10/1/2008 6:09:56 PM10/1/2008 6:09:56 PM

Apago PDF Enhancer

606 ■ Java Programming Fundamentals

Let us play the game once. Assume that player 1 has picked the number 678. Table 10.5
summarizes the game they played.

Notice that as the game starts, the secret number can be any number between 1 and 1000.
Th e set of possible values is known as the search space. Th us, we begin with the search space
[1, 1000]. Player 2 picked the middle value 500 as the fi rst guess. Player 1 responded by “higher.”
Player 2 reasoned that the secret number has to be between 501 and 1000. Th erefore, player
2 changed the lower limit from 1 to 501. Th us, the search space became [501, 1000]. Observe
that the current search space is half (or less than half) of the previous search space. Player 2
guessed 750 and player 1 responded by “lower.” Player 2 concluded that the number has to
be between 501 and 749. Th us, the search space became [501, 749]. Once again, the current
search space is half of the previous search space. Th e game went on like this, each time cut-
ting down the search space into half. Finally, the search space became 1 and at that point, the
guess matches the secret number. Let us summarize our observations as follows:

Each time player 1 responded “higher,” player 2 changed the lower limit of the search
space to guess + 1.
Each time player 1 responded “lower,” player 2 changed the upper limit of the search
space to guess − 1.
Th e size of the search space becomes half with each guess.
Th e search space ultimately becomes 1.

Th e binary search works quite similar to the above game.

Example 10.6

Consider the following sorted array:

7 10 18 21 35 45 48 50

0 2 3 4 6 71 5

Let the search item be 45. Note that lower index is 0 and upper index is 7. Th us,
the middle index is (0 + 7)/2 = 3.

•

•

•
•

TABLE 10.5 Th e Guessing Game

Guess by Player 2 Reason for the Guess Response by Player 1

500 500 is (1 + 1000)/2 Higher
750 750 is (501 + 1000)/2 Lower
625 625 is (501 + 749)/2 Higher
687 687 is (626 + 749)/2 Lower
656 656 is (626 + 686)/2 Higher
671 671 is (657 + 686)/2 Higher
679 679 is (672 + 686)/2 Lower
675 675 is (672 + 678)/2 Higher
677 677 is (676 + 678)/2 Higher
678 678 is (678 + 678)/2 Correct

CRC_C6547_CH010.indd 606CRC_C6547_CH010.indd 606 10/1/2008 6:09:56 PM10/1/2008 6:09:56 PM

Apago PDF Enhancer

Search and Sort ■ 607

7 10 18 21 35 45 48 50

0 2 3 4 5 6

Lower index Upper indexMiddle
index

1 7

Note that the search item 45 is higher than the item at the middle index, namely
21. Th erefore, the lower index is changed to middle index +1. Th us, lower index
becomes 4. Similar steps are repeated until either the search item is found or the
search space becomes zero.

Begin the next “iteration” by computing the middle index as (4 + 7)/2 = 5.

7 10 18 21 35 45 48 50

0 2 3 4 5

Lower index Upper indexMiddle
index

6 71

Observe that the search item and the item at middle index are the same. Th ere-
fore, the algorithm stops by returning the middle index, 5.

Table 10.6 summarizes our above discussion. For convenience, we use lower,
upper, and middle to indicate lower, upper, and middle index values. We also use
L as the array name.

Example 10.7

Consider the sorted array of Example 10.6. Let the search item be 56. Th e lower
index is 0 and upper index is 7. Th us, the middle index is (0 + 7)/2 = 3.

7 10 18 21 35 45 48 50

0 2 3 4 5

Lower index Upper index

Middle index

6 71

TABLE 10.6 Binary Search: Search Item Found

searchItem is 45

lower upper middle L[middle] Comparison Action

0 7 (0+7)/2 = 3 21 Higher lower = middle+1;
4 7 (4+7)/2 = 5 45 Equal return middle;

return 5;

CRC_C6547_CH010.indd 607CRC_C6547_CH010.indd 607 10/1/2008 6:09:56 PM10/1/2008 6:09:56 PM

Apago PDF Enhancer

608 ■ Java Programming Fundamentals

Th e search item 56 is higher than the item at middle index. Th e lower index
is changed to middle index +1. Th us, lower index becomes 4. Th erefore, now the
middle index is (4 + 7)/2 = 5.

7 10 18 21 35 45 48 50

2 3 4 5

Lower index Upper index

Middle
index

6 70 1

Once again, the search item is larger than the item at middle index. Th us, the
lower index is again changed to middle index +1. Th erefore, now the lower index is
6 and the middle index is (6 + 7)/2 = 6.

7 10 18 21 35 45 48 50

0 2 3 4 5

Lower index Upper index

Middle
index

6 71

Th e search item is larger than the item at middle index. Th e lower index is changed
to middle index +1. Th erefore, the lower index is 7 and the middle index is (7 + 7)/
2 = 7. Observe that search item is larger than the item at middle index. Th erefore,
lower index becomes middle index +1. Th at is, lower index is 8. Since lower index is
larger than the upper index, the search space is zero. Th erefore, the algorithm ends
with the conclusion that search item is not in the array (Table 10.7).

Example 10.8

Consider the sorted array of Example 10.6. Let the search item be 15. Th e lower
index is 0 and the upper index is 7. Th us, the middle index is (0 + 7)/2 = 3.

TABLE 10.7 Binary Search: Search Item Larger than All Values

searchItem is 56

lower upper middle L[middle] Comparison Action

0 7 (0+7)/2 = 3 21 Higher lower = middle + 1;
4 7 (4+7)/2 = 5 45 Higher lower = middle + 1;
6 7 (6+7)/2 = 6 48 Higher lower = middle + 1;
7 7 (7+7)/2 = 7 50 Higher lower = middle + 1;
8 7 lower > upper and hence search space is 0. return -1;

return -1;

CRC_C6547_CH010.indd 608CRC_C6547_CH010.indd 608 10/1/2008 6:09:56 PM10/1/2008 6:09:56 PM

Apago PDF Enhancer

Search and Sort ■ 609

7 10 18 21 35 45 48 50

0 2 3 4 5 6

Lower index Upper indexMiddle
index

1 7

Th e search item 15 is lower than the item at middle index. Th e upper index
is changed to middle index – 1. Th us, new upper index is 2. Th e middle index is
(0 + 2)/2 = 1.

7 10 18 21 35 45 48 50

0 2 3 4 5 6

Lower index Upper index

Middle
index

1 7

Th e search item 15 is larger than 10, the item at middle index. Th us, the lower
index is changed to middle index + 1. Th e lower index becomes 2 and the middle
index becomes (2 + 2)/2 = 2. Note that search item is smaller than the item at
middle index. Th erefore, upper index becomes middle index – 1. Th e upper index is
1 and it is smaller than the lower index. Th erefore, the search space is zero and the
algorithm ends with the conclusion that search item is not in the array (Table 10.8).

Th e binary search program and the sample output are as follows:

import java.util.Scanner;

/**

 Binary search algorithm

*/

public class BinarySearch

{

 private int[] intData;

 /**

 Constructor

 @param inOutArray the array of integers

TABLE 10.8 Binary Search: Search Item Not Found

searchItem is 15

lower upper middle L[middle] Comparison Action

0 7 (0+7)/2 = 3 21 Lower upper = middle-1;
0 2 (0+2)/2 = 1 10 Higher lower = middle+1;
2 2 (2+2)/2 = 2 18 Lower upper = middle-1;
2 1 lower > upper and hence search space is 0. return -1;

return -1;

CRC_C6547_CH010.indd 609CRC_C6547_CH010.indd 609 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

610 ■ Java Programming Fundamentals

 */

 public BinarySearch(int[] inOutArray)

 {

 intData = inOutArray;

 }

 /**

 Searches sorted attribute inData for search item

 @param searchItem the search item

 @return index of search item if found and

 -1 if search item is not in the array

 */

 public int binarySearch(int searchItem)

 {

 int lower = 0;

 int upper = intData.length - 1;

 int middle = 0;

 while (lower <= upper)

 {

 middle = (lower + upper)/2;

 if (intData[middle] == searchItem)

 return middle;

 else if (intData[middle] < searchItem)

 lower = middle + 1;

 else

 upper = middle - 1;

 }

 return -1;

 }

}

import java.util.Scanner;

/**

 This is a test program for BinarySearch class

*/

public class BinarySearchApplication

{

 public static void main(String[] args)

 {

 int arraySize = 0;

 int numItems = 0;

 int start = 0;

CRC_C6547_CH010.indd 610CRC_C6547_CH010.indd 610 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

Search and Sort ■ 611

 int inc = 0;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter the number of integers :");

 arraySize = scannedInfo.nextInt();

 System.out.print("\nEnter the first value of AP :");

 start = scannedInfo.nextInt();

 System.out.print("\nEnter the increment value of AP :");

 inc = scannedInfo.nextInt();

 int[] testArray

 = ArrayUtility.createAndSet(arraySize, start,inc);

 System.out.println();

 System.out.print("Enter number of items per line :");

 numItems = scannedInfo.nextInt();

 ArrayUtility.printArray(testArray, numItems);

 System.out.println();

 BinarySearch searchObject = new BinarySearch(testArray);

 for (int i = 0; i < 4; i++)

 {

 System.out.print("Enter the item to be searched ");

 int item = scannedInfo.nextInt();

 int index = searchObject.binarySearch(item);

 if (index == -1)

 System.out.println

 ("The item "+ item +" not found");

 else

 System.out.println

 ("The item "+ item +" found at "+ index);

 }

 }

}

Output

Enter the number of integers : 32
Enter the first value of AP : 8
Enter the increment value of AP : 7
Enter number of items per line : 6

8 15 22 29 36 43
50 57 64 71 78 85
92 99 106 113 120 127
134 141 148 155 162 169
176 183 190 197 204 211
218 225

CRC_C6547_CH010.indd 611CRC_C6547_CH010.indd 611 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

612 ■ Java Programming Fundamentals

Enter the item to be searched 226
The item 226 not found
Enter the item to be searched 7
The item 7 not found
Enter the item to be searched 107
The item 107 not found
Enter the item to be searched 113

The item 113 found at 15

Self-Check

 5. True or false: Binary search algorithm reduces the search space to approxi-
mately half aft er each comparison.

 6. True or false: Linear search algorithm reduces the search space to approximately
one-third aft er each comparison.

EFFICIENCY OF ALGORITHMS
Th ere are two ways to measure the performance of an algorithm. First, and probably the
most obvious way, is to write a program and run it using various test data and mea-
sure the time it takes to fi nish the computation. Th is we call the empirical approach. Th e
second approach is mathematical in nature and in fact involves no programming at all.
Th is we call the analysis approach. Th e aim of this section is to introduce both of these
approaches.

Empirical Approach

Th eoretically, one could run a program and measure the time it took using a stopwatch.
However, this approach has two major fl aws when it comes to computers. First, ordinary
stopwatch is of no use because many small programs take only milliseconds to complete.
Second, to execute the algorithm, fi rst data has to be either read from a fi le or obtained
interactively from the user. Similarly, the output needs to be displayed in the monitor or
written in a fi le. All these activities take time and have no relevance to the performance of
the algorithm we may be interested in. Th erefore, we need a soft ware stopwatch that can be
started just before the start of the code that implements the algorithm and stops as soon as
the last statement of the code is being executed.

We would like to measure the algorithm by computing the average time it took over many
trials. Th erefore, the StopWatch must have the capability to keep track of multiple start–
stop sequences. Th us, we need an attribute totalElapsedTime to keep track of cumu-
lative elapsed time between multiple start–stop sequences and another attribute count to
keep track of the number of start–stop sequences. To compute the time elapsed between
a start and a stop sequence, an attribute startTime is required. Th e StopWatch must

CRC_C6547_CH010.indd 612CRC_C6547_CH010.indd 612 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

Search and Sort ■ 613

have the following operations: clear, start, stop, and getAverageTime. Based on
this analysis, we have the following class:

import java.util.Scanner;

/**

 StopWatch with multiple start-stop sequence

*/

public class StopWatch

{

 private long totalElapsedTime;

 private long startTime;

 private int count;

 /**

 Constructs a StopWatch with all

 attributes set to 0

 */

 public StopWatch()

 {

 clear();

 }

 /**

 Clears all attributes

 */

 public void clear()

 {

 totalElapsedTime = 0;

 startTime = 0;

 count = 0;

 }

 /**

 Starts the StopWatch

 */

 public void start()

 {

 startTime = System.nanoTime();

 }

 /**

 Stops the StopWatch

 */

CRC_C6547_CH010.indd 613CRC_C6547_CH010.indd 613 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

614 ■ Java Programming Fundamentals

 public void stop()

 {

 totalElapsedTime = totalElapsedTime +

 System.nanoTime() - startTime;

 count++;

 }

 /**

 Returns the average time elapsed

 */

 public long getAverageTime()

 {

 return totalElapsedTime / count;

 }

 /**

 Returns the total time elapsed

 */

 public long getTotalTime()

 {

 return totalElapsedTime;

 }

}

Th e following program uses the StopWatch class to measure the performance of linear
search algorithm on a sorted array:

import java.util.Random;

import java.util.Scanner;

/**

 This a test program for LinearSearchSorted class

*/

public class LinearSearchSortedTiming

{

 private static Random randomGenerator = new Random();

 public static void main(String[] args)

 {

 int arraySize = 0;

 int trials = 0;

 int maxValue = 0;

 int item = 0;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter the number of integers :");

CRC_C6547_CH010.indd 614CRC_C6547_CH010.indd 614 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

Search and Sort ■ 615

 arraySize = scannedInfo.nextInt();

 System.out.print("Enter the number of trials :");

 trials = scannedInfo.nextInt();

 int[] testArray

 = ArrayUtility.createAndSet(arraySize,7, 5);

 LinearSearchSorted searchObject

 = new LinearSearchSorted(testArray);

 StopWatch timeKeeper = new StopWatch();

 maxValue = 7 + arraySize * 5;

 for (int i = 0; i < trials; i++)

 {

 item = randomGenerator.nextInt(maxValue);

 timeKeeper.start();

 searchObject.linearSearch(item);

 timeKeeper.stop();

 }

 long algorithmTime = timeKeeper.getTotalTime();

 System.out.println("Total Elapsed time for array of size "

 + arraySize +" is :" + algorithmTime);

 }

}

Since each search takes very few milliseconds, we fi nd the total time for arrays of sizes
1, 2, 3, 4, and 5 million. In all these cases, the number of searches is kept constant at
10,000. A similar study is conducted for binary search algorithm. Th e results on a Pen-
tium 4, 1.70 GHz machine running under Windows XP operating system are summarized
in Table 10.9 (see also Figure 10.1).

From Table 10.9, you can make the following observations:

 1. Linear search takes quite a long time compared to binary search.
 2. In the case of linear search, as the size of the array doubled, the time it took to search

for 10,000 items approximately doubled. Similarly, as the array size tripled, the time

TABLE 10.9 Empirical Comparison of Linear and Binary Search

Array Length Number of Searches

Time in Milliseconds

Linear Search Binary Search

1 million 10,000 27,956 42
2 million 10,000 55,061 44
3 million 10,000 82,596 45
4 million 10,000 110,821 46
5 million 10,000 137,600 47

CRC_C6547_CH010.indd 615CRC_C6547_CH010.indd 615 10/1/2008 6:09:57 PM10/1/2008 6:09:57 PM

Apago PDF Enhancer

616 ■ Java Programming Fundamentals

it took to search for 10,000 items approximately tripled and so on. Th e time it takes
to fi nd 10,000 items seems to be directly proportional to the size of the array. In other
words, there seems to be a linear relationship between the size of the array and the
time it takes to fi nd 10,000 items.

 3. In the case of binary search, as the size of the array doubled, the time it took to search
for 10,000 items increased by a very small amount. Similar is the case as the array
size tripled. Th us, the time it took to fi nd 10,000 items seems to be an extremely slow
growing function of the array length.

Self-Check

 7. In the case of linear search, as the size of the array doubled, the computation
time .

 8. In the case of binary search, as the size of the array doubled, the computation
time .

Analysis Approach

Th e purpose of this subsection is to introduce the concept of time complexity in a non-
threatening fashion. Th us, the presentation in this subsection is intentionally simplifi ed.

Th e analysis of an algorithm begins by identifying the most relevant operation. For
example, in the case of matrix multiplication, multiplication is the most costly operation.
Even though there are many additions involved, we identify multiplication as the relevant
operation. In the case of search and sort algorithms, we identify comparison as the most
relevant operation.

Once the most relevant operation is identifi ed, you need to count the number of relevant
operations required to solve a problem of size n. For example, consider the linear search
algorithm. On an average, you may need n/2 comparisons, where n is the size of the array.

160,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0
1 million 2 million 3 million 4 million 5 million

Array size

Linear search Binary search
T

im
e

in
 m

ill
is

ec
on

ds

FIGURE 10.1 Empirical comparison of linear and binary search.

CRC_C6547_CH010.indd 616CRC_C6547_CH010.indd 616 10/1/2008 6:09:58 PM10/1/2008 6:09:58 PM

Apago PDF Enhancer

Search and Sort ■ 617

Th erefore, the time it takes to perform one linear search is directly proportional to the size
of the array. We express this fact by saying linear search is an order n algorithm or the com-
plexity of the linear search is O(n), pronounced as big-O n. Similarly, we can also measure
the worst-case performance of linear search algorithm. If the search item is larger than any
item in the list, the linear search algorithm has to compare all items even if the array is sorted.
Th us, the algorithm has to perform n comparisons. Th us, the worst-case time complexity of
the linear search algorithm is O(n). Yet another commonly considered measure is the best-
case time complexity. If the search item is the fi rst item in the array, only one comparison is
all that is required. Th erefore, irrespective of the array size, the number of comparisons is a
constant. We say, the best-case time complexity is order 1 and we denote it by O(1).

A similar analysis for binary search algorithm can be done as follows. In the case of
binary search, if the middle value is not the same as the search item, you need to consider
only one half of the array. Th erefore, if T(n) denotes the worst-case time complexity of
binary search algorithm,

T(n) = time to compare one item + time complexity for an array of size n/2.

T(n) = 1 + T(n/2).

Assume that n = 2k. Th en

T(n) = T(2k) = 1 + T(2k–1)

= 1 + 1 + T(2k–2) = 2 + T(2k–2)

= 1 + 2 + T(2k–3) = 3 + T(2k–3)

= 4 + T(2k–4)

...

= k + T(2k–k) = k + T(20) = k + T(1).

T(1) is the worst-case time required to perform binary search on an array of size 1. Th ere-
fore, T(1) = 1. Th us, T(n) = k + 1, where n = 2k. Recall that in this case we could write
k = log2n. Th erefore, T(n) = log2n + 1. Th us, T(n) is a function of log2n. In other
words, the worst-case time complexity of the binary search algorithm is O(log2n). Th e
average-case time complexity of the binary search is O(log2n) and the best-case time
complexity of the binary search is O(1).

Self-Check

 9. Th e linear search is a algorithm.
 10. Th e binary search is a algorithm.

Advanced Topic 10.1: Levels of Complexity

You have already seen three levels of complexity: O(1), O(log2n), and O(n). You also
know an O(1) algorithm takes less time than an O(log2n) algorithm. Similarly, an
O(log2n) algorithm takes less time than an O(n) algorithm. Multiplying by n, we can

CRC_C6547_CH010.indd 617CRC_C6547_CH010.indd 617 10/1/2008 6:09:58 PM10/1/2008 6:09:58 PM

Apago PDF Enhancer

618 ■ Java Programming Fundamentals

conclude that an O(n) algorithm takes less time than an O(nlog2n) algorithm and an
O(nlog2n) algorithm takes less time than an O(n2) algorithm. Similarly, multiplying by
nk, we conclude that an O(nk) algorithm takes less time than an O(nklog2n) algorithm
and an O(nklog2n) algorithm takes less time than an O(nk+1) algorithm.

As we consider the complexity, we are in fact concerned about the growth rate of the
function; rather than the actual value of the function itself. Th erefore, time complexity of a
polynomial is the same as that of its leading term, for example, O(10n2 + 8n - 15) = O(n2).

SORT ALGORITHMS
We begin this section with a fairly simple sort algorithm, selection sort. Similar to time
complexity, we can also measure the space complexity. In this case, we are measuring the
space (memory) requirements of the algorithm as a function of the input size. In the case of
sort algorithms, we also pay attention to additional array requirements. A sort algorithm is
said to be an in-place algorithm, if it does not require any additional arrays.

All the three algorithms presented in this chapter have the same time complexity, O(n2).
Th ere are sort algorithms with time complexity O(nlog2n), which is very close to O(n) as
log2n is a very slowly increasing function. Merge sort and quick sort are two of the most
commonly used algorithms with time complexity O(nlog2n).

It is a well-known fact that any sort algorithm based on comparison must have at least
O(nlog2n) time complexity. Th erefore, any algorithm with worst-case time complexity
O(nlog2n) is known as an optimal sorting algorithm. Th us, both merge sort and quick
sort are optimal sort algorithms. Similarly, binary search is an optimal search algorithm
on sorted arrays.

Self-Check

 11. Any sort algorithm based on comparison must have at least time
complexity.

 12. Th e time complexity of an optimal sort algorithm is .

Selection Sort

Th e idea behind the selection sort is quite easy. First, fi nd the smallest item and place it at
the fi rst position. From the remaining items in the list, fi nd the smallest item and place
it in the second place. Keep repeating these steps and eventually all items will be in the
sorted order.

Example 10.9

Th is example demonstrates the selection sort. Consider an integer array L with
six elements.

15

0

21

1

24

2

17

3

8

4

12

5

CRC_C6547_CH010.indd 618CRC_C6547_CH010.indd 618 10/1/2008 6:09:58 PM10/1/2008 6:09:58 PM

Apago PDF Enhancer

Search and Sort ■ 619

Th e algorithm begins by fi rst fi nding the smallest element in the array. Note that
8 is the smallest item and it is at location 4. Since 8 is the smallest item, we need to
keep it at location 0. However, location 0 currently has 15. Th erefore, we swap the
values at locations 4 and 0. Th e array L aft er swapping values at locations 4 and 0 is
shown below. Th e location 0 is no longer considered as the part of L for the purpose
of fi nding the smallest item, and hence is shaded.

8

0

21

1

24

2

17

3

15

4

12

5

We now repeat the above steps. Find the smallest element in the array locations 1
through 5. Clearly, 12 is the smallest item and it is at location 5. We need to keep 12
at location 1. Th erefore, we swap the values at locations 5 and 1. Once again, loca-
tion 1 is no longer considered as part of the array as we search for the next smallest
item, and hence shaded. Th us, we have the following:

8

0

12

1

24

2

17

3

15

4

21

5

Th e smallest value 15 is at location 4. Th erefore, we swap the items at locations
4 and 2. Th us, the array L is as follows:

8

0

12

1

15

2

17

3

24

4

21

5

Th e smallest value 17 is at location 3. Note that in this case we swap the item at
location 3 with the item at location 3. Th e array L aft er the swap can be visualized
as follows:

8

0

12

1

15

2

17

3

24

4

21

5

Th e smallest item is 21. We swap the item at location 5 with the item at location 4.
Observe that once we have placed fi ve items in their respective locations, the last item is
in its proper location. Th erefore, the algorithm terminates. Th e array L is now sorted.

8

0

12

1

15

2

17

3

24

4

21

5

Table 10.10 summarizes the above discussion.

CRC_C6547_CH010.indd 619CRC_C6547_CH010.indd 619 10/1/2008 6:09:58 PM10/1/2008 6:09:58 PM

Apago PDF Enhancer

620 ■ Java Programming Fundamentals

Th e implementation is quite straightforward. We use two helper methods
findMin and swap. Th ey are intentionally kept as private.

import java.util.Scanner;

/**

 Selection sort algorithm

*/

public class SelectionSort

{

 private int[] intData;

 /**

 Constructor

 @param inOutArray the array to be sorted

 */

 public SelectionSort(int[] inOutArray)

 {

 intData = inOutArray;

 }

 /**

 Sorts the attribute inData

 */

 public void sort()

TABLE 10.10 Selection Sort

Starting
Index i

Minimum
Value

Index of
Minimum Value Action Taken

0 8 4 swap(L[0], L[4]);
i = i+1;

1 12 5 swap(L[1], L[5]);
i = i+1;

2 15 4 swap(L[2], L[4]);
i = i+1;

3 17 3 swap(L[3], L[3]);
i = i+1;

4 21 5 swap(L[4], L[5]);
i = i+1;

CRC_C6547_CH010.indd 620CRC_C6547_CH010.indd 620 10/1/2008 6:09:59 PM10/1/2008 6:09:59 PM

Apago PDF Enhancer

Search and Sort ■ 621

 {

 int minIndex;

 for (int i = 0; i < intData.length - 1; i++)

 {

 minIndex = findMin(i);

 swap(minIndex, i);

 }

 }

 /**

 Find the smallest value from the given location

 @param start location to begin finding minimum

 @return index of the minimum

 intData[start]...intData[intData.length-1]

 */

 private int findMin(int start)

 {

 int minLoc = start;

 for (int i = start + 1; i < intData.length; i++)

 if (intData[i] < intData[minLoc])

 minLoc = i;

 return minLoc;

 }

 /**

 interchange values between two locations of the array

 @param first one of the location to be interchanged

 @param second the other location to be interchanged

 */

 private void swap(int first, int second)

 {

 int temp = intData[first];

 intData[first] = intData[second];

 intData[second] = temp;

 }

}

import java.util.Scanner;

/**

 This a test program for SelectionSort class

*/

public class SelectionSortApplication

CRC_C6547_CH010.indd 621CRC_C6547_CH010.indd 621 10/1/2008 6:09:59 PM10/1/2008 6:09:59 PM

Apago PDF Enhancer

622 ■ Java Programming Fundamentals

{

 public static void main(String[] args)

 {

 int arraySize = 0;

 int numItems = 0;

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print

 ("Enter the number of items to sort: ");

 arraySize = scannedInfo.nextInt();

 System.out.println

 ("Enter "+ arraySize +" integers\n");

 int[] testArray

 = ArrayUtility.createAndSet

 (arraySize, scannedInfo);

 System.out.println();

 System.out.print

 ("Enter number of items per line : ");

 numItems = scannedInfo.nextInt();

 System.out.println("\n The array after sort:\n");

 ArrayUtility.printArray(testArray, numItems);

 System.out.println();

 SelectionSort sortObject

 = new SelectionSort(testArray);

 sortObject.sort();

 System.out.println

 ("The array before sort:\n");

 ArrayUtility.printArray(testArray, numItems);

 }

}

Output
Enter the number of items to sort: 20

Enter 20 integers

7 21 34 17 45 5 8 31 5 59 42 30 29 62 1 55 47 20 9 54
Enter number of items per line : 8

The array before sort:

7 21 34 17 45 5 8 31
5 59 42 30 29 62 1 55
47 20 9 54

The array after sort:

1 5 5 7 8 9 17 20
21 29 30 31 34 42 45 47
54 55 59 62

CRC_C6547_CH010.indd 622CRC_C6547_CH010.indd 622 10/1/2008 6:09:59 PM10/1/2008 6:09:59 PM

Apago PDF Enhancer

Search and Sort ■ 623

Th e analysis of the selection sort is not that complicated. Assume that the number
of items to be sorted is n. Th en, you need n – 1 comparisons to determine the small-
est item. Once the smallest item is placed at location 0, there are only n – 1 items
in the unprocessed part of the array. Th us, n – 2 comparisons are required to fi nd
the second smallest number and so on. Th erefore, the total number of comparisons
is (n – 1) + (n – 2) + ... + 1 = n(n – 1)/2 = 0.5n2 + 0.5n. Th e growth rate of
this expression is n2. In other words, the worst-case time complexity of selection
sort is O(n2). As far as the space complexity is concerned, the algorithm requires
an array of size n plus a few extra spaces. Th us, the space complexity is O(n). Th e
algorithm requires no additional arrays and hence is an in-place algorithm.

Self-Check

 13. Another way to perform selection sort is to fi nd the largest item and place it at
the position.

 14. Th e time complexity of selection sort algorithm is .

Insertion Sort

Th e idea behind the insertion sort is also quite easy to understand. Just like the selection
sort, during the sorting process, insertion sort also considers the array as consisting of two
parts. Th e fi rst part is the sorted part of the array and the second part is the yet to be pro-
cessed or the unprocessed part of the array. To begin with, the sorted part consists of just
one item and all the remaining items are in the unprocessed part. We pick the fi rst item
from the unprocessed part and insert it in the sorted part so that the sorted part remains
sorted. Keep repeating these steps until there is no more item in the unprocessed part of
the array.

Example 10.10

Th is example demonstrates the insertion sort. Consider the same set of numbers we
have used in Example 10.9. Th us, the integer array L with 6 elements is as follows:

15

0

21

1

24

2

17

3

8

4

12

5

First, we conceptually divide the array into two parts. Th e sorted part consists
of one item, the element at index 0, and the yet to be processed part consists of all
elements at index locations 1 through 5. Shading is used to distinguish the sorted
part from the unprocessed part of the array.

15

0

21

1

24

2

17

3

8

4

12

5

CRC_C6547_CH010.indd 623CRC_C6547_CH010.indd 623 10/1/2008 6:09:59 PM10/1/2008 6:09:59 PM

Apago PDF Enhancer

624 ■ Java Programming Fundamentals

Now, consider the fi rst item in the yet to be processed part. Since 21 is greater
than 15, the fi rst two items are in sorted order. Th erefore, nothing needs to be done,
and the sorted part of the array is from index locations 0 to 1. Th e unprocessed part
of the array is now from index locations 2 to 5.

15

0

21

1

24

2

17

3

8

4

12

5

Th e item to be processed is 24. Observe that 24 is greater than 21, and thus fi rst
three items are now sorted. Th e unprocessed part of the array is now from index
locations 3 to 5.

15

0

21

1

24

2

17

3

8

4

12

5

Th e next item to be processed is 17. We need to insert 17 in the sorted part of the
array. Th erefore, we compare 17 with 24. Observe that 17 is smaller than 24. Move
24 to index location 3, while keeping the value 17 at a temporary variable temp.
Th us, we have the following:

15

0

21

1 2 3

8

4

12

5

24

Next we compare 17 with 21. Again, 21 is larger than 17. So, we move 21 to
index location 2.

15

0

21

1 2 3

8

4

12

5

24

Next we compare 17 with 15. Since 17 is larger than 15, we place 17 at index loca-
tion 1. Th is marks the end of processing 17. Th e sorted part of the array is from index
locations 0 to 3 and the unprocessed part of the array is from index locations 4 to 5.

15

0

21

1 2 3

8

4

12

5

2417

Th e next item to be processed is 8. Since 8 is smaller than 24, we move 24 to
index location 4.

15

0

21

1 2 3 4

12

5

2417

Note that 8 is smaller than 21. Th erefore, 21 is moved to index location 3.

15

0 1 2 3 4

12

5

2417 21

CRC_C6547_CH010.indd 624CRC_C6547_CH010.indd 624 10/1/2008 6:09:59 PM10/1/2008 6:09:59 PM

Apago PDF Enhancer

Search and Sort ■ 625

Since 8 is smaller than 17, we move 17 to index location 2,

15

0 1 2 3 4

12

5

2417 21

Observe that 8 is smaller than 15, and hence 15 is moved to index location 1.

0 1 2 3 4

12

5

2417 2115

Th ere are no more items to compare. So, we place 8 at index location 0. Th is
marks the end of processing 8. Th e sorted part of the array is from index locations
0 to 4 and the unprocessed part of the array now consists of just one item.

0 1 2 3 4

12

5

2417 21158

Th e item to be processed is 12. Since 12 is smaller than 24, we move 24 to index
location 5. By similar logic, we move 21 to index location 4, 17 to index location 3,
and 15 to index location 2.

0 1 2 3 4 5

2417 21158

Note that 12 is not smaller than 8; therefore, we place 12 at index location 1.
Th is marks the end of processing 12. Th e sorted part of the array is from index
locations 0 to 5 and the unprocessed part of the array is empty (Table 10.11). Th us,
we have the following sorted array:

0 1 2 3 4 5

2417 21158 12

Th e implementation is quite straightforward. We use two helper methods
isMoved and insert. Th ey are intentionally kept as private. Given an index
location, say i, the method insert(i) will insert item at i in the sorted array
intData[0], ..., intData[i-1]. Th is method uses the boolean method
isMoved to move necessary data values to make room for insertion. Creation of
the InsertionSort class and testing are quite similar to that of selection sort
and is left as an exercise.

public void sort()

{

 for (int i = 1; i < intData.length; i++)

CRC_C6547_CH010.indd 625CRC_C6547_CH010.indd 625 10/1/2008 6:10:00 PM10/1/2008 6:10:00 PM

Apago PDF Enhancer

626 ■ Java Programming Fundamentals

 {

 insert(i);

 }

}

/**

 Insert the next item in the sorted part

 @param loc location of the next item

*/

private void insert(int loc)

{

 int temp = intData[loc];

 int i = loc - 1;

 while (i > -1 && isMoved(i,temp))

 i--;

 intData[i+1] = temp;

}

/**

TABLE 10.11 Insertion Sort

Starting Index i,
Unprocessed Part

Item to be
Inserted

Index of the Item
to Compare

Item to be
Compared Action Taken

1 21 0 15 none.
i = i + 1;

2 24 1 21 none.
i = i + 1;

3 17 2 24 temp = 17
L[3] = 24

1 21 L[2] = 21
0 15 L[1] = 17

i = i + 1;

4 8 3 24 temp = 8
L[4] = 24

2 21 L[3] = 21
1 17 L[2] = 17
0 15 L[1] = 15

L[0] = 8
i = i + 1;

5 12 4 24 temp = 12
L[5] = 24

3 21 L[4] = 21
2 17 L[3] = 17
1 158 L[2] = 15
0 8 L[1] = 12

i = i + 1;

CRC_C6547_CH010.indd 626CRC_C6547_CH010.indd 626 10/1/2008 6:10:01 PM10/1/2008 6:10:01 PM

Apago PDF Enhancer

Search and Sort ■ 627

 If item is smaller, move value at index is to index + 1

 @param index one of the location in sorted array

 @param item that is currently being processed

 @return true if moved false otherwise

*/

private boolean isMoved(int index, int item)

{

 boolean move = intData[index] > item;

 if (move)

 intData[index + 1] = intData[index];

 return move;

}

Th e analysis of the insertion sort is quite similar to that of selection sort. Assume
that number of items to be sorted is n. Th en, you need 0 comparison to create a sorted
part of size 1. To insert one item, you need to perform one comparison. Th us, to create
a sorted part of size 2, you need 1 comparison. To insert third item, you need at most
2 comparisons, the size of the current sorted part, and so on. Th us, fi nally to insert the
nth item, you need at most n – 1 comparisons. Th erefore, the total number of com-
parisons is 1 + 2 + ... + (n – 1) = n(n – 1)/2 = 0.5n2 + 0.5n. Th e growth rate of
this expression is n2. In other words, the worst-case time complexity of insertion sort
is O(n2). Th e space complexity is O(n) and it is an in-place algorithm.

Self-Check

15. Another way to perform insertion sort is to keep the fi rst part
and the second part .

16. Th e time complexity of insertion sort algorithm is .

Bubble Sort

Just as selection and insertion sort algorithms, bubble sort also divides the array into two
parts: the sorted part and the unsorted part. Th e bubble sort algorithm compares two
adjacent numbers and if they are not in order, then they are swapped to make them in order.
Carrying out these steps for all adjacent pairs from the beginning to the end of the array has
the eff ect of “bubbling” the largest item to the highest index position. Th us, the last item is
the sorted part and all other elements in the beginning of the array are in the unprocessed
part. Repeating these steps on the unprocessed part of the array will bubble the second larg-
est item in the list to its proper location in the sorted order. Keep repeating these steps and
eventually all items will be in the sorted order.

Example 10.11

Th is example demonstrates the bubble sort. Consider an integer array L with 6
elements.

CRC_C6547_CH010.indd 627CRC_C6547_CH010.indd 627 10/1/2008 6:10:01 PM10/1/2008 6:10:01 PM

Apago PDF Enhancer

628 ■ Java Programming Fundamentals

0 1 2 3 4 5

24 17 8 1215 21

Th e algorithm begins by comparing items at index locations 0 and 1. Since they are
in sorted order, no action is taken.

15

0

21

1

24

2

17

3

8

4

12

5

In order
No change

Next, items at index locations 1 and 2 are compared. Th ey are in order and so there
is no need for any action.

15

0

21

1

24

2

17

3

8

4

12

5

In order
No change

Comparing items at index locations 2 and 3, it is observed that they are not in
order.

15

0

21

1

24

2

17

3

8

4

12

5

Not in
order
Swap

Th erefore, we need to swap them. Th us, array changes as follows:

15

0

21

1 2

17

3

8

4

12

5

24

Next, index locations 3 and 4 are compared.

15

0

21

1 2

17

3

8

4

12

5

Not in
order
Swap

24

CRC_C6547_CH010.indd 628CRC_C6547_CH010.indd 628 10/1/2008 6:10:01 PM10/1/2008 6:10:01 PM

Apago PDF Enhancer

Search and Sort ■ 629

Since they are not in order, they are swapped.

15

0

21

1

17

2

8

3

24

4

12

5

Next, compare items at index locations 4 and 5.

Not in
order
Swap

15

0

21

1

17

2

8

3

24

4

12

5

Since they are not in order, they are swapped. Note that there are no more pairs
to compare. Th e largest item in the array, 24, is at the highest index location. We
consider location 5 as sorted part of the array. Th e array locations from index 0 to
4 are treated as unprocessed. In our illustrations, we use shading to indicate the
sorted part of the array.

15

0

21

1

17

2

8

3

12

4

24

5

We repeat the above steps on the unprocessed part of the array. Th us, we start
comparing items at locations 0 and 1.

15

0

21

1

17

2

8

3

12

4

24

5

In order
No change

Th ey are in order and as such no action is required. Next, items at index locations
1 and 2 are compared.

15

0

21

1

17

2

8

3

12

4

24

5

Not in
order
Swap

CRC_C6547_CH010.indd 629CRC_C6547_CH010.indd 629 10/1/2008 6:10:01 PM10/1/2008 6:10:01 PM

Apago PDF Enhancer

630 ■ Java Programming Fundamentals

Since they are not in order, they are swapped.

15

0

17

1

21

2

8

3

12

4

24

5

Not in
order
Swap

Items at locations 2 and 3 are compared and they are not in order. Hence, they
are swapped.

15

0

17

1

8

2

21

3

12

4

24

5

Not in
order
Swap

Aft er comparing items at locations 3 and 4, they are swapped.
Th ere are no more pairs to compare. Th e second largest item in the array,

21, is at the second highest index location. We consider locations 4 and 5 as
sorted part of the array. Th e array locations from index 0 to 3 are treated as
unprocessed.

15

0

17

1

8

2

12

3

21

4

24

5

In order
No change

Once again, we start comparing items at locations 0 and 1. Since they are in
order, no swapping is done. Next, items at locations 1 and 2 are compared.

15

0

17

1

8

2

12

3

21

4

24

5

Not in
order
Swap

CRC_C6547_CH010.indd 630CRC_C6547_CH010.indd 630 10/1/2008 6:10:02 PM10/1/2008 6:10:02 PM

Apago PDF Enhancer

Search and Sort ■ 631

Since they are not in order, they are swapped.

15

0

8

1

17

2

12

3

21

4

24

5

Not in
order
Swap

Items at locations 2 and 3 are not in order. Th erefore, they are swapped. Note
that 17 is now a processed item.

15

0

8

1

12

2

17

3

21

4

24

5

Not in
order
Swap

Compare items at index locations 0 and 1. Note that they are not in order. Th ere-
fore, they are swapped.

8

0

15

1

12

2

17

3

21

4

24

5

Not in
order
Swap

Note that items at locations 1 and 2 are not in order, and thus they are swapped.
Observe that 15 is a processed item.

8

0

12

1

15

2

17

3 4

24

5

In order
No change

21

Once again, compare locations 0 and 1. Since they are in order, no action is
required and this makes 12 a processed item. Just as in the case of selection sort,
there is no need to process the last item. Th us, algorithm terminates (Table 10.12).

Th e implementation is quite straightforward. We use two helper methods
placeMax and swap. Th ey are intentionally kept as private. Creation of the
BubbleSort class and testing are quite similar to that of selection sort and is left
as an exercise.

CRC_C6547_CH010.indd 631CRC_C6547_CH010.indd 631 10/1/2008 6:10:02 PM10/1/2008 6:10:02 PM

Apago PDF Enhancer

632 ■ Java Programming Fundamentals

import java.util.Scanner;

/**

 Bubble sort algorithm

*/

public class BubbleSort

{

 private int[] intData;

 /**

 Constructor

 @param inOutArray the array to be sorted

 */

 public BubbleSort(int[] inOutArray)

 {

 intData = inOutArray;

 }

 /**

 Sorts the attribute inData

 */

TABLE 10.12 Bubble Sort

Last Index of
Unprocessed Part

Adjacent
Indices

Values to be
Compared Comment and Action Taken

5 0, 1 15, 21 in order; no action
1, 2 21, 24 in order; no action
2, 3 24, 17 not in order; swapped
3, 4 24, 8 not in order; swapped
4, 5 24, 12 not in order; swapped

24 is in the sorted part

4 0, 1 15, 21 in order; no action
1, 2 21, 17 not in order; swapped

2, 3 21, 8 not in order; swapped
3, 4 21, 12 not in order; swapped

21 is in the sorted part

3 0, 1 15, 17 in order; no action
1, 2 17, 8 not in order; swapped
2, 3 17, 12 not in order; swapped

17 is in the sorted part

2 0, 1 15, 8 not in order; swapped
1, 2 15, 12 not in order; swapped

15 is in the sorted part

1 0, 1 8, 12 in order; no action
array is sorted

CRC_C6547_CH010.indd 632CRC_C6547_CH010.indd 632 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

Search and Sort ■ 633

 public void sort()

 {

 for (int i = intData.length - 1; i > 0; i--)

 {

 placeMax(i);

 }

 }

 /**

 Bubble the largest value

 @param end location where unprocessed array ends

 */

 private void placeMax(int end)

 {

 for (int i = 0; i < end; i++)

 if (intData[i] > intData[i+1])

 swap(i, i+1);

 }

 /**

 interchange values between two locations of the array

 @param first one of the location to be interchanged

 @param second the other location to be interchanged

 */

 private void swap(int first, int second)

 {

 int temp = intData[first];

 intData[first] = intData[second];

 intData[second] = temp;

 }

}

Th e analysis of bubble sort algorithm is very similar to that of selection sort. Assume
that the number of items to be sorted is n. Th en, you need n – 1 comparisons to bubble the
largest item. Once the largest item is placed at location n - 1, there are only n – 1 items in
the unprocessed part of the array. Th us, n – 2 comparisons are required to bubble the
second largest number and so on. Th erefore, the total number of comparisons is (n – 1) +
n – 2) + ... + 1 = n(n – 1)/2 = 0.5n2 + 0.5n. Th e growth rate of this expression is n2.
Th e worst-case time complexity of bubble sort is O(n2). Th e space complexity is O(n) and
it is an in-place algorithm.

Self-Check

 17. Th e time complexity of bubble sort algorithm is .
 18. Th e space complexity of an in-place algorithm is .

CRC_C6547_CH010.indd 633CRC_C6547_CH010.indd 633 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

634 ■ Java Programming Fundamentals

CASE STUDY 10.1: MR. GRACE’S SORTED GRADE SHEET
Being a very popular teacher, Mr. Grace attracts many students to his course. Mr. Grace
thought it would be great if he could sort the students based on their gradeScore. Th us,
Mr. Grace modifi ed his program to incorporate this feature. Mr. Grace looked into vari-
ous sorting algorithms and decided to use selection sort. He realized that all he has to do
is include the selection sort method in his Course class and invoke it as needed in his
application program.

Although it is possible to compare students by inspecting their individual gradeScore
values, it is better to have a compareTo method similar to one in the String class for
the Student class. So, Mr. Grace decided to add a compareTo method in his Student
class.

import java.util.*;

import java.text.DecimalFormat;

/**

 Keeps name, six test scores, grade score and letter grade

*/

public class Student

{

 private static final int ARRAY_SIZE = 6;

 private String firstName;

 private String lastName;

 private double testScores[] = new double[ARRAY_SIZE];

 private double gradeScore;

 private String grade;

 /**

 Compares implicit argument with explicit argument.

 negative int if implicit argument is smaller

 0 if they are equal up to two decimal places

 positive int if implicit argument is larger

 @param Student to compare

 @return -ve, 0 or +ve int if implicit parameter is <,

 =, or >

 */

 public int compareTo(Student inStudent)

 {

 int diff;

 diff = (int)(this.gradeScore * 100

 – inStudent.gradeScore * 100);

CRC_C6547_CH010.indd 634CRC_C6547_CH010.indd 634 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

Search and Sort ■ 635

 return diff;

 }

 /**

 Loads student data to an instance of Student

 @param sca Scanner instance

 */

 public void setStudentInfo(Scanner sc)

 {

 firstName = sc.next();

 lastName = sc.next() ;

 for (int i = 0; i < testScores.length; i++)

 testScores[i] = sc.nextDouble() ;

 }

 /**

 Computes the sum of all test scores

 @return sum of all test scores

 */

 private double computeSum()

 {

 double sum = 0;

 for (double ts : testScores)

 sum = sum + ts ;

 return sum;

 }

 /**

 Computes the minimum of all test scores

 @return the minimum of all test scores

 */

 private double findMin()

 {

 double minimum = testScores[0];

 for (double ts : testScores)

 if (ts < minimum)

 minimum = ts;

 return minimum;

 }

CRC_C6547_CH010.indd 635CRC_C6547_CH010.indd 635 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

636 ■ Java Programming Fundamentals

 /**

 Computes the average test score ignoring the least score

 */

 public void computeGradeScore()

 {

 double adjustedTotal;

 adjustedTotal = computeSum() - findMin();

 gradeScore = adjustedTotal /(testScores.length - 1);

 }

 /**

 Create a String with all information on a student

 @return String with all information on a student

 */

 public String createGradeReport()

 {

 String str;

 DecimalFormat twoDecimalPlaces =

 new DecimalFormat("0.00");

 str = firstName + "\t"+ lastName + "\t";

 if (str.length() < 10) str = str+ "\t";

 for (double ts : testScores)

 str = str + ts + "\t";

 str = str + twoDecimalPlaces.format(gradeScore);

 if (grade != null) str = str + "\t" + grade;

 return str;

 }

 /**

 Returns the average test score after ignoring the least

 @return average test score after ignoring the least

 */

 public double getGradeScore()

 {

 return gradeScore;

 }

 /**

 Returns the letter grade

 @return letter grade

 */

CRC_C6547_CH010.indd 636CRC_C6547_CH010.indd 636 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

Search and Sort ■ 637

 public String getGrade()

 {

 return grade;

 }

 /**

 Mutator method for average test score

 @param inGradeScore new value of average test score

 */

 public void setGradeScore(double inGradeScore)

 {

 gradeScore = inGradeScore;

 }

 /**

 Mutator method for letter grade

 @param inGrade new value of letter grade

 */

 public void setGrade(String inGrade)

 {

 grade = inGrade;

 }

 /**

 toString method

 @return all information about student including letter

 grade

 */

 public String toString()

 {

 return createGradeReport();

 }

}

import java.io.*;

import java.util.*;

/**

 Keeps information on all students

*/

public class Course

CRC_C6547_CH010.indd 637CRC_C6547_CH010.indd 637 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

638 ■ Java Programming Fundamentals

{

 private static final int CLASS_SIZE = 25; // Maximum class

 size

 private String courseNumber; // Course Number

 private String courseTitle; // Course Title

 private String term; // Course term

 private int numberOfStudents;

 private double courseAverage;

 private Student StudentList[] = new Student[CLASS_SIZE];

 // An array to keep student information

 /**

 Sorts the attribute StudentList

 */

 public void sort()

 {

 int minIndex;

 for (int i = 0; i < StudentList.length - 1; i++)

 {

 minIndex = findMin(i);

 swap(minIndex, i);

 }

 }

 /**

 Find the smallest value from the given location

 @param start location to begin finding minimum

 @return index of the minimum

 intData[start]...intData[intData.length-1]

 */

 private int findMin(int start)

 {

 int minLoc = start;

 for (int i = start + 1; i < StudentList.length; i++)

 if (StudentList[i].compareTo(StudentList[minLoc])< 0)

 minLoc = i;

 return minLoc;

 }

 /**

 interchange values between two locations of the array

 @param first one of the location to be interchanged

 @param second the other location to be interchanged

 */

CRC_C6547_CH010.indd 638CRC_C6547_CH010.indd 638 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

Search and Sort ■ 639

 private void swap(int first, int second)

 {

 Student temp = StudentList[first];

 StudentList[first] = StudentList[second];

 StudentList[second] = temp;

 }

 public void loadData(Scanner sc)

 {

 Student st;

 int i = 0;

 courseNumber = sc.nextLine();

 courseTitle = sc.nextLine();

 term = sc.nextLine();

 while (sc.hasNext())

 {

 st = new Student();

 st.setStudentInfo(sc);

 StudentList[i] = st;

 i++;

 }

 numberOfStudents = i;

 }

 private void computeCourseAverage()

 {

 int i;

 double sum = 0;

 for (i = 0; i < numberOfStudents; i++)

 {

 StudentList[i].computeGradeScore();

 sum = sum + StudentList[i].getGradeScore();

 }

 courseAverage = sum / numberOfStudents;

 }

 public void assignGrade()

 {

 int i;

 double temp;

CRC_C6547_CH010.indd 639CRC_C6547_CH010.indd 639 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

640 ■ Java Programming Fundamentals

 computeCourseAverage();

 for (i = 0; i < numberOfStudents; i++)

 {

 temp = StudentList[i].getGradeScore();

 if (temp > 1.3 * courseAverage)

 StudentList[i].setGrade("A");

 else if (temp > 1.1 * courseAverage)

 StudentList[i].setGrade("B");

 else if (temp > 0.9 * courseAverage)

 StudentList[i].setGrade("C");

 else if (temp > 0.7 * courseAverage)

 StudentList[i].setGrade("D");

 else

 StudentList[i].setGrade("F");

 }

 }

 public void printGradeSheet(PrintWriter output)

 {

 int i;

 output.println("\t\t\t" + courseNumber);

 output.println("\t\t\t" + courseTitle);

 output.println("\t\t\t" + term);

 output.println("\t\t\tClass Average is " +

 courseAverage);

 for (i = 0; i < numberOfStudents; i++)

 {

 output.println(StudentList[i]);

 }

 }

}

import java.io.*;

import java.util.Scanner;

public class CourseGraded

{

 public static void main (String[] args)

 throws FileNotFoundException, IOException

CRC_C6547_CH010.indd 640CRC_C6547_CH010.indd 640 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

Search and Sort ■ 641

 {

 Scanner scannedInfo

 = new Scanner(new File("C:\\courseData.dat"));

 PrintWriter outFile

 = new PrintWriter(new FileWriter

 ("C:\\courseData.out"));

 Course crs = new Course();

 crs.loadData(scannedInfo);

 crs.assignGrade();

 crs.sort();

 crs.printGradeSheet(outFile);

 outFile.close();

 }

}

CourseData.dat File:

CSC 221
Java Programming
Fall 2008
Kim Clarke 70.50 69.85 90.25 100.0 81.75 100.0
Chris Jones 78.57 51.25 97.45 85.67 99.75 88.76
Brian Wills 85.08 92.45 67.45 71.57 50.92 72.00
Bruce Mathew 60.59 87.23 45.67 99.75 72.12 100.0
Mike Daub 56.60 45.89 78.34 64.91 66.12 70.45

CourseData.out File:

CSC 221
Java Programming
Fall 2008
Class Average is 81.4944
Mike Daub 56.6 45.89 78.34 64.91 66.12 70.45 67.28 D
Brian Wills 85.08 92.45 67.45 71.57 50.92 72.0 77.71 C
Bruce Mathew 60.59 87.23 45.67 99.75 72.12 100.0 83.94 C
Kim Clarke 70.5 69.85 90.25 100.0 81.75 100.0 88.50 C
Chris Jones 78.57 51.25 97.45 85.67 99.75 88.76 90.04 B

REVIEW
 1. Searching and sorting are two most common tasks in data processing.
 2. A sorting algorithm permutes or rearranges the elements of a collection in sorted

order.
 3. Once you have a sorted list, searching for an item becomes quite effi cient.
 4. Linear search algorithm can be written for a sorted or an unsorted array.

CRC_C6547_CH010.indd 641CRC_C6547_CH010.indd 641 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

642 ■ Java Programming Fundamentals

 5. In the case of an unsorted array, you need to compare every item in the array to deter-
mine whether or not a specifi ed item is in the array.

 6. In the case of an ascending order sorted array, once an item that is greater than the
one you are searching for is encountered, there is no need to search any further.

 7. Binary search is the most effi cient search algorithm on a sorted array.
 8. Th e empirical approach to measure the performance of an algorithm is to write a

program, run it using various test data, and measure the time it takes to fi nish the
computation.

 9. Th e analysis approach to measure the performance of an algorithm is mathematical
in nature and in fact involves no programming at all.

 10. Th e linear search is an O(n) algorithm.
 11. Th e binary search is an O(log2n) algorithm.
 12. All three sorting algorithms presented in this chapter have O(n2) time complexity.
 13. Th ere are sorting algorithms with O(log2n) time complexity.
 14. All three sorting algorithms presented in this chapter have O(n) space complexity.
 15. A sort algorithm is said to be an in-place algorithm, if it does not require any addi-

tional arrays.
 16. All three sorting algorithms presented in this chapter are in-place algorithms.

EXERCISES
 1. Mark the following statements as true or false:
 a. In general, searching takes more time than sorting.
 b. Th e linear search algorithm is the best one possible on an unsorted array.
 c. Quick sort is one of the best algorithms for sorting.
 d. If someone asks you to pick an integer between 101 and 300, then your search

space has 200 items.
 e. Th e analysis approach to determining the effi ciency of an algorithm involves

writing programs and so on.
 2. Assume that array L has the following 10 items: 8, 13, 6, 14, 28, 29, 35, 12, 40, and 17.

Illustrate the algorithm in a table format as presented in this chapter.
 a. Let the search item be 39. Apply linear search.
 b. Let the search item be 12. Apply linear search.
 c. Let the search item be 1. Apply linear search.
 d. Apply selection sort.
 e. Apply insertion sort.
 f. Apply bubble sort.
 g. Assume that array is sorted. Let the search item be 39. Apply binary search.

CRC_C6547_CH010.indd 642CRC_C6547_CH010.indd 642 10/1/2008 6:10:03 PM10/1/2008 6:10:03 PM

Apago PDF Enhancer

Search and Sort ■ 643

 h. Assume that array is sorted. Let the search item be 12. Apply binary search.
 i. Assume that array is sorted. Let the search item be 1. Apply binary search.
 3. Assume that array L has the following 11 items: 7, 14, 2, 18, 39, 92, 88, 72, 41, 71, and

5. Illustrate the algorithm in a table format as presented in this chapter.
 a. Let the search item be 9. Apply linear search.
 b. Let the search item be 100. Apply linear search.
 c. Let the search item be 92. Apply linear search.
 d. Apply selection sort.
 e. Apply insertion sort.
 f. Apply bubble sort.
 g. Assume that array is sorted. Let the search item be 9. Apply binary search.
 h. Assume that array is sorted. Let the search item be 100. Apply binary search.
 i. Assume that array is sorted. Let the search item be 92. Apply binary search.
 4. Consider the linear search method for a sorted array given in this chapter. Is the

order of if statements important?
 5. Consider the linear search method for a sorted array given in this chapter. Illustrate

through three diff erent examples how each of the three return statements are executed.
 6. Assume that array L has the following 12 items: 2, 4, 7, 10, 14, 18, 22, 24, 29, 40, 45,

and 57. What value of the search item will result in
 a. Th e maximum number of comparisons in the case of linear search algorithm?
 b. Th e minimum number of comparisons in the case of linear search algorithm?
 c. Th e maximum number of comparisons in the case of binary search algorithm?
 d. Th e minimum number of comparisons in the case of binary algorithm?
 7. Give a sample data consisting of 10 values that will result in
 a. Th e maximum number of comparisons in the case of selection sort.
 b. Th e minimum number of comparisons in the case of selection sort.
 c. Th e maximum number of comparisons in the case of insertion sort.
 d. Th e minimum number of comparisons in the case of insertion sort.
 e. Th e maximum number of comparisons in the case of bubble sort.
 f. Th e minimum number of comparisons in the case of bubble sort.
 8. What is the time complexity of an algorithm if the time complexity satisfi es the

 following equations:
 a. T(n) = T(n − 2) + 1 and T(1) = T(0) = 1.
 b. T(n) = T(n − 3) + 1 and T(2) = T(1) = T(0) = 1.
 c. T(n) = T(n/2) + 2 and T(1) = T(0) = 1.
 d. T(n) = T(n/3) + 2 and T(1) = T(0) = 1.

CRC_C6547_CH010.indd 643CRC_C6547_CH010.indd 643 10/1/2008 6:10:04 PM10/1/2008 6:10:04 PM

Apago PDF Enhancer

644 ■ Java Programming Fundamentals

PROGRAMMING EXERCISES
 1. Modify the class LinearSearch so that searching can be done on a Double array.
 2. Modify the class LinearSearch so that searching can be done on a Double

ArrayList.
 3. Modify the class BinarySearch so that searching can be done on a Double array.
 4. Modify the class BinarySearch so that searching can be done on a Double

ArrayList.

 5. Modify the class BinarySearch so that searching can be done on an array of
Student.

 6. Modify the class BinarySearch so that searching can be done on an ArrayList
of Student.

 7. Modify the selection sort so that if minIndex and i are the same, swap is not neces-
sary and as such no action is carried out.

 8. Instead of fi nding the minimum value, selection sort can be modifi ed to fi nd maxi-
mum and minimum alternatively. Implement such a variation of the selection sort on
an int array.

 9. Perform an empirical comparison of selection sort with new selection sort described
in Programming Exercise 8.

 10. Perform an empirical comparison of selection sort, insertion sort, and bubble sort.
 11. Write a program comparing the number of array location accessed by each of the

sorting algorithms. (Hint: Let sorting method return this value. Memory access
involves both reading from the location and writing back to the location.)

 12. Create a class EnglishFrenchDictionary with the following three methods:
loadData, toEnglish, and toFrench. LoadData is read in a pair of values
from a fi le, where each pair is an English word and its equivalent French word. Test
your program on a fi le. If an English word has no equivalent word in the English-
FrenchDictionary, then the translation should print the word as it is.

ANSWERS TO SELF-CHECK
 1. Binary search, linear search.
 2. Binary search
 3. Change (intData[i] > searchItem) to (intData[i] < searchItem).
 4. No
 5. True
 6. False
 7. doubled
 8. increased by a very small amount

CRC_C6547_CH010.indd 644CRC_C6547_CH010.indd 644 10/1/2008 6:10:04 PM10/1/2008 6:10:04 PM

Apago PDF Enhancer

Search and Sort ■ 645

 9. O(n)
 10. O(log2 n)
 11. O(nlog2 n)
 12. O(nlog2 n)
 13. last
 14. O(n2)
 15. unsorted, sorted
 16. O(n2)
 17. O(n2)
 18. O(n)

CRC_C6547_CH010.indd 645CRC_C6547_CH010.indd 645 10/1/2008 6:10:04 PM10/1/2008 6:10:04 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

647

C H A P T E R 11

Defensive Programming

In this chapter you learn

Java concepts
Exceptions, checked and unchecked exceptions, throwing and catching of excep-
tions, and user-defi ned exception classes

Programming skills
Write robust programs by incorporating exception handling

INTRODUCTION
One of the most important qualities a program must possess is that of correctness. Th at is,
if the input values satisfy the preconditions, the program will produce the output consis-
tent with the specifi cation. However, program correctness does not guarantee any behavior
on the part of the program if one or more input values violate their respective precondi-
tions. All of us know the importance of defensive driving. Anticipating the unexpected
can defi nitely save us from many catastrophic accidents. Similarly, irrespective of whatever
precautions we take, some unexpected event or data can lead to catastrophic failure of the
entire soft ware. To avoid such an eventuality, you need to cultivate the habit of defensive
programming.

An exception is an abnormal condition that occurs during the program execution.
Following are some of the common exceptions:

 1. File not found or the failure to locate the input fi le specifi ed.
 2. Input mismatch such as the presence of a boolean literal when an int is expected.
 3. Division by zero due to the presence of a denominator that is zero.

A reliable program must not only be logically correct but also include code to handle
exceptional conditions.

•
•

•
•

CRC_C6547_CH011.indd 647CRC_C6547_CH011.indd 647 10/3/2008 12:40:42 PM10/3/2008 12:40:42 PM

Apago PDF Enhancer

648 ■ Java Programming Fundamentals

During program execution, if an exception occurs, we say an exception is thrown. Once
the exception is thrown, the program will terminate unless there is a code to handle the
exception. Execution of the matching exception-handling code is called the catching of the
exception.

Self-Check

 1. An exception is an that occurs during the program execution.
 2. Once the exception is thrown, the program will unless there is a

code to handle the exception.

EXCEPTION AND ERROR
Recall that in Java, every class is a subclass of the Object class. One of the subclasses of
the Object class is the Throwable class. Th e Throwable class has two subclasses,
Exception class and Error class. Exceptions are thrown if an abnormal condition that
can possibly be corrected occurs during the program execution. Th e presence of a boolean
literal when an int literal is expected is an example of an abnormal condition that can be
corrected. Errors are thrown if an abnormal condition that cannot be corrected occurs
during the program execution. Th e system can no longer allocate additional memory
requested by the program in an abnormal condition that cannot be corrected.

Self-Check

 3. Th e Throwable class has two subclasses, class and class.
 4. Th e presence of a double literal when an int literal is expected is an example

of an .

Unchecked and Checked Exceptions

Java has a number of predefi ned exceptions and they are all subclasses of the Exception
class (Figure 11.1). Th ere are two types of exceptions in Java, unchecked and checked excep-
tions. All unchecked exceptions have RuntimeException class in their inheritance
hierarchy. Most commonly occurring exceptions are unchecked exceptions and quite oft en
they represent an error in the program such as passing an invalid argument during method
invocation. IndexOutOfBoundsException, which you have seen in Chapter 9, is an
example of unchecked exception. Observe that there is a logical error in this situation. In
a typical program, there can be many unchecked exceptions and they can occur in many
statements. Th erefore, from a cost–reward perspective, it is not worth checking them.
Java compiler does not require you to declare or catch an unchecked exception. Th us,
as a programmer you have the option. You can handle an unchecked exception similar
to a checked exception.

A checked exception does not have RuntimeException class in its inheritance
hierarchy. FileNotFoundException and IOException, which you have seen in
 Chapter 5, are examples of a checked exception. A checked exception is not a logical error.
Rather, it represents an invalid condition occurring in areas outside the control of the

CRC_C6547_CH011.indd 648CRC_C6547_CH011.indd 648 10/3/2008 12:40:44 PM10/3/2008 12:40:44 PM

Apago PDF Enhancer

Defensive Programming ■ 649

program such as absence of fi les. A checked exception must be either declared or caught.
In other words, the compiler checks for the declaration of the exception or the cor-
responding exception-handling code in your program. In fact, you have seen the dec-
laration of exceptions in Chapter 5. In Example 5.1, you had declared two exceptions,
 FileNotFoundException and IOException, for the main method.

public static void main (String[] args) throws

 FileNotFoundException, IOException

Th e general syntax for declaring an exception is to include the method header with a
throws clause that lists all exceptions. Recall that in Java, list items are always separated
by a comma.

Table 11.1 lists some of the most commonly occurring exceptions.

Self-Check

 5. Java has a number of predefi ned exceptions and they are all subclasses of the
 class.

 6. All unchecked exceptions have class in their inheritance hierarchy.

Object

Exception

RuntimeException

Throwable

ArithemeticException

ArrayStoreException

ClassCastException

IllegalArgumentException

IllegalMonitorException

NumberFormatException

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

NegativeArrayException

NullPointerException

SecurityException

FIGURE 11.1 Part of Java’s exception hierarchy.

CRC_C6547_CH011.indd 649CRC_C6547_CH011.indd 649 10/3/2008 12:40:44 PM10/3/2008 12:40:44 PM

Apago PDF Enhancer

650 ■ Java Programming Fundamentals

THROWING AND CATCHING OF EXCEPTIONS
An exception is thrown either by the system or by the user. For example, if there is an input
mismatch, such as the expected input is an integer and instead the actual input happens to be a
character, the system will throw the unchecked exception InputMismatchException.
However, if the input value is out of range as far as the problem specifi cation is considered,
the system may not throw any exception. In such situations, it is the programmer’s respon-
sibility to provide the necessary code to throw appropriate exceptions.

As mentioned before, all checked exceptions need to be either declared or caught. If you
do not catch an exception, Java virtual machine (JVM) will catch the exception and the
program will terminate by printing the stacktrace.

To fully understand many of these concepts and what we mean by stacktrace, let us
consider an example.

Example 11.1

Suppose you want to fi nd the sum 1 + 1/2 + … + 1/n for a given input n. Clearly,
n has to be a positive integer. Here is the class with corresponding application

TABLE 11.1 Some of the Most Commonly Occurring Exceptions

Class Description Checked?

ArithmeticException Division by zero and other
arithmetic exceptions

No

ArrayIndexOutOfBoundsException subclass
of IndexOutOfBoundsException

Index is either negative or
greater than or equal to
array length

No

FileNotFoundException File cannot be found Yes

IllegalArgumentException Invoking a method with
illegal parameter

No

IndexOutOfBoundsException Index is either negative or
greater than or equal to the
length

No

InputMismatchException Th e token does not match the
pattern for the expected type

No

IOException All exceptions associated with
I/O operations

Yes

NullPointerException Th e reference variable has not
been instantiated

No

NumberFormatException subclass of
IllegalArgumentException

An illegal number format in
the actual parameter

No

StringIndexOutOfBoundsException
subclass of IndexOutOfBoundsException

Index is either negative or
greater than or equal to
string length

No

CRC_C6547_CH011.indd 650CRC_C6547_CH011.indd 650 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

Defensive Programming ■ 651

program and some sample test runs:

public class ComputeHarmonicOne

{

 /**

 Returns the sum 1/n + ...+ 1/2 + 1

 @params n a positive integer

 @return the sum 1/n + ...+ 1/2 + 1

 */

 public double harmonic(int n)

 {

 double sum = 1.0 / n;

 for (int k = n-1; k > 0; k--)

 {

 sum = sum + 1.0 / k;

 }

 return sum;

 }

}

import java.util.Scanner;

public class ComputeHarmonicOneApplication

{

 /**

 This application tests ComputeHarmonicOne

 class

 */

 public static void main(String[] args)

 {

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter a positive integer : ");

 int number = scannedInfo.nextInt();

 System.out.println();

 ComputeHarmonicOne computeHarmonic = new

ComputeHarmonicOne();

 double result = computeHarmonic.harmonic(number);

 System.out.println("The sum of first "+number+

" harmonic sequence is "+ result);

 }

}

Sample Run 1

Enter a positive integer : t

Exception in thread "main" java.util.InputMismatchException

CRC_C6547_CH011.indd 651CRC_C6547_CH011.indd 651 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

652 ■ Java Programming Fundamentals

 at java.util.Scanner.throwFor(Scanner.java:819)

 at java.util.Scanner.next(Scanner.java:1431)

 at java.util.Scanner.nextInt(Scanner.java:2040)

 at java.util.Scanner.nextInt(Scanner.java:2000)

 at ComputeHarmonicOneApplication.main

(ComputeHarmonicOneApplication.java:13)

Sample Run 2

Enter a positive integer : 0

The sum of first 0 harmonic sequence is Infinity

Sample Run 3

Enter a positive integer : -2

The sum of first -2 harmonic sequence is -0.5

From the sample runs of Example 11.1, the following points are worth mentioning:

 1. In the case of sample run 1, the program encountered the InputMismatch
Exception exception. Although the expected input was an integer, the actual
input entered was a character. Th is led to throwing of the InputMismatch
Exception exception. Since the user has not made any provisions to catch such
an exception, the system used its default exception-handling technique of printing
the stacktrace. Th e stacktrace not only identifi es the type of exception
thrown, but it also indicates the line (in this case, line 13 of the main) where an
exception was encountered.

 2. In the case of sample run 2, a division by zero has occurred. But Java proceeded
without causing any problem. Note that no exception was thrown by the Java sys-
tem. However, as a programmer, you can make provisions to throw and catch
exceptions in such situations.

 3. In the case of sample run 3, nothing illegal has happened. However, it does not make
sense to compute the harmonic sequence sum of fi rst n terms when n is negative.
Once again, it is the programmer’s responsibility to throw and catch exceptions.

Self-Check

 7. All checked exceptions need to be either or .
 8. If a program does not catch an exception, JVM will catch the exception and

the program will by printing the

Throwing Exception

You can throw an exception using the throw statement. Th e syntax template for the
throw statement is as follows:

throw exceptionInstance;

CRC_C6547_CH011.indd 652CRC_C6547_CH011.indd 652 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

Defensive Programming ■ 653

Note that throw is a keyword in Java. Th rowing an exception involves creating an
instance of the appropriate exception class and then using it in a throw statement.

Good Programming Practice 11.1

Use a helpful message as the actual parameter in the constructor of the appropriate
exception class so that the user can take the most suitable action.

Example 11.2

public class ComputeHarmonicTwo

{

 /**

 Returns the sum 1/n + ...+ 1/2 + 1

 @params n a positive integer

 @return the sum 1/n + ...+ 1/2 + 1

 */

 public double harmonic(int n)

 {

 if (n < 1)

 throw new IllegalArgumentException

("Argument cannot be less than 1");

 double sum = 1.0 / n;

 for (int k = n-1; k > 0; k--)

 {

 sum = sum + 1.0 / k;

 }

 return sum;

 }

}

import java.util.Scanner;

public class ComputeHarmonicTwoApplication

{

 /**

 This application tests ComputeHarmonicTwo

 class

 */

 public static void main(String[] args)

 {

 Scanner scannedInfo = new Scanner(System.in);

 System.out.print("Enter a positive integer : ");

 int number = scannedInfo.nextInt();

CRC_C6547_CH011.indd 653CRC_C6547_CH011.indd 653 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

654 ■ Java Programming Fundamentals

 System.out.println();

 ComputeHarmonicTwo computeHarmonic = new

ComputeHarmonicTwo();

 double result = computeHarmonic.harmonic(number);

 System.out.println("The sum of first "+ number +

" harmonic sequence is "+ result);

 }

}

Sample Run

Enter a positive integer : 0

Exception in thread "main"

java.lang.IllegalArgumentException:

Argument cannot be less than 1

 at ComputeHarmonicTwo.harmonic(ComputeHarmonicTwo.java:11)

 at ComputeHarmonicTwoApplication.main

 (ComputeHarmonicTwoApplication.java:16)

Observe that with this modifi cation, the program will no longer compute the har-
monic sequence sum if n is not a positive integer. Further, inspect the stacktrace
produced. Th e last line indicates that the error has occurred during the execution of
Line 16 of the main. Th e line above indicates that the exception was thrown by Line 11
of the fi le ComputeHarmonicTwo.java and it occurred during the invocation
of the method harmonic. Th us, stacktrace can clearly identify the statement,
execution of which resulted in the throwing of an exception. Note that the mes-
sage string "Argument cannot be less than 1" is also printed as part of the
stacktrace. In fact, getMessage and printStackTrace are two methods
of the Throwable class, the superclass of Exception class. Th us, those two
methods are always available to the programmer.

Self-Check

 9. Th rowing an exception involves creating an instance of the appropriate
class and then using it in a statement.

 10. Two methods of the Throwable class are and .

Catching Exception

To catch an exception, Java provides a try/catch/finally structure. Th e general
syntax of the try/catch/finally structure is as follows:

try

{

 statementsTry

}

CRC_C6547_CH011.indd 654CRC_C6547_CH011.indd 654 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

Defensive Programming ■ 655

catch (ExceptionOne e1)

{

 statementsOne

}

[[catch (ExceptionTwo e2)

{

 statementsTwo

}]

.

.

.

[catch (ExceptionN eN)

{

 statementsN

}]]

[finally

{

 statementsFinally

}]

Note that try, catch, and finally are reserved words and statementsTry,
statementsOne, statementsTwo, and so on can be one or more executable state-
ments. Th e semantics of the try/catch/finally structure (Figure 11.2) can be
explained as follows. If an exception is thrown inside a try block, execution of the state-
ments in that try block stops immediately and control is transferred to the fi rst match-
ing catch, and then to the finally block. Note that unlike the method invocation, the
control never returns to the try block. For example, the statementsTry is executed
in sequence. If no exception is thrown, all catch blocks are skipped and finally block
is executed. However, if an exception of the type ExceptionT is thrown during the
execution of any of the statements in the try block and ExceptionK is the very fi rst
exception class among ExceptionOne, ExceptionTwo, …, ExceptionN such that
ExceptionT is either ExceptionK or a subclass of ExceptionK, then the catch
block corresponding to ExceptionK followed by statements in finally block will be
executed. Th us, the optional finally block will always be executed. If an exception is
thrown, at most one catch block is being executed.

We now present a sequence of examples illustrating the try/catch/finally
structure.

Example 11.3

Th is being the very fi rst example on try/catch/finally structure, we apply
the most simplistic technique. Even though two types of exceptions can be thrown,
we use the fact that all exceptions are in fact subclasses of the Exception class;
thus, we use just one catch block instead of multiple catch blocks. Further, since

CRC_C6547_CH011.indd 655CRC_C6547_CH011.indd 655 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

656 ■ Java Programming Fundamentals

finally block is optional, we omit that also in this example. Th e user is given one
chance to correct the abnormal condition that caused the exception.

import java.util.*;

/**

 Demonstration of try/catch blocks

 This version has one catch block

*/

StatementsTry
ExceptionT thrown ExceptionOne

superclass of
ExceptionT

false

true
StatementOne

ExceptionTwo
superclass of
ExceptionT

false

true
StatementTwo

.

.

.

ExceptionN
superclass

of ExceptionT

false

true
StatementN

StatementsFinally

false

.

.

.
.
.
.

FIGURE 11.2 Th e try/catch/finally structure.

CRC_C6547_CH011.indd 656CRC_C6547_CH011.indd 656 10/3/2008 12:40:45 PM10/3/2008 12:40:45 PM

Apago PDF Enhancer

Defensive Programming ■ 657

public class TryCatchVersionOne

{

 public static void main(String[] args)

 {

 int number = 1;

 double result = 1.0;

 Scanner scannedInfo = new Scanner(System.in);

 ComputeHarmonicTwo computeHarmonic = new

ComputeHarmonicTwo();

 System.out.print("Enter a positive integer : ");

 try

 {

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (Exception e)

 {

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 System.out.println("The sum of first "+ number +

" harmonic sequence is "+ result);

 }

}

Sample Run 1

Enter a positive integer : t

Enter a POSITIVE INTEGER please : 3

The sum of first 3 harmonic sequence is 1.8333333333333333

Sample Run 2

Enter a positive integer : -3

Enter a POSITIVE INTEGER please : 5

The sum of first 5 harmonic sequence is 2.283333333333333

CRC_C6547_CH011.indd 657CRC_C6547_CH011.indd 657 10/3/2008 12:40:46 PM10/3/2008 12:40:46 PM

Apago PDF Enhancer

658 ■ Java Programming Fundamentals

Example 11.4

In this example, we illustrate the use of multiple catch blocks. Two types of excep-
tions can be thrown, and therefore we use two separate catch blocks.

import java.util.*;

/**

 Demonstration of try/catch blocks

 This version has multiple catch blocks

*/

public class TryCatchVersionTwo

{

 public static void main(String[] args)

 {

 int number = 1;

 double result = 1.0;

 Scanner scannedInfo = new Scanner(System.in);

 ComputeHarmonicTwo computeHarmonic = new

ComputeHarmonicTwo();

 System.out.print("Enter a positive integer : ");

 try

 {

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (IllegalArgumentException e)

 {

 System.out.println

("Data entered a 0 or a negative integer");

 System.out.print

("Enter a POSITIVE integer please : ");

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (InputMismatchException e)

 {

 System.out.println();

 System.out.println

("Data entered is not an integer ");

CRC_C6547_CH011.indd 658CRC_C6547_CH011.indd 658 10/3/2008 12:40:46 PM10/3/2008 12:40:46 PM

Apago PDF Enhancer

Defensive Programming ■ 659

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 System.out.println("The sum of first "+ number +

" harmonic sequence is "+ result);

 }

}

Sample Run 1

Enter a positive integer : t

Data entered is not an integer

Enter a POSITIVE INTEGER please : 3

The sum of first 3 harmonic sequence is 1.8333333333333333

Sample Run 2

Enter a positive integer : -3

Data entered a 0 or a negative integer

Enter a POSITIVE integer please : 5

The sum of first 5 harmonic sequence is 2.283333333333333

Note 11.1 Having multiple catch blocks enable the programmer to write the catch block
code specifi c to the exception. Th us, each type of exception can be handled diff erently.

Example 11.5

Recall that if an exception of the type ExceptionT is thrown during the execu-
tion of any of the statements in the try block and let ExceptionK be the very
fi rst exception class among ExceptionOne, ExceptionTwo, …, ExceptionN
such that ExceptionT is the same as ExceptionK or ExceptionK is in the
inheritance hierarchy of ExceptionT, then the catch block corresponding to
ExceptionK followed by finally block will be executed. Th erefore, the catch
blocks corresponding to exception subclasses must appear before the superclass.
Otherwise, the catch block corresponding to the subclass will never be executed.

Consider Example 11.3. Th ere are two catch blocks corresponding to two types
of exceptions, IllegalArgumentException and InputMismatchExcep
tion. Th ey both are subclasses of the Exception class. Th erefore, the catch
block corresponding to Exception must not appear before the catch block

CRC_C6547_CH011.indd 659CRC_C6547_CH011.indd 659 10/3/2008 12:40:46 PM10/3/2008 12:40:46 PM

Apago PDF Enhancer

660 ■ Java Programming Fundamentals

 corresponding to either one of the exceptions, IllegalArgumentException
or InputMismatchException.

Th e following code is thus incorrect and can be corrected by placing the catch
block corresponding to Exception as the last catch block:

import java.util.*;

/**

 Demonstration order of catch blocks

 The order of catch blocks is not correct

 Therefore version will not compile

*/

public class TryCatchVersionThree

{

 public static void main(String[] args)

 {

 int number = 1;

 double result = 1.0;

 Scanner scannedInfo = new Scanner(System.in);

 ComputeHarmonicTwo computeHarmonic = new

ComputeHarmonicTwo();

 System.out.print("Enter a positive integer : ");

 try

 {

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (Exception e)

 {

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (IllegalArgumentException e)

 {

 System.out.println

("Data entered a 0 or a negative integer");

 System.out.print

("Enter a POSITIVE integer please : ");

CRC_C6547_CH011.indd 660CRC_C6547_CH011.indd 660 10/3/2008 12:40:46 PM10/3/2008 12:40:46 PM

Apago PDF Enhancer

Defensive Programming ■ 661

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (InputMismatchException e)

 {

 System.out.println();

 System.out.println

("Data entered is not an integer ");

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 System.out.println("The sum of first "+number+

" harmonic sequence is "+ result);

 }

}

If you compile the above code, you may get an error message similar to the
following:

C:\...\TryCatchVersionThree.java:32:exception

java.lang.IllegalArgumentException has already been caught

catch (IllegalArgumentException e)

 ^

C:\...\TryCatchVersionThree.java:41:exception

java.util.InputMismatchException has already been caught

catch (InputMismatchException e)

 ̂

2 errors

Example 11.6

Th e aim of this example is to show the basic technique involved in allowing
 unlimited prompts to get correct input values. Starting with the program presented
in Example 11.3, we have the following:

import java.util.*;

/**

 Demonstration of Try/Catch/Finally blocks

 This version allows unlimited data entry

CRC_C6547_CH011.indd 661CRC_C6547_CH011.indd 661 10/3/2008 12:40:46 PM10/3/2008 12:40:46 PM

Apago PDF Enhancer

662 ■ Java Programming Fundamentals

*/

public class TryCatchFinally

{

 public static void main(String[] args)

 {

 int number = 1;

 double result = 1.0;

 boolean gotData = false;

 Scanner scannedInfo = new Scanner(System.in);

 ComputeHarmonicTwo computeHarmonic = new

ComputeHarmonicTwo();

 System.out.print("Enter a positive integer : ");

 while (!gotData)

 {

 try

 {

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 gotData = true;

 }

 catch (IllegalArgumentException e)

 {

 System.out.println

("Data entered a 0 or a negative integer");

 System.out.print

("Enter a POSITIVE integer please : ");

 }

 catch (InputMismatchException e)

 {

 System.out.println();

 System.out.println

("Data entered is not an integer ");

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 }

 finally

 {

 scannedInfo.nextLine();

 }

 }

CRC_C6547_CH011.indd 662CRC_C6547_CH011.indd 662 10/3/2008 12:40:46 PM10/3/2008 12:40:46 PM

Apago PDF Enhancer

Defensive Programming ■ 663

 System.out.println("The sum of first "+number+

" harmonic sequence is "+ result);

 }

}

Output

Enter a positive integer : t

Data entered is not an integer

Enter a POSITIVE INTEGER please : -3

Data entered a 0 or a negative integer

Enter a POSITIVE integer please : 2.25

Data entered is not an integer

Enter a POSITIVE INTEGER please : A

Data entered is not an integer

Enter a POSITIVE INTEGER please : 5

The sum of first 5 harmonic sequence is 2.283333333333333

Self-Check

 11. If no exception is thrown, all blocks are skipped and
block is executed.

 12. If an exception is thrown, at most one block followed by
block is executed.

Advanced Topic 11.1: Design Options for catch Block

During the program execution, if an exception occurs within a try block, one of the
catch block is executed. A catch block can be designed in three diff erent ways:

 1. Complete handling. Process the exception completely.
 2. Partial handling. Process partially and then throw the same exception or a diff erent

exception.
 3. Minimal handling. throw the same exception.

All the examples you have seen so far fall under complete handling. If the catch block
is unable to completely rectify the abnormal condition, then one option is to perform what-
ever tasks possible at the current context and let the calling context take care of the rest of
the tasks. In a sense, minimal handling is just a special case of partial handling. Th erefore,
in this section, we only provide an example of partial handling.

CRC_C6547_CH011.indd 663CRC_C6547_CH011.indd 663 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

664 ■ Java Programming Fundamentals

Example 11.7

In this example, the harmonic method does a partial handling of the exception and
then throws the same exception so that the method main can handle the rest; in this
case, reading the input again.

public class ComputeHarmonicThree

{

 /**

 Returns the sum 1/n + ... + 1/2 + 1

 @params n a positive integer

 @return the sum 1/n + ... + 1/2 + 1

 */

 public double harmonic(int n)

 {

 try

 {

 if (n < 1)

 throw new IllegalArgumentException

("Argument cannot be less than 1");

 }

 catch (IllegalArgumentException e)

 {

 System.out.println("Illegal Argument Exception

occurred");

 System.out.println("Partially handled.");

 System.out.print("Let the calling environment");

 System.out.println(" do the rest");

 throw e;

 }

 double sum = 1.0 / n;

 for (int k = n-1; k > 0; k--)

 {

 sum = sum + 1.0 / k;

 }

 return sum;

 }

}

import java.util.*;

/**

 Demonstration of try/catch blocks

CRC_C6547_CH011.indd 664CRC_C6547_CH011.indd 664 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

Defensive Programming ■ 665

 This version has one catch block

*/

public class CatchDesignOption

{

 public static void main(String[] args)

 {

 int number = 1;

 double result = 1.0;

 Scanner scannedInfo = new Scanner(System.in);

 ComputeHarmonicThree computeHarmonic

= new ComputeHarmonicThree();

 System.out.print("Enter a positive integer : ");

 try

 {

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 catch (Exception e)

 {

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 scannedInfo.nextLine();

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 }

 System.out.println("The sum of first "+number+

" harmonic sequence is "+ result);

 }

}

Output

Enter a positive integer : -10

Illegal Argument Exception occurred

Partially handled.

Let the calling environment do the rest

Enter a POSITIVE INTEGER please : 10

The sum of first 10 harmonic sequence is 2.9289682539682538

CRC_C6547_CH011.indd 665CRC_C6547_CH011.indd 665 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

666 ■ Java Programming Fundamentals

Advanced Topic 11.2: User-Defi ned Exception Class

You can extend any exception class of Java to tailor your own needs. Recall that the
Exception class is a subclass of Throwable class and therefore all exception classes inherit
getMessage and printStackTrace methods of the Throwable class. In particular,
the user-defi ned exception class will also inherit these two methods. Quite oft en, all you
need is to provide the constructors for the exception class you create.

Example 11.8

In this example, we create a new exception class called NegativeInteger
Exception by extending the Exception class and use it in the main.

public class NegativeIntegerException

{

 public NegativeIntegerException()

 {

 super("Non-negative integer is required");

 }

}

public class ComputeHarmonicFour

{

 /**

 Returns the sum 1/n + ...+ 1/2 + 1

 @params n a positive integer

 @return the sum 1/n + ...+ 1/2 + 1

 */

 public double harmonic(int n)

 {

 try

 {

 if (n < 1)

throw new NegativeIntegerException();

 }

 double sum = 1.0 / n;

 for (int k = n-1; k > 0; k--)

 {

 sum = sum + 1.0 / k;

 }

 return sum;

 }

}

CRC_C6547_CH011.indd 666CRC_C6547_CH011.indd 666 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

Defensive Programming ■ 667

import java.util.*;

/**

 Demonstration of try/catch blocks

 This version has multiple catch blocks

*/

public class UserDefinedIllustrated

{

 public static void main(String[] args)

 {

 int number = 1;

 double result = 1.0;

 boolean gotData = false;

 Scanner scannedInfo = new Scanner(System.in);

 ComputeHarmonicFour computeHarmonic

= new ComputeHarmonicFour();

 System.out.print("Enter a positive integer : ");

 while (!gotData)

 {

 try

 {

 number = scannedInfo.nextInt();

 System.out.println();

 result = computeHarmonic.harmonic(number);

 gotData = true;

 }

 catch (NegativeIntegerException e)

 {

 System.out.println

("Data entered a 0 or a negative integer");

 System.out.print

("Enter a POSITIVE integer please : ");

 }

 catch (InputMismatchException e)

 {

 System.out.println();

 System.out.println

("Data entered is not an integer ");

 System.out.print

("Enter a POSITIVE INTEGER please : ");

 }

 finally

CRC_C6547_CH011.indd 667CRC_C6547_CH011.indd 667 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

668 ■ Java Programming Fundamentals

 {

 scannedInfo.nextLine();

 }

 }

 System.out.println("The sum of first "+number+

" harmonic sequence is "+ result);

 }

}

Output

Enter a positive integer : -20

Non-negative integer is required

Enter a POSITIVE INTEGER please : 20

The sum of first 20 harmonic sequence is 3.597739657143682

Advanced Topic 11.3: Design Options for Exception Handling

Th ere are three diff erent choices for exception handling. Th ey are as follows:

 1. Terminate the program. In certain situations, the best option is indeed to terminate
the program. Assume that your program is supposed to process data received from
an external source. If the source is not feeding in the correct data, there is no reason
to continue. Th us, the best choice is to terminate the program aft er sending an appro-
priate error message.

 2. Rectify and continue. In many cases, it may be possible to rectify the error. A classical
example is the user authorization. If you enter a wrong password, the system will not
terminate. Rather, it will prompt the user for the correct password.

 3. Record and continue. In this case, you may record the abnormal condition in a log fi le
and proceed further. Th is option is most suitable in a batch-processing system.

REVIEW
 1. One of the most important qualities a program must possess is that of correctness.
 2. An exception is an abnormal condition that occurs during the program execution.
 3. During program execution, if an exception occurs, we say an exception is thrown.
 4. Once the exception is thrown, the program will terminate unless there is a code to

handle the exception.
 5. Execution of the matching exception-handling code is called the catching of the

exception.
 6. Java has a number of predefi ned exceptions and they are all subclasses of the Excep-

tion class.

CRC_C6547_CH011.indd 668CRC_C6547_CH011.indd 668 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

Defensive Programming ■ 669

 7. Th ere are two types of exceptions in Java, unchecked and checked exceptions.
 8. All unchecked exceptions have RuntimeException class in their inheritance

hierarchy.
 9. Most commonly occurring exceptions are unchecked exceptions.
 10. A checked exception does not have RuntimeException class in its inheritance

hierarchy.
 11. An exception is thrown either by the system or by the user.
 12. All checked exceptions needs to be either declared or caught.
 13. Th rowing an exception involves creating an instance of the appropriate exception

class and then using it in a throw statement.
 14. Th e optional finally block will always be executed.
 15. If an exception is thrown, at most one catch block is executed.
 16. A catch block can be designed in three diff erent ways: process the exception com-

pletely, process partially and then throw the same exception or a diff erent excep-
tion, and throw the same exception.

 17. Exception class is a subclass of Throwable class and therefore all exception
classes inherit getMessage and printStackTrace methods of the Throw-
able class.

EXERCISES
 1. Mark the following statements as true or false:
 a. In Java, Exception is a subclass of Error.
 b. One of the subclasses of Exception is Throwable.
 c. PrintStackTrace is a method of the Throwable class.
 d. Every checked exception must be either declared or caught in the program.
 e. If an exception occurs, at most one catch block is executed.
 f. Th e finally block is executed only if none of the catch block is executed.
 g. Once an exception is caught, it cannot be thrown.
 h. All unchecked exceptions are ignored by the system.
 i. As soon as an exception is thrown, the try block is exited.
 j. Once an exception is handled, the control goes back to the try block and starts

executing the very next statement aft er the one that caused the exception.
 k. In Java, user-defi ned exception classes are allowed.
 2. Fill in the blanks.
 a. An abnormal condition that can be corrected is an and an abnormal

condition that cannot be corrected is an .
 b. Two methods of the Throwable class are and .

CRC_C6547_CH011.indd 669CRC_C6547_CH011.indd 669 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

670 ■ Java Programming Fundamentals

 c. An exception can be either a or an one.
 d. Throwable class has two subclasses and .
 e. Every user-defi ned exception must have class in its inheritance

hierarchy.
 f. Th e keyword is used to throw an exception and the keyword

 is used to declare an exception, respectively.
 3. Answer questions on the basis of the following error message:
 Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException:

101 at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java:12)
 a. Is the above error a syntax error?
 b. Is the above error an execution error?
 c. What is the exact reason for the above error?
 d. What is the signifi cance of 101?
 e. What is the signifi cance of 12?
 f. What is the signifi cance of ArrayIndexOutOfBounds.java?
 g. What is the signifi cance of java.lang?
 h. What is the signifi cance of ArrayIndexOutOfBoundsException?
 4. Answer the following questions on the basis of Example 11.6:
 a. What is the purpose of finally block?
 b. Can the order of catch blocks be interchanged? Justify the answer.
 c. Give examples of input that will throw each one of the exceptions caught in the

program.
 d. Explain what happens if one of those exceptions is not caught.

PROGRAMMING EXERCISES
 1. Redo Programming Exercise 1 of Chapter 5 by including necessary exception-han-

dling code so that if the user enters anything other than a positive digit, the user is
given unlimited number of chances to enter the correct data.

 2. Redo Programming Exercise 4 of Chapter 5 by including necessary exception-han-
dling code so that if the user enters anything other than an integer, the user is given
unlimited number of chances to enter the correct data.

 3. Redo Programming Exercise 13 of Chapter 5 by including necessary exception-
handling code so that if the user enters a string with characters not in the telephone
pad, the user is given unlimited number of chances to enter the correct data.

 4. Redo Programming Exercise 2 of Chapter 4 by including necessary exception-han-
dling code so that all three data values are positive and the user is given unlimited
number of chances to enter the correct data.

CRC_C6547_CH011.indd 670CRC_C6547_CH011.indd 670 10/3/2008 12:40:47 PM10/3/2008 12:40:47 PM

Apago PDF Enhancer

Defensive Programming ■ 671

 5. Redo Programming Exercise 4 of Chapter 4 by including necessary exception-handling
code so that if the data entered is not correct, the user is given exactly one chance to
select from a list of choices.

 6. Implement necessary exception-handling techniques so that if the fraction (see fraction
calculator at the end of Chapter 6) is zero, system will prompt the user for a new
fraction to perform inverse. Also, handle division by zero in the same way.

 7. Implement necessary exception-handling code in Programming Exercise 2 of Chapter 7
so that both width and length are positive. Create your own exception class or classes.

 8. Implement necessary exception-handling code in Programming Exercise 9 of
Chapter 9 so that the user will be given exactly one more chance to enter the correct
data. Use your own exception classes.

ANSWERS TO SELF-CHECK
 1. abnormal condition
 2. terminate
 3. Exception, Error
 4. exception
 5. Exception
 6. RuntimeException
 7. declared, caught
 8. terminate, stacktrace
 9. Exception, throw
 10. getMessage, printStackTrace
 11. catch, finally
 12. catch, finally

CRC_C6547_CH011.indd 671CRC_C6547_CH011.indd 671 10/3/2008 12:40:48 PM10/3/2008 12:40:48 PM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

673

Appendix A: Operator
Precedence

Operator Operand Types Operation Level Associativity

() Parentheses 0
. Member access 1 Left to right
[] Array subscripting
(..) Parameters in message

passing
++ Numeric variable Postincrement 1
–– Postdecrement
++ Numeric variable Preincrement 2 Right to left
–– Predecrement
+ Number Unary plus 2
– Unary minus
! Logical Logical NOT
~ Integer Bitwise NOT
new
(type)

Object instantiation 3
Type casting

* Number, number Multiplication 4 Left to right
/ Division
% Modulus
+ Number, number Addition 5
+ String, number Concatenation

Number, string
– Number, number Subtraction
<< Integer, integer Left shift 6
>> Right shift with sign

extension
>>> Right shift with zero

extension
< Number, number Less than 7
<= Less than or equal
> Greater than
>= Greater than or equal
instanceof Object reference,

class
Instance checking

== Any type, the same
type

Equality operators 8
!=

(Continued)

CRC_C6547_APPN.indd 673CRC_C6547_APPN.indd 673 10/2/2008 11:31:04 AM10/2/2008 11:31:04 AM

Apago PDF Enhancer

674 ■ Java Programming Fundamentals

Operator Operand Types Operation Level Associativity

& Boolean, boolean Logical AND (short
circuit)

9

Integer, integer Bitwise AND
^ Boolean, boolean Logical XOR 10

Integer, integer Bitwise XOR
| Boolean, boolean Logical OR (short circuit) 11

Integer, integer Bitwise OR
&& Boolean, boolean Logical AND 12

Integer, integer Bitwise AND
|| Boolean, boolean Logical OR 13

Integer, integer Bitwise OR
? : Logical exp, exp, exp 14 Right to left
=, +=, –=, Assignment and all

compound operators
15

*=, /=, %=,
 <<=, >>=,
>>>=
&=, |=, ^=

CRC_C6547_APPN.indd 674CRC_C6547_APPN.indd 674 10/2/2008 11:31:05 AM10/2/2008 11:31:05 AM

Apago PDF Enhancer

675

Appendix B: ASCII
Character Set

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT
1 NL VT FF CR SO SI DLE DC1 DC2 DC3
2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS
3 RS US SP ! “ # $ % & ‘
4 () * + , – . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ` a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ DEL

Th e rows of the table are numbered 0–12 and columns are numbered 0–9. Row numbers
stand for the rightmost digits of the character code 0–127 and column numbers stand for
the left digits of the character code. For example, character A is in row 6, column 5. Th us,
the character code of A is 65. Similarly, character g is in row 10, column 3. Th erefore, the
character code of g is 103.

Characters 0–31 and the character 127 are nonprintable. Th e description of abbreviations
used in the above table is as follows:

NUL Null character VT Vertical tab SYN Synchronous idle
SOH Start of header FF Form feed ETB End of transmitted block
STX Start of text CR Carriage return CAN Cancel
ETX End of text SO Shift out EM End of medium
EOT End of transmission SI Shift in SUB Substitute
ENQ Enquiry DLE Data link escape ESC Escape
ACK Acknowledge DC1 Device control 1 FS File separator
BEL Bell DC2 Device control 2 GS Group separator

(Continued)

CRC_C6547_APPN.indd 675CRC_C6547_APPN.indd 675 10/2/2008 11:31:05 AM10/2/2008 11:31:05 AM

Apago PDF Enhancer

676 ■ Java Programming Fundamentals

BS Backspace DC3 Device control 3 RS Record separator
HT Horizontal tab DC4 Device control 4 US Unit separator
LF Line feed NAK Negative acknowledge DEL Delete

Character 32 is the space character produced by pressing the space bar. More details on
ASCII character set can be found at en.wikipedia.org/wiki/ASCII.

CRC_C6547_APPN.indd 676CRC_C6547_APPN.indd 676 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

Apago PDF Enhancer

677

Appendix C: Keywords

abstract : used in class and method defi nition. An abstract class cannot be instantiated. An
abstract method declares a method without providing implementation.

assert : used to explicitly state an assumed condition.
boolean : used for data type declaration. Th is is one of the eight primitive data types in

Java.
break : used to skip remaining statements in the current block statement and transfer

 control to the fi rst statement following the current block.
byte : used for data type declaration. Th is is one of the eight primitive data types in Java.
case : used in a switch statement.
catch : used in connection with a try block.
char : used for data type declaration. Th is is one of the eight primitive data types in Java.
class : used for defi ning a class.
const : currently not used.
continue : used to skip remaining statements for the current iteration in a loop statement.
do : used in a do … while statement.
double : used for data type declaration. Th is is one of the eight primitive data types in

Java.
else : used in an if … else statement.
enum : used to declare an enumerated type.
extends : used to specify the superclass in a subclass defi nition.
false : boolean literal.
fi nal : used to specify a class, method, or variable cannot be changed.
fi nally : used in connection with a try block.
fl oat : used for data type declaration. Th is is one of the eight primitive data types in Java.
for : used in a for statement.
goto : currently not used.
if : used in if and if … else statements.
implements : used to declare the interfaces implemented in the current class.
import : used to declare the packages need to be imported.
instanceof : used as a binary operator to determine whether or not an object is an instance

of a class.
int : used for data type declaration. Th is is one of the eight primitive data types in Java.
interface : used to declare a special type of class in Java.

CRC_C6547_APPN.indd 677CRC_C6547_APPN.indd 677 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

Apago PDF Enhancer

678 ■ Java Programming Fundamentals

long : used for data type declaration. Th is is one of the eight primitive data types in Java.
native : used in method declaration to specify that the method is not implemented in Java

but in another programming language.
new : used to create an instance of a class or array.
null : reference literal to indicate that the reference variable references no object.
package : used to declare a package.
private : used to declare a class, method, or variable has private access.
protected : used to declare a class, method, or variable has protected access.
public : used to declare a class, method, or variable has public access.
return : used to transfer the control back from the current method.
short : used for data type declaration. Th is is one of the eight primitive data types in Java.
static : used to declare an inner class, method, or variable has static context.
strictfp : used to restrict precision and rounding in fl oating point computations.
super : used to reference the object as an instance of its superclass.
switch : used in a switch control structure.
synchronized : used to acquire the mutex lock for an object during the execution of a

thread.
this : used to reference the object.
throw : used to throw an instance of the exception.
throws : used in method declaration to specify exceptions not handled by the method.
transient : used to declare an instance variable is not part of the serialized form of an

object.
true : boolean literal.
try : used in connection with a try block.
void : used in method declaration to indicate that the method returns nothing, or a void

method.
volatile : used in variable declaration to indicate that the variable is modifi ed asynchro-

nously by other threads.
while : used in while and do … while control structures.

CRC_C6547_APPN.indd 678CRC_C6547_APPN.indd 678 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

Apago PDF Enhancer

679

Appendix D: Coding
Conventions

A summary of Java coding conventions can be found at http://java.sun.com/docs/
codeconv/index.html. Th is appendix presents a modifi ed version that is appropri-
ate for an academic programming course. In fact, we have followed these conventions
throughout this textbook and this is just a summary of what we have been following.

COMMENTS
Java comments can be grouped into two sets. Within the fi rst set, there are two types
of comments. Th ey are delimited by /* … */ and //. Th e fi rst type is used to comment
multiple lines and the second type is used to comment a single line. Th ese two types of
comments are called implementation comments and are used to explain the implementa-
tion of the code. Use multiple line comments to describe fi les, methods, data structures,
and algorithms. Use single line comments to further clarify a certain statement or method
invocation.

Th e second set of comments, known as documentation comments, is unique to Java.
Th ey are delimited by /** … */ and are used to describe the specifi cation of the code.
In fact, we have used this set of comments throughout this textbook and the reader must
already be familiar with it. Java development kit (JDK) comes with a tool called javadoc
that can create an HTML document similar to the offi cial Java documentation that is avail-
able at http://java.sun.com/javase/6/docs/api/ for Java libraries. In fact, Java
online documentation is created using javadoc.

INDENTATION, BLANK LINE, AND BLANK SPACE
Use a blank line to separate

Method defi nitions
Instance variables from methods

Use a blank space to separate operands from operators wherever possible to improve
readability.

•
•

CRC_C6547_APPN.indd 679CRC_C6547_APPN.indd 679 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

http://java.sun.com/docs/codeconv/index.html
http://java.sun.com/docs/codeconv/index.html
http://java.sun.com/javase/6/docs/api/

Apago PDF Enhancer

680 ■ Java Programming Fundamentals

Use indentation to show the logical structure of the program. For example, all statements
in a block statement corresponding to an if, if … else, while, for, and do … while
need to be indented. Java specifi cation recommends four spaces of indentation.

NAMING CONVENTIONS
Class and interface: Nouns with alphabet alone are used. First letter of each word is in

uppercase.
Method and instance variable, local variable, formal parameters: Nouns with alphabet

alone are used. First letter of each internal word is in uppercase and the fi rst letter is
in lowercase.

Named constants: Uppercase letters alone are used. Each internal word is separated by
the underscore character _.

Loop variables: Use single character such as i, j, k or meaningful names such as row,
col (for column).

File name: Java source fi le must have the same name as the class and it must have .java
extension.

BRACES
Curly braces are used to mark the beginning and end of blocks of code. Keep the braces
aligned vertically.

DECLARATIONS
Keep one declaration per line. Initialize all local variables. Place all instance variable
 declarations together and before any method defi nition. Keep all local variable declara-
tions together and at the beginning of a method before any executable statement.

EXECUTABLE STATEMENTS
Each executable statement must be placed in a single line. Control structures such as
if, if … else, while, for, and do … while need to be organized to show the
structure.

CRC_C6547_APPN.indd 680CRC_C6547_APPN.indd 680 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

Apago PDF Enhancer

681

Appendix E: JDK and
Documentation

Th e Java development kit (JDK) standard edition (SE) is free and is a collection of com-
mand line tools for developing Java soft ware. It is available for various platforms at http://
java.sun.com/javase/downloads/index.jsp. In this appendix, we give a brief
introduction to some of the tools included in the JDK soft ware.
javac is the Java compiler. It translates the Java source fi les into Java bytecode. Source

fi le must obey the naming conventions outlined in Appendix D. If there are no syntax
errors, the javac compiler will create a new fi le with extension .class having the same
name as the source fi le. Th e javac command line is

javac [options] sourceFilesSeperatedBySpace

In fact, just entering

javac

will produce the following explanation for the usage of the command:

Usage: javac <options> <source files>

where possible options include:

 -g Generate all debugging info

 -g:none Generate no debugging info

 -g:{lines,vars,source} Generate only some debugging info

 -nowarn Generate no warnings

 -verbose Output messages about what the

 compiler is doing

 -deprecation Output source locations where

 deprecated APIs are used

 -classpath <path> Specify where to find user class

 files and annotation processors

 -cp <path> Specify where to find user class

 files and annotation processors

CRC_C6547_APPN.indd 681CRC_C6547_APPN.indd 681 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

Apago PDF Enhancer

682 ■ Java Programming Fundamentals

 -sourcepath <path> Specify where to find input source

 files

 -bootclasspath <path> Override location of bootstrap class

 files

 -extdirs <dirs> Override location of installed

 extensions

 -endorseddirs <dirs> Override location of endorsed

 standards path

 -proc:{none,only} Control whether annotation processing

 and/or compilation is done

 -processor <class1> Names of the annotation processors to

 [,<class2>,<class3>...] run; bypasses default discovery

 process

 -processorpath <path> Specify where to find annotation

 processors

 -d <directory> Specify where to place generated

 class files

 -s <directory> Specify where to place generated

 source files

 -implicit:{none,class} Specify whether or not to generate

 class files for implicitly

 referenced files

 -encoding <encoding> Specify character encoding used by

 source files

 -source <release> Provide source compatibility with

 specified release

 -target <release> Generate class files for specific VM

 ersion

 -version Version information

 -help Print a synopsis of standard options

 -Akey[=value] Options to pass to annotation

 processors

 -X Print a synopsis of nonstandard

 options

 -J<flag> Pass <flag> directly to the runtime

 system

Th us, to compile HiThere.java fi le, all that is required is

javac HiThere.java

java is the Java interpreter. Java interpreter is used to run a Java application. Once the
.class fi le is created, you can run the Java application as follows:

java className

CRC_C6547_APPN.indd 682CRC_C6547_APPN.indd 682 10/2/2008 11:31:06 AM10/2/2008 11:31:06 AM

Apago PDF Enhancer

Appendix E: JDK and Documentation ■ 683

Once again, you could issue the command java to see all the options.
Th e appletviewer tool can be used to run an applet without using a web browser.
Th e javadoc tool will create a set of HTML documents from a .java fi le. For exam-

ple, to generate documentation for the Circle class presented in Chapter 7, the following
command is required:

javadoc circle.java

Th e fi les created are shown below:

stylesheet.css, package-tree.html, package-summary.html, package-

list, package-frame.html, overview-tree.html, index-all.html, index.

html, help-doc.html, deprecated-list.html, constant-values.html,

Circle.html, allclasses-noframe.html, allclasses-frame.html.

You could open the fi le index.html using a web browser and see the documentation
generated for the Circle class. Th e reader is encouraged to try this out.

CRC_C6547_APPN.indd 683CRC_C6547_APPN.indd 683 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

This page intentionally left blank

Apago PDF Enhancer

685

Appendix F: Solution to
Odd-Labeled Exercises

Solutions to odd-labeled components are provided for every exercise that has multiple
components. For example, in Chapter solutions to Exercise 2a, 2c and 2e are provided,
even though the exercise number is 2. If an exercise has no multiple components and is
even-numbered then no solution is provided. Exercise 6 of Chapter 1 has no multiple parts
and as such no solution is provided.

CHAPTER 1
 1. a. False
 c. True
 e. True
 g. False
 i. False
 k. True
 2. a. Microwave oven: Reheat, add 30 s
 c. Th ermostat: Set temperature to start AC, set temperature to start heating
 e. Telephone: Dial a number, hang up
 3. a. Class is a formal specifi cation or template of a real world object.
 c. Keeping data along with the operation on them together as one unit is known as

encapsulation.
 e. A client is an object that requests the service of another object.
 g. An interpreter is a soft ware that translates each line of a program and executes it.
 i. A linker is a system soft ware that links a user’s bytecode program with other

 necessary precompiled programs to create a complete executable bytecode
program.

 4. a. 101001
 c. 40
 e. 68

CRC_C6547_APPN.indd 685CRC_C6547_APPN.indd 685 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

686 ■ Java Programming Fundamentals

 g. 63
 i. HelloThere.java
 k. Syntax error
 5. Purpose of memory is to speed up the computation. Compared to the speed of the

CPU, secondary storage devices are very slow.
 7. Th rough the introduction of a Java virtual machine (JVM). Java is compiled to

 bytecode and JVM interprets the bytecode on the specifi c platform.
 9. For functional requirement see solution to exercise 2. Only nonfunctional requirement

is listed here.
 a. Microwave oven: Outside color must be white or silver.
 c. Th ermostat: Must not weigh more than 8 oz.
 e. Telephone: Must not weigh more than 3 oz.
 11.

Online shopping

Order item

Customer
Search item

Post comments

Rate item

Database

Maintenance

Administrator

CRC_C6547_APPN.indd 686CRC_C6547_APPN.indd 686 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 687

CHAPTER 2
 1. a. True
 c. True
 e. False
 g. True
 i. False
 k. False
 m. False
 o. False
 q. True
 s. True
 u. True
 2. a. Invalid; space not allowed
 c. Invalid; ? not allowed
 e. Invalid; fi rst character cannot be a numeric
 g. Valid; not a good choice
 i. Invalid; % not allowed
 k. Valid
 m. Valid
 o. Invalid; – not allowed
 q. Invalid; / not allowed
 s. Valid
 3. a. (i)
 c. (iii)
 e. (ii)
 g. (i)
 4. a. a = 7, b = 5, c = 9
 c. x = 10.7, y = 10.7
 e. a = 2, b = 10, x = 70.0
 g. A double value (x) cannot be used to assign an int (b)
 i. b = 9, x = 7.0, y = 2.0
 k. x = 11.0, y = 8.0
 m. Division by zero error since a = 0
 o. y = 2.0
 q. b = 20, c = 10

CRC_C6547_APPN.indd 687CRC_C6547_APPN.indd 687 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

688 ■ Java Programming Fundamentals

 5. a. Valid
 c. Use comma, not semicolon, int a, b = 5, c;
 e. String cannot initialize a char, char space = ' ';
 6. a. Valid
 c. Valid
 e. Valid
 g. Valid
 7. a. double a, b;
 c. x = x - 17.5;
 e. k++;
 g. Scanner sc = new Scanner(System.in);
 k. = sc.nextInt();
 i. System.out.println("How are you");
 9. b = 31, c = 1, d = –106, e = 106
 11. a. Th ere is an extra " before)
 c. Subtraction from a String not allowed
 e. b/c = 0
 g. 1b = b + c
 12. a. Th ere is an extra " before)
 c. Subtraction from a String not allowed
 e. b/c = 0.7777777777777778
 g. 16.0 = b + c
 13. a. System.out.println("Good Morning America!");
 c. System.out.println("\"Good Morning America\" ");
 e. System.out.println("/Good Morning America\\");
 14. Th e syntax error corrected versions are as follows, wherein the commented lines are

modifi ed:
 a. //public void class SyntaxErrOne

public class SyntaxErrOne

{

 //final ratio = 1.8;

 static final double ratio = 1.8;

 //static public main(String args())

 public static void main(String[] args)

 {

 //int b = c = 10;

CRC_C6547_APPN.indd 688CRC_C6547_APPN.indd 688 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 689

 int b = 10, c = 10;

 //d = c + 5;

 int d = c + 5;

 //c = C - 10;

 c = c - 10;

 b = d/c;

 //ratio = b / d;

 //Cannot change the value of a final variable

 //system.out.println("b = + ", b);
 System.out.println("b = " + b);

 //System.out.println("c = ", b);
 System.out.println("c = " + b);
 System.out.println("Ratio = " + b / d);
 }

}

 c. //void public class SyntaxErrorThree
public class SyntaxErrorThree

{

 //final int OFFSET 32;

 final static int OFFSET = 32;

 //void public main(String args())

 public static void main(String[] args)

 {

 //int b; c = 7; d;

 int b, c = 7, d;

 d = c + 5;

 //c = d - b;

 // b needs to be initialized.

 b = d/c;

 //c = b % OFFSET++;

 //c = b % (OFFSET + 1);

 //c++ = d + b;

 //left-hand side has to be a variable.

 c = d + b + 1;

 //system.out.println("B = + ", b);
 System.out.println("B =" + b);

 //System.out.println("C = ", c);
 System.out.println("C = "+ c);
 System.out.println("D " + d);
 }

}

CRC_C6547_APPN.indd 689CRC_C6547_APPN.indd 689 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

690 ■ Java Programming Fundamentals

 15. a. u -= 1;
 c. u *= (v/u – w);
 e. u %= v;
 16. a. u = u – (v + w);
 c. v = v *(u++);
 e. u = u + (v % w);
 17. a. Class Book; Attributes: title, author, publisher, price, isbn;

corresponding get and set methods.
 c. Class House; Attributes: streetName, city, state, value, year-

Built; corresponding get and set methods.
 e. Class Attraction; Attributes: Name, city, state, phoneNumber;

corresponding get and set methods.
 18. a. Me and you are objects of Person class, ball currently in use is an object of Ball

class.
 c. Jack and Mark are objects of Person class, Mark’s dog is an object of Dog class.
 e. Joy is an object of Person class, the cycle he bought is an object of Cycle class,

Cycle sport in an object of Retailer class.

CHAPTER 3
 1. a. False
 c. True
 e. False
 g. False
 i. True
 k. True
 2. a. Invalid; method next returns a String and is assigned to an int variable.
 c. Invalid; method nextInt has no parameter. Th e variable a must follow int as

in (b).
 e. Invalid; wrong way to invoke charAt. See (g).
 g. Valid.
 i. Invalid; type mismatch. See (g).
 k. Invalid; missing the pair ().
 m. Invalid; println is a void method.
 o. Valid.
 q. Invalid; See (p).
 s. Valid.
 u. Invalid; wrong way to invoke the method setNumberOfShares.

CRC_C6547_APPN.indd 690CRC_C6547_APPN.indd 690 10/2/2008 11:31:07 AM10/2/2008 11:31:07 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 691

 3. a. (i)
 c. (ii)
 e. (ii)
 g. (ii)
 4. a. Valid.
 c. Valid.
 e. Invalid; println is a void method.
 g. Invalid; println is a void method.
 i. Valid.
 5. a. public static void is the order.
 c. public void or public boolean; public must appear fi rst followed by

either boolean or void.
 e. private static String is the order; missing ().
 g. Formal parameter list int, int must include parameters, such as int a,

int b.
 6. a. Replace void by double.
 c. Missing ().
 e. Omit double in the statement double amount = amt; in the body.
 g. Correct; return quantity; is all that is required.
 i. Replace return; by return cost; statement.
 7. a. public String getProductName(){return productName;}
 public double getPrice(){return price;}

 public int getOnHand(){return onHand;}

 public boolean getIsBackOrder(){return isBackOrder;}

 public char getDeptCode(){return deptCode;}

 c. public String toString(){return "product Name is "+ pro-
ductName + "price is " + price;}

 e. public void priceChange(double pct){price = (1 + pct) *
price;}

CHAPTER 4
 1. a. True
 c. False
 e. True
 g. True
 i. True

CRC_C6547_APPN.indd 691CRC_C6547_APPN.indd 691 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

692 ■ Java Programming Fundamentals

 2. a. Good Morning
 c. Good Night
 e. No output. Syntax error: else has no matching if
 g. Good
 i. Good
 k. ExcellentAcceptable
 m. No output. Syntax error: else has no matching if
 3. a. Syntax errors: Th ere is no control variable case default, just default.
 c. Syntax error: Duplicate label not allowed.
 e. Syntax error: Th ere is no case all.
 4. a. k = 8
 n = 0
 m = 16
 c. k = 8
 n = 9

 m = 24

 5. a. k = 10
 n = 9
 m = 24
 c. k = 9
 n = 0
 m = 20
 6. a. k = 8
 n = 0
 m = 16
 c. k = 8
 n = 0
 m = 16

CHAPTER 5

 1. a. False
 c. True
 e. False
 g. False
 i. True
 k. True

CRC_C6547_APPN.indd 692CRC_C6547_APPN.indd 692 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 693

 2. a. x = 10, counter = 2
 x = 11, counter = 4

 x = 12, counter = 6

 x = 13, counter = 8

 x = 14, counter = 10

 x = 15, counter = 12

 x = 16, counter = 14

 x = 17, counter = 16

 c. x = 9, counter = 3
 x = 8, counter = 4
 x = 7, counter = 5
 x = 6, counter = 6

 e. Syntax error: Compiler recognizes the empty statement as unreachable
 g. Syntax error: break outside the loop
 3. a. x = 10, counter = 0
 x = 9, counter = 1
 x = 8, counter = 2
 x = 7, counter = 3
 x = 6, counter = 4
 c. x = 10, counter = 0
 x = 10, counter = 1
 x = 10, counter = 2
 x = 10, counter = 3
 x = 10, counter = 4
 x = 10, counter = 5
 x = 10, counter = 6
 x = 10, counter = 7
 x = 10, counter = 8
 x = 10, counter = 9
 e. Syntax error: Compiler recognizes the empty statement as unreachable
 g. x = 30, counter = 0
 x = 27, counter = 3
 x = 24, counter = 6
 5. Any String that starts with * will work. For example, *** could be used.
 6. a. Scanner scannedInfo = new Scanner(System.in);

int count = 1;

CRC_C6547_APPN.indd 693CRC_C6547_APPN.indd 693 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

694 ■ Java Programming Fundamentals

int sum = 0;

while (count <= 10)

{

 sum = sum + scannedInfo.nextInt();

 count++;

}

 c. Scanner scannedInfo = new Scanner(System.in);
int count = 1;

int sum = 0;

do

{

 sum = sum + scannedInfo.nextInt();

 count++;

} while (count <= 10);

 7. a. Scanner scannedInfo = new Scanner(System.in);

int count = 1;

int evensum = 0;

int oddsum = 0;

int value;

while (count <= 10)

{

 value = scannedInfo.nextInt();

 if (value % 2 == 0)

 evensum = evensum + value;

 else

 oddsum = oddsum + value;

 count++;

}

System.out.println(evensum + " " + oddsum);

c. Scanner scannedInfo = new Scanner(System.in);
int count = 1;

int evensum = 0;

int oddsum = 0;

int value;

do

{

 value = scannedInfo.nextInt();

 if (value % 2 == 0)

 evensum = evensum + value;

CRC_C6547_APPN.indd 694CRC_C6547_APPN.indd 694 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 695

 else

 oddsum = oddsum + value;

 count++;

} while (count <= 10);

System.out.println(evensum + " " + oddsum);

 8. a. x = 1, counter = 1
x = 1, counter = 1

x = 2, counter = 1

x = 3, counter = 1

x = 4, counter = 1

x = 5, counter = 1

x = 6, counter = 1

x = 7, counter = 1

x = 8, counter = 1

x = 9, counter = 1

 c. Syntax error: Th e comma aft er -5 has to be a semicolon
 e. x = 1, counter = -5

x = 2, counter = -5

x = 1, counter = -5

x = 0, counter = -5

x = -1, counter = -5

x = -2, counter = -5

x = -3, counter = -5

x = -4, counter = -5

x = -5, counter = -3

x = 2, counter = -3

x = 1, counter = -3

x = 0, counter = -3

x = -1, counter = -3

x = -2, counter = -3

x = -3, counter = -3

x = -4, counter = -3

x = -5, counter = -1

x = 2, counter = -1

x = 1, counter = -1

CRC_C6547_APPN.indd 695CRC_C6547_APPN.indd 695 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

696 ■ Java Programming Fundamentals

x = 0, counter = -1

x = -1, counter = -1

x = -2, counter = -1

x = -3, counter = -1

x = -4, counter = -1

x = -5, counter = 1

x = 2, counter = 1

x = 1, counter = 1

x = 0, counter = 1

x = -1, counter = 1

x = -2, counter = 1

x = -3, counter = 1

x = -4, counter = 1

x = -5, counter = 3

x = 2, counter = 3

x = 1, counter = 3

x = 0, counter = 3

x = -1, counter = 3

x = -2, counter = 3

x = -3, counter = 3

x = -4, counter = 3

x = -5, counter = 5

x = 2, counter = 5

x = 1, counter = 5

x = 0, counter = 5

x = -1, counter = 5

x = -2, counter = 5

x = -3, counter = 5

x = -4, counter = 5

 g. x = 1, counter = -5
x = 2, counter = -5

x = 1, counter = -5

x = 0, counter = -5

x = -1, counter = -5

x = -2, counter = -5

x = -3, counter = -5

CRC_C6547_APPN.indd 696CRC_C6547_APPN.indd 696 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 697

x = -4, counter = -5

x = -5, counter = -4

x = 2, counter = -4

x = 1, counter = -4

x = 0, counter = -4

x = -1, counter = -4

x = -2, counter = -4

x = -3, counter = -4

x = -4, counter = -3

x = 2, counter = -3

x = 1, counter = -3

x = 0, counter = -3

x = -1, counter = -3

x = -2, counter = -3

x = -3, counter = -2

x = 2, counter = -2

x = 1, counter = -2

x = 0, counter = -2

x = -1, counter = -2

x = -2, counter = -1

x = 2, counter = -1

x = 1, counter = -1

x = 0, counter = -1

x = -1, counter = 0

x = 2, counter = 0

x = 1, counter = 0

x = 0, counter = 1

x = 2, counter = 1

x = 1, counter = 2

x = 2, counter = 3

x = 2, counter = 3

x = 1, counter = 3

x = 0, counter = 3

x = -1, counter = 3

x = -2, counter = 3

CRC_C6547_APPN.indd 697CRC_C6547_APPN.indd 697 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

698 ■ Java Programming Fundamentals

x = -3, counter = 3

x = -4, counter = 3

x = -5, counter = 4

x = 2, counter = 4

x = 1, counter = 4

x = 0, counter = 4

x = -1, counter = 4

x = -2, counter = 4

x = -3, counter = 4

x = -4, counter = 4

x = -5, counter = 5

x = 2, counter = 5

x = 1, counter = 5

x = 0, counter = 5

x = -1, counter = 5

x = -2, counter = 5

x = -3, counter = 5

x = -4, counter = 5

 9. a. 100
 c. 34
 e. 7
 g. Infi nite loop

CHAPTER 6
 1. a. True
 c. False
 e. True
 g. True
 i. False
 k. False
 m. True
 o. True
 q. False
 s. True
 u. True
 w. False

CRC_C6547_APPN.indd 698CRC_C6547_APPN.indd 698 10/2/2008 11:31:08 AM10/2/2008 11:31:08 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 699

 2. a. Match.
 c. Match.
 e. int, double, char expected; only two parameters present.
 g. q is not a char. To be a char it has to be enclosed within a pair of parentheses.
 i. "J" is a String; char expected.
 k. Method has no formal parameters.
 m. Match.
 o. Match.
 q. Second parameter missing.
 s. Match.
 3. a. public double cashflow(int a, double b, char c)
 c. public int countVal(boolean a, long b, String c)
 e. public boolean getStatus()
 g. public Student()
 i. public Student(Student s)
 4. a. Syntax error: int a, b in formal parameter list must be int a, int b.
 c. Mismatch. 12.0 is double; int expected.
 e. x = 20, y = 40.
 5. a. Corrected heading: public static double trial(int a, int b,

double c)

 c. 7.75
 e. x = 20, y = 40, z = 18.2
 6. a. Allowed as a static member
 c. 21.0
 e. DataValues.testing(4, 5);
 7. a. You cannot have both void and int together. From the method name, it sounds

like method is supposed to return new value of n. Th e method header can be
 Public int nextValue (int n)
 and you need the following return statement aft er if ... else statement :return;
 c. 22.
 8. a. Name(), Name(String), Name(String, String), Name(Name)
 c. public Name(Name n)
 {

 if (this != n)

 {

 fName = n.fName;

 lName = n.lName;

 }

 }

CRC_C6547_APPN.indd 699CRC_C6547_APPN.indd 699 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

700 ■ Java Programming Fundamentals

 e. public int compareTo(Name n)
 {

 String str1 = fName+lName;

 String str2 = n.fName+n.lName;

 return str1.compareTo(str2);

 }

 9. a. private double height;
 private double weight;
 c. public Item(Item it)
 {

 height = it.height;

 weight = it.weight;

 }

 e. public int compareTo(Item it)
 {

 final double ERR = 1.0E-14;

 int val = 0;

 if (Math.abs(height*weight - it.height*it.weight) > ERR)

 if (height * weight > it.height * it.weight)

 val = 1;

 else

 val = -1;

 return val;

 }

 10. a. public void copy(Stock obj)
 c. obj
 e. Add the following Java statement as the last statement of the copy method
 return this;

 11. a. public boolean equals(Stock obj)
 c. obj
 e. public boolean equals(Stock obj)
 {

 if (this != obj)

 {

 if (numberOfShares != obj.numberOfShares)

 return false;

 if (!tickerSymbol.equals(obj.tickerSymbol))

 return false;

 if (dividend != obj.dividend)

CRC_C6547_APPN.indd 700CRC_C6547_APPN.indd 700 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 701

 return false;

 }

 return true;

 }

 12. a. 45
 c. 4
 e. 21
 g. 0

CHAPTER 7
 1. a. False
 c. True
 e. False
 g. True
 i. False
 k. False
 m. True
 2. a. final
 c. No
 e. super
 g. super()
 3. i. beta of class B
 iii. c = a; is not correct
 v. alpha of A
 vii. alpha of A
 4. a. Not a superclass/subclass relationship.
 c. Not a superclass/subclass relationship.
 e. Not a superclass/subclass relationship. However, they both can be subclasses of an

abstract class vehicle.
 g. Building is a superclass of House. It can be defi ned as abstract.
 i. Animal is a superclass of Dog. It can be defi ned as abstract.
 5. a. BankAccount is the superclass of the other two classes.
 c. balance is an attribute for the BankAccount.
 e. ComputeInterest can be the abstract method.
 6. a. testing()
 c. super.testing()

CRC_C6547_APPN.indd 701CRC_C6547_APPN.indd 701 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

702 ■ Java Programming Fundamentals

 e. y.testing() where y is a reference variable of the type ClassOne
 g. Yes
 i. No
 7. a. public abstract int trial(String s, double d);
 c. public final static int trial(String s, double d);

CHAPTER 8
 1. a. True
 c. True
 e. False
 g. False
 i. False
 k. False
 m. False
 2. a. Creating the application window, event-driven programming
 c. String
 e. JTextComponent
 g. ActionEvent
 i. HTML fi le
 k. actionPerformed
 m. 0, 0, 0
 3. a. super.setSize(300, 500);
 c. Container conInterior = super.getContentPane();
 e. conInterior.add(jBOk); //jBOk references a JButton
 g. Font newFont = new Font("Courier New", Font.ITALIC, 48);
 i. g.setColor(Color.blue); g.fillRect(350, 500, 300, 200);

 //g references the graphics context

 5. a. JTextField
 c. JTextField
 e. JButton
 7. init, start, stop, and destroy
 9. Serif, Monospaced Sanserif, Dialog, DialogInput

CHAPTER 9
 1. a. True
 c. True

CRC_C6547_APPN.indd 702CRC_C6547_APPN.indd 702 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 703

 e. True
 g. True
 i. False
 k. False
 m. False
 o. False
 q. True
 2. a. int priceList[] = new int[100];
 Vector<Integer> priceList = new Vector<Integer>(100);

 ArrayList<Integer> priceList = new ArrayList<Integer>(100);

 c. priceList[priceList.length – 1] = 20.7;
priceList.add(20.7);

 e. priceList[4] = priceList[3] + priceList[5];
priceList.set(4, priceList.get(3) + priceList.get(5));

 g. int final ITEMS _ PER _ LINE = 7;
 ...

 for (index = 0; index < priceList.length; index++)

 {

 if (index % ITEMS_PER_LINE == 0 && index > 0)

 System.out.println();

 System.out.print(priceList[index]+ " ");

 }

 int final ITEMS_PER_LINE = 7;

 ...

 for (index = 0; index < priceList.size(); index++)

 {

 if (index % ITEMS_PER_LINE == 0 && index > 0)

 System.out.println();

 System.out.print(priceList.get(index)+ " ");

 }

 i. String productList[] = new String[100];
 Vector <String> productList = new Vector<String>(100);

ArrayList <String>

 ProductList = new ArrayList<String>(100);

 3. a. for (double p : itemPrice)
 {

 System.out.println(p);

 }

CRC_C6547_APPN.indd 703CRC_C6547_APPN.indd 703 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

704 ■ Java Programming Fundamentals

 c. int itemPerLine = 7;

 int diff = 4;

 ...

 boolean oddLine = true;

 int count = 1;

 for (index = 0; index < itemPrice.length; index++)

 {

 System.out.print(itemPrice[index]+ " ");

 count = count + 1;

 if (oddLine)

 {

 if (count == itemPerLine)

 {

 count = 1;

 oddLine = false;

 itemPerLine = itemPerLine + diff;

 System.out.println();

 }

 }

 else

 {

 if (count == itemPerLine)

 {

 count = 1;

 oddLine = true;

 itemPerLine = itemPerLine - diff;

 System.out.println();

 }

 }

 }

 4. a. public static String[] trial(double[] a, int[] b)
 c. public static void

 testing(int[] a, double[][] b, String[][] s)

 5. a. double[] a = new double[10];
 int[] b = new int[30];

 String[] str = GeneralUtil.trial(a, b);

 c. int[] a = new int[40];
 double [][] b = new double[15][25];

 String[]s = new String[15];

 GeneralUtil.testing(a, b, s)

CRC_C6547_APPN.indd 704CRC_C6547_APPN.indd 704 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 705

 6. a. SpecialUtil su = new SpecialUtil();
 double[] a = new double[10];

 int[] b = new int[30];

 String[] str = su.trial(a, b);

 c. SpecialUtil su = new SpecialUtil();
 int[] a = new int[40];

 double [][] b = new double[15][25];

 String[]s = new string[15];

 su.testing(a, b, s);

 7. a. cost[0][0] = 0.0, and all Cost[2][0] = 2.0/other location unchanged
 c. cost[1][2] = 2.0 and all other locations unchanged
 9. a. Th ere is no compilation error.
 10. a. Th ere is no compilation error.
 11. a. Th ere is no compilation error.

CHAPTER 10
 1. a. False

 c. True

 e. False
 2. a.

Linear Search: Search Item Not Found

searchItem is 39

i L[i] L[i] == searchItem

0 8 8 == 39 is false
1 13 13 == 39 is false
2 6 6 == 39 is false
3 14 14 == 39 is false
4 28 28 == 39 is false

searchItem is 39

i L[i] L[i] == searchItem

5 29 29 == 39 is false
6 35 35 == 39 is false
7 12 12 == 39 is false
8 40 40 == 39 is false
9 17 17 == 39 is false

searchItem not found. return –1;

CRC_C6547_APPN.indd 705CRC_C6547_APPN.indd 705 10/2/2008 11:31:09 AM10/2/2008 11:31:09 AM

Apago PDF Enhancer

706 ■ Java Programming Fundamentals

 c.
Linear Search: Search Item Not Found

searchItem is 1

i L[i] L[i] == searchItem

0 8 8 == 1 is false
1 13 13 == 1 is false
2 6 6 == 1 is false
3 14 14 == 1 is false
4 28 28 == 1 is false
5 29 29 == 1 is false
6 35 35 == 1 is false
7 12 12 == 1 is false
8 40 40 == 1 is false
9 17 17 == 1 is false

searchItem not found. return -1;

 e.
Insertion Sort

Starting Index i,
Unprocessed Part

Item to Be
Inserted

Index of the Item
to Compare

Item to Be
Compared

Action
Taken

1 13 0 8 none.
i = i + 1;

2 6 1 13 temp = 6.
L[2] = 13;

0 8 L[1] = 8
L[0] = 6
i = i + 1;

3 14 2 13 none.
i = i + 1;

4 28 3 14 none.
i = i + 1;

5 29 4 28 none.
i = i + 1;

6 35 5 29 none.
i = i + 1;

7 12 6 35 temp = 12
L[7] = 35

5 29 L[6] = 29
4 28 L[5] = 28
3 14 L[4] = 14
2 13 L[3] = 13
1 8 L[2] = 12

i = i + 1;

8 40 7 35 none.
i = i + 1;

9 17 8 40 temp = 17
L[9] = 40

7 35 L[8] = 35
6 29 L[7] = 29
5 28 L[6] = 28
4 14 L[5] = 17

i = i + 1

CRC_C6547_APPN.indd 706CRC_C6547_APPN.indd 706 10/2/2008 11:31:10 AM10/2/2008 11:31:10 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 707

 g.
Binary Search

searchItem is 39

lower upper middle L[middle] Comparison Action

0 9 (0+9)/2 = 4 14 Higher lower = middle+1;
5 9 (5+9)/2 = 7 29 Higher lower = middle+1;
8 9 (8+8)/2 = 8 35 Higher lower = middle+1;
9 9 (9+9)/2 = 9 40 Lower upper = middle-1;
9 8 lower > upper and hence search space is 0. return –1;

return –1;

 i.
Binary Search

searchItem is 1

lower upper middle L[middle] Comparison Action

0 9 (0+9)/2 = 4 14 Lower upper = middle-1;
0 3 (0+3)/2 = 1 8 Lower upper = middle-1;
0 0 (0+0)/2 = 0 6 Lower upper = middle-1;
0 –1 lower > upper and hence search space is 0. return –1;

return –1;

 3. a.
Linear Search: Search Item Not Found

searchItem is 9

i L[i] L[i] == searchItem

0 7 7 == 9 is false
1 14 14 == 9 is false
2 2 2 == 9 is false
3 18 18 == 9 is false
4 39 39 == 9 is false
5 92 92 == 9 is false
6 88 88 == 9 is false
7 72 72 == 9 is false
8 41 41 == 9 is false
9 71 71 == 9 is false
10 5 5 == 9 is false

searchItem not found. return –1;

 c.
Linear Search: Search Item Found

searchItem is 92

i L[i] L[i] == searchItem

0 7 7 == 92 is false
1 14 14 == 92 is false
2 2 2 == 92 is false
3 18 18 == 92 is false
4 39 39 == 92 is false
5 92 92 == 92 is true

searchItem not found. return 5;

CRC_C6547_APPN.indd 707CRC_C6547_APPN.indd 707 10/2/2008 11:31:10 AM10/2/2008 11:31:10 AM

Apago PDF Enhancer

708 ■ Java Programming Fundamentals

 e.
Insertion Sort

Starting Index i,
Unprocessed Part

Item to Be
Inserted

Index of the Item
to Compare

Item to Be
Compared

Action
Taken

1 14 0 7 none.
i = i + 1;

2 2 1 14 temp = 2.
L[2] = 14

0 8 L[1] = 7
L[0] = 2
i = i + 1;

3 18 2 14 none.
i = i + 1;

4 39 3 18 none.
i = i + 1;

5 92 4 39 none.
i = i + 1;

6 88 5 29 temp = 88
L[6] = 92

4 39 L[5] = 88
i = i + 1;

7 72 6 92 temp = 72
L[7] = 92

5 88 L[6] = 88
4 39 L[5] = 72

i = i + 1;

8 41 7 92 temp = 41
L[8] = 92

6 88 L[7] = 88
5 72 L[6] = 72
4 39 L[5] = 41

i = i + 1;

9 71 8 92 temp = 71
L[9] = 92
L[8] = 88
L[7] = 72
L[6] = 71
i = i + 1;

10 5 9 92 temp = 5
L[10] = 92

8 88 L[9] = 88
7 72 L[8] = 72
6 71 L[7] = 71
5 41 L[6] = 41
4 39 L[5] = 39
3 18 L[4] = 18
2 14 L[3] = 14
1 7 L[2] = 7
0 2 L[1] = 5

i = i + 1

CRC_C6547_APPN.indd 708CRC_C6547_APPN.indd 708 10/2/2008 11:31:10 AM10/2/2008 11:31:10 AM

Apago PDF Enhancer

Appendix F: Solution to Odd-Labeled Exercises ■ 709

 g.
Binary Search

searchItem is 9

lower upper middle L[middle] Comparison Action

0 10 (0+10)/2= 5 39 Lower upper = middle-1;
0 4 (0+4)/2 = 2 7 Higher lower = middle+1;
3 4 (3+4)/2 = 3 14 Lower upper = middle–1;
3 2 lower > upper and hence search space is 0. return -1;

return –1;

 i.
Binary Search

searchItem is 92

lower upper middle L[middle] Comparison Action

0 10 (0+10)/2 = 5 39 Higher lower = middle+1;
6 10 (6+10)/2 = 8 72 Higher lower = middle+1;
9 10 (9+10)/2 = 9 88 Higher lower = middle+1;
10 10 (10+10)/2 = 10 92 Equal return 10

return 10;

 5. Let data be in an array L as follows: 3 7 9. If the search item is in L, the fi rst return state-
ment will be executed. For example, if the search item is 9, fi rst return statement will be
executed. If the search item is smaller than 9, but not in L, the second return statement
will be executed. For example, if the search item is 8, the second return statement will be
executed. If the search item is larger than 9, the third return statement will be executed.
For example, if the search item is 10, the third return statement will be executed.

 6. a. 58
 c. 58
 7. a. Any 10 values: 5, 7, 16, 2, 22, 4, 9, 19, 27, 3
 c. Sorted in the reverse order: 67, 61, 57, 51, 49, 44, 22, 16, 7, 5
 e. Any 10 values: 5, 7, 16, 2, 22, 4, 9, 19, 27, 3
 8. a. Change is linear; hence O(n).
 c. As n doubles, time increases by 2 units; hence O(log2 n).

CHAPTER 11
 1. a. False
 c. True
 e. True
 g. False
 i. True
 k. True

CRC_C6547_APPN.indd 709CRC_C6547_APPN.indd 709 10/2/2008 11:31:10 AM10/2/2008 11:31:10 AM

Apago PDF Enhancer

710 ■ Java Programming Fundamentals

 2. a. exception, error
 c. checked, unchecked
 e. Throwable
 3. a. No
 c. Th ere is no 101 array location
 e. Th e line that caused the exception
 g. Th e package name that contains the exception class ArrayIndexOutOfBounds

Exception

 4. a. To perform some “clean-up” such as ignore the current input line
 c. –4, 2.5

CRC_C6547_APPN.indd 710CRC_C6547_APPN.indd 710 10/2/2008 11:31:10 AM10/2/2008 11:31:10 AM

Apago PDF Enhancer

711

Index

A
abstract classes and methods

GUIs (graphical user interfaces), Graphics class,
490–494

object-oriented soft ware design, 387–412
accessor and mutator methods, 404–405
application-specifi c services, 405–412
composition, 403–404
constructor, 405
object class, 403

abstract data type (ADT), Vector and ArrayList
classes, 583–584

abstract (reserve word)
object-oriented soft ware design

classes and methods, 387–412
interface, 412
small business payroll case study, 413–427

user-defi ned methods, 281–291
access modifi er

method defi nition, 83–84
object-oriented soft ware design

package access, 386
subclass creation, 364–365

user-defi ned methods, 281–297
accessor method

application-specifi c methods, 91
class design and creation, 86–88
class testing, 96–98
object-oriented soft ware design

applications, 404–405
protected attributes, 381–385

small business payroll case study, 185–193
actionEvent class, GUIs (graphical user interfaces)

event-driven computation model, 451–452
event-driven programming, 451
event listener program implementation, 469
metric conversion helper, 458–504

actionListener interface
event-driven computation model, 451–452
event-driven programming, 451

listener interface
implementation, 452–454
registration, 454–458

actionPerformed, GUIs (graphical user interfaces)
color class, 496–499
event-driven computation model, 451–452
event listener program implementation, 469–472

action statements
block statement, 150–151
nested structures, 157–167
one-way selection structure, 143–148
repetition structure

do...while statement, 235–238
for statement, 230–238
while statement, 217

switch structures, 167–170
actors, use case diagram, 12–14
actual parameter values

class methods, 84
method invocation, parameter passing, 286–297

addActionListener, GUIs (graphical user interfaces),
listener interface registration, 454–458

algorithm, static method, 324–328
analysis approach, search algorithm effi ciency,

616–617
analysis phase, soft ware engineering, 12–14
and operator, decision making, 120–123
anonymous inner class, GUIs (graphical user

interfaces), event listener program
implementation, 471–472

applets
GUIs (graphical user interfaces)

applications, 483–490
color class, 495–499
components, 472–473
creation, 473–482
drawing services, 503–504
font class, 500–502
graphics, 490–494

Java application program, 20

CRC_C6547_Index.indd 711CRC_C6547_Index.indd 711 10/1/2008 5:24:17 PM10/1/2008 5:24:17 PM

Apago PDF Enhancer

712 ■ Index

appletviewer, defi ned, 9
application classes, GUIs (graphical user

interfaces), creation of, 438–440
application-specifi c methods

class design and creation, 90–91
class testing, 95–98
repetition structure, small business payroll case

study, 252–256
small business payroll case study, 193–196

application window, GUIs (graphical user
interfaces), 437–450

application class creation, 438–440
component creation, 445–448
component placement, 448–450
content pane reference, 444–445
creation of, 436
exit features, 441–443
GUI component placement in content pane, 445
JButton, 447–448
JFrame size defi nition, 440–441
JFrame visibility, 441
JLabel component, 445–446
JTextField, 446–447
subclass constructor invocation, 440

area service, object-oriented soft ware design,
406–412

argument, print1n operation, 29
arithmetic and logical unit (ALU), structure and

function, 6
arithmetic operators, precedence rules, 132–142
ArrayList class

abstract data types, 583–584
applications, 573–584
method invocation, 544–548
wrapper classes, 574–583

arrayName, 552–554
array structures

multidimensional array, 571–573
one-dimensional array

alternate syntax, 519–520
array index, out of bounds exception, 535
assignment and relational operators,

536–539
components, 514–521
declaring array, 514–515
for statement enhancement, 522–523
inheritance hierarchies, 539–542
instantiating array, 515–518
item search, 527–528
location initialization, diff erent values, 524
method invocation and array return,

549–551

numeric computations, 526–527
out of bounds exception, 535–536
output array, 525–526
passing array parameters, 543–548
processing, 521–528
programming option, 518–519
user input array initialization, 525

out of bounds exception, 535–536
searching and sorting

algorithm effi ciency, 612–618
analysis approach, 616–617
binary search, 605–612
bubble sort, 627–633
complexity levels, 617–618
empirical approach, 612–616
insertion sort, 623–627
linear search, 600–605
overview, 597–600
search algorithms, 600–612
selection sort, 618–623
sort algorithms, 618–633
sorted grade sheet case study, 634–641

two-dimensional array, 551–573
alternate syntax, 554–555
declaring and instantiation array, 552–554
multidimensional arrays, 571–573
passing array parameters in methods,

561–568
processing, 556–561
ragged array, 555–556
returning arrays, method invocation,

568–571
ASCII (American Standard Code for Information

Interchange) code
char data, 34
data representation, 5

assembler program, defi ned, 7
assembly language, defi ned, 7
assignment operators

arrays, 536–539
compound assignment operators, 65
precedence rules, 132–142

assignment statement
boolean primitive data type, 156–157
class variables, 320–321
copy constructor, 306–308
copy method, 309–313
data values of variables, 51–55
method invocation, 81–82

parameter passing, 284–297
object-oriented soft ware design, subclass/

superclass relationships, 377

CRC_C6547_Index.indd 712CRC_C6547_Index.indd 712 10/1/2008 5:24:19 PM10/1/2008 5:24:19 PM

Apago PDF Enhancer

Index ■ 713

associativity
assignment operator, 55
operator precedence rules, 40–46

attributes
of class, 20
class design, implementation, and testing,

99–100
of classes, 78–79
class variables, 318–321
copy constructor, 306–308
equals method, 314–321
object-oriented soft ware design

application-specifi c services, 406–412
data-centric perspective, 356
inheritance hierarchy, 361–363
protected attributes, 381–385
small business payroll case study, 412–427
superclass private attribute access, 366

one-dimensional arrays, alternate syntax,
519–520

selection, small business payroll case study,
181–182

auto-boxing, Vector and ArrayList classes, 575–583
auto-unboxing, Vector and ArrayList classes,

575–583

B
base attribute

arrays, assignment and relational operators,
536–539

object-oriented soft ware design, application-
specifi c services, 406–412

batch mode, repetition structure, small business
payroll case study, 253–256

behavior
object-oriented analysis and design, 2–5
objects of a class, 19

binary operator
decision making, 120–123
numeric data type operations, 40–46
operator precedence rules, 40–46
precedence rules, 132–142

binary search algorithm, 605–612
empirical effi ciency analysis, 615–616
time complexity analysis, 616–617

bit (binary digit), data representation, 5
block statement

decision making, 148–151
if...else control structure, overriding of,

165–166
boolean data type

decision making
logical expression and operators, 118–123
primitive data type, 156–157

defi ned, 32–33
equals method, 314–321
exception and error classes, 648–650
GUIs (graphical user interfaces), JFrame

visibility, 441
insertion sort, 625–627
method invocation, parameter passing, 286–297

braces (opening and closing), Java programming
language, 23–26

break statements, repetition structure, 245–251
optional label, 249–251

bubble sort algorithm, applications, 627–633
bug, defi ned, 9–10
bytecode

evolution of, 8
source code conversion to, 8

byte data type, 33

C
Calculate class, GUIs (graphical user interfaces)

application window creation, 436–437
JButton creation, 447–448

callback mechanism, graphics programming,
490–494

call by value, method invocation and, 284–297
case sensitivity, Java programming language, 22
case statements, switch structures, 167–170
cast operator, 53

explicit data-type conversion, 61–65
method invocation, parameter

passing, 285–297
catch blocks

catching of exceptions, 654–665
design options, 663–665

central processing unit (CPU), structure and
function, 6

Character class, methods of, 272
charAt method, classifi cation of, 269
char data type, 33–35

arithmetic operations, 42
explicit data-type conversion, 61–65
instantiating array, 515
relational operators, 126–127
single character input, 58–60

checked exceptions, 648–650
CircularCounter class, testing, 104–105
circular increments, class design, implementation,

and testing, 101–106

CRC_C6547_Index.indd 713CRC_C6547_Index.indd 713 10/1/2008 5:24:19 PM10/1/2008 5:24:19 PM

Apago PDF Enhancer

714 ■ Index

classes. See also specifi c classes, e.g., Math class
attributes, 20, 78–79

use case diagram, 100
copy constructor, 305–308
creation and design

accessor method, 86–88
application-specifi c methods, 90–91
constructor for, 91
examples, 79–80
implementation, 102–104
Javadoc convention, 86
method defi nition, 82–84
method invocation, 80–82
method selection, 100–102
mutator method, 88–89
order and procedure for, 91–94
oveview, 77
testing, 95–100, 104–106
toString method, 90

decision on, small business payroll case study,
181

defi ned, 19
fi nalizer and garbage collection, 316–318
implementation, 102–104

small business payroll case study, 184–193
in Java application program, 21–26
method selection, small business payroll case

study, 182–184
named constants, 47–55
object-oriented analysis, 2–5
object-oriented soft ware design, 359

abstract classes and methods, 387–412
small business payroll case study, 412–427

operations, 80
package creation and utilization, 328–331
package groupings of, 57–60
return STATEMENT, 86
syntax, 78
UML representation, 94–95, 98–99
variables, 78–79

categories, 84–86
class variables

class attributes, 78–79
examples of, 318–321
object-oriented soft ware design, subclass

creation, 364–365
static methods and, 269

client–server paradigm
object-oriented analysis, 4–5
object-oriented soft ware design, 357–358

close method, repetition structure output
statement, 213–215

code reusage, object-oriented soft ware design,
inheritance hierarchy and, 363

code sharing, switch structures, 170–172
coding options, nested structures, 161–163
collaborating objects, method invocation, 80–82
collating sequence

char data type, 34
data representation, 5
lexicographical ordering, 127–132

color class, GUIs (graphical user interfaces), 494–499
column-by-column processing, two-dimensional

arrays, 560, 564–565
comment line, Java programming language, 24–26
compareTo method, decision making,

lexicographical ordering, 128–132
compiler, defi ned, 7
complete handling design, catch blocks for

exceptions, 663–665
complexity

object-oriented soft ware design, inheritance
hierarchy reduction of, 362–363

search algorithm effi ciency, 617–618
component class, GUIs (graphical user interfaces),

435
color, 494–499
creation in content pane, 445–448
graphics, 490–494
JFrame size defi nition, 441
output, 442–443
placement, 448–450

composition
GUIs (graphical user interfaces), applet

creation, 473–482
object-oriented soft ware design

abstract classes and methods, 403–412
application-specifi c services, 410–412
constructor, 405

compound assignment operators, explicit data-type
conversion, 65

computation models
GUIs (graphical user interfaces), event-driven

model, 451–452
history of, 6–8
one-dimensional arrays, 526–527

ComputeJButtonInterface, GUIs (graphical user
interfaces)

listener interface implementation, 452–454
listener interface registration, 454–458

concatenation operator
length of Strings and, 29–30
mixed expression evaluation rules, Strings, 44–46

conditional expression, ternary operators, 166–167

CRC_C6547_Index.indd 714CRC_C6547_Index.indd 714 10/1/2008 5:24:19 PM10/1/2008 5:24:19 PM

Apago PDF Enhancer

Index ■ 715

conInterior content pane, GUIs (graphical user
interfaces), 444–445

color class, 497–499
component placement, 448–450

constructors
basic properties, 297–305
class design and creation, 91
class variables, 320–321
copy constructor, 305–308
default constructor, 96–98, 297
GUIs (graphical user interfaces)

application window creation, 439–440
color class, 494–499
GridLayout manager, 444–445
JTextField class, 446–448
superclass invocation, 440

instance variable initialization, 85
invocation and overloading, 297–305
object-oriented soft ware design

composition, 405
object class, 403–412
small business payroll case study, 413–427
superclass invocation of, 366–376

self-reference, 308–309
user-defi ned exception class, 666–668
Vector and ArrayList classes, 574–583

Container class, GUIs (graphical user interfaces), 435
application window creation, 437–438
content pane as, 444–445
output, 442–443

content pane, GUIs (graphical user interfaces)
application window creation, 437–438
component creation, 445–448
component placement, 448–450
reference variables, 444–445

continue statement, repetition structure, 245–251
optional label, 249–251

controlExp, repetition structure
do...while statement, 235–238
for statement, 230–238
while statement, 217

control structure. See also repetition structure;
selection structure; sequence
structure

decision making, 115–118
example of, 210–211
if...else statement, 151–155
if statement, 143–148
switch structures, 168–170

copy constructor
copy method vs., 309–313
properties, 305–308

self reference, 308–309
testing of, 315–321

copy method, copy constructor vs., 309–313
counter-controlled while statement

counter use inside of, 222–224
repetition structures, 218–222

counter variable, repetition structure
for statement, 234–238
while statement, 218–224

C++ programming language, data types, 32–33
creatAndSet methods, searching and sorting,

598–600

D
data-centric perspective, object-oriented soft ware

design, 356–357
data-controlled while statement, repetition

structure, 227–229
data representation, object-oriented analysis and

design, 5
data types

classifi cation, 31–37
defi ned, 31
grading policy case study, 528–551, 584–588
named constants and variables, 46–55
numeric data type operations, 37–46
one-dimensional array

alternate syntax, 519–520
array index, out of bounds exception, 535
assignment and relational operators,

536–539
components, 514–521
declaring array, 514–515
for statement enhancement, 522–523
inheritance hierarchies, 539–542
instantiating array, 515–518
item search, 527–528
location initialization, diff erent values, 524
method invocation and array return, 549–551
numeric computations, 526–527
out of bounds exception, 535–536
output array, 525–526
passing array parameters, 543–548
processing, 522–528
programming option, 518–519
user input array initialization, 525

overview, 513–514
primitive, 32
two-dimensional arrays, 551–573

alternate syntax, 554–555
declaring and instantiating array, 568–571

CRC_C6547_Index.indd 715CRC_C6547_Index.indd 715 10/1/2008 5:24:19 PM10/1/2008 5:24:19 PM

Apago PDF Enhancer

716 ■ Index

data types (contd.)
declaring and instantiation array, 552–554
multidimensional arrays, 571–573
passing array parameters in methods,

561–568
processing, 556–561
ragged array, 555–556
returning arrays, method invocation, 568–571

value ranges and memory requirements, 33
Vector and ArrayList classes, 573–584

abstract data, 583–584
wrapper classes, 574–583

data validation
one-way selection structure, 147–148
repetition structure, data-controlled while

statement, 227
data values, variables, 51–55
debugging, defi ned, 10
decimal notation, integer data type, 36
decision condition

block statement, 148–151
if...else control structure, 151–155
one-way selection structure, 143–148

decision making
block statement, 148–150
boolean primitive data type, 156–157
character data types, 126–127
control structures, 115–118
lexicographical string ordering, 127–132

equality operators and string class, 130–132
logical expression, 118–120
logical operators, 120–123
multiway structure switch, 167–180

enumerated types, 177–180
switch statement code sharing, 170–172
switch statement limitations, 173–176

nested structures, 157–167
coding options, 161–163
logical expression order, 164–165
overriding if...else pairing rule, 165–166
ternary operator, 166–167

numerical data types, 124–126
overview, 115
precedence rules, 132–142

additional logical operators, 138–140
positive logic, 140–142
short-circuit evaluation, 137–138
syntax error, 137

relational operators, 123–127
selection structures

one-way structure, 142–148
two-way selection structure, 150–155

small business payroll case study, 180–197
application program, 193–196
attributes selection, 181–182
class selection, 181
implementation, 184–193
input, 181
methods selection, 182–184
output, 181
specifi cation, 180–181

declaration statements, 65
two-dimensional array, 552–554

declaring array, components, 514–515
decrement operators, explicit data-type conversion,

63–65
deep comparison, arrays, assignment and relational

operators, 539
deep copying, 309–313

one-dimensional arrays
assignment and relational operators, 537–539
as method parameters, 543–548

two-dimensional arrays, returning arrays in
method invocation, 568–571

DefaultCloseOperation method, GUIs (graphical user
interfaces), applet applications, 483–490

default constructor
with class defi nitions, 297
class testing, 96–98

defensive programming
errors, 648–650
exceptions

catching, 654–665
checked and unchecked, 648–650
handling design options, 668
throwing, 650–654
user-defi ned exception class, 666–668

overview, 647–648
delegation of tasks, object-oriented soft ware

design, client–server perspective, 358
dispose method, GUIs (graphical user interfaces),

applet creation, 474–482
double arrays, deep copies of

one-dimensional arrays, 543–548
two-dimensional arrays, 569–571

double data type
applications, 36–37
repetition while statement, 216–217

double value, pow method, 268–269
do...while statement, repetition structure, 235–238

continue statement in, 246–251
selection criteria, 238

drawing services, GUIs (graphical user interfaces),
503–504

CRC_C6547_Index.indd 716CRC_C6547_Index.indd 716 10/1/2008 5:24:19 PM10/1/2008 5:24:19 PM

Apago PDF Enhancer

Index ■ 717

drawString method, GUIs (graphical user
interfaces), graphics class, 491–494

dynamic binding, object-oriented soft ware design,
polymorphic behavior, 378–381

E
eclipse IDE, 9
empirical approach, search algorithm effi ciency,

612–616
empty characters, Java greetings program, 26–31
encapsulation

class design, 77–78
object-oriented analysis and design, 3–5
object-oriented soft ware design, data-centric

perspective, 357
end value, arrays as parameters, 543–548
enumerated data type, switch structures, 167–170

creation of, 177–180
equality operators

boolean data type
primitive data type, 156–157

lexicographical ordering, string class and, 130–132
equals method

decision making, lexicographical ordering,
128–132

functions, 313–321
errors

block statement, 148–151
data values of variables, 52–55
exceptions and, 648–650
instantiating array, 518

escape sequences
char data type, 35
Java greetings program, 27–31

etBeans IDE, 9
Euclid’s algorithm, static method, 324–328
event-controlled while statement, repetition

structures, 224–227
event-driven programming, GUIs (graphical user

interfaces), 450–468
application window creation, 436
computation model, 451–452
listener interface implementation, 452–454
listener interface registration, 454–458
overview, 435

event listeners, GUIs (graphical user interfaces),
programming implementation, 466–472

exceptions
defensive programming

catching, 654–665
checked and unchecked, 648–650

handling design options, 668
overview, 647–648
throwing, 650–654
user-defi ned exception class, 666–668

out of bounds exception, array index, 535–536
repetition structure input, 211–212

executable statements, 65
Exit class, GUIs (graphical user interfaces), 441–442

event-driven programming, 450–468
JButton creation, 447–448
listener interface implementation, 454
metric conversion helper, 458–504

explicit data-type conversion, 61–65
method invocation, parameter passing, 285–297

explicit parameter, 81–82
copy method, 309–313

expression evaluation, switch structures, 167–170
extends (keyword), GUIs (graphical user

interfaces), listener interface
implementation, 452–454

F
FilenotFoundException

checked exceptions, 648–650
repetition structure, 212–213

FileWriter object, repetition structure output
statement, 213–215

fi nalizer applications, 316–318
fi nal (reserved word)

named constants and variables, 46–55
object-oriented soft ware design

modifi cation, 386
user-defi ned methods, 281–291

fi nMin method, selection sort algorithm, 620–623
fl oating-point data type

defi ned, 32–33
notation, 37
numeric operations, 39–46
properties, 36–37
relational operators and, 125–126
repetition while statement, 215–229
switch structure, 173–176

Font class, GUIs (graphical user interfaces), 500–502
formal parameters (arguments)

copy constructor, 305–308
instance variable

existence, 86
initialization, 85

Javadoc convention, 86
method defi nition, 82–84
method invocation, parameter passing, 286–297

CRC_C6547_Index.indd 717CRC_C6547_Index.indd 717 10/1/2008 5:24:20 PM10/1/2008 5:24:20 PM

Apago PDF Enhancer

718 ■ Index

formal parameters (Contd.)
mutator method, 88–89
user-defi ned methods, 282

for statement
one-dimensional arrays, enhancement of, 522–523
repetition structure, 229–238

continue statement in, 246–251
counter inside, 234–235
selection criteria, 238

four-way selection structure, decision making,
159–167

fraction calculator, components of, 331–343

G
garbage collection, 316–318
geometric shape creation, GUIs (graphical user

interfaces), 493–494
drawing services, 503–504

getGraphics method, GUIs (graphical user
interfaces), 491–494

getSource service, GUIs (graphical user
interfaces), event listener program
implementation, 469

getText method, GUIs (graphical user interfaces),
listener interface implementation,
452–454

grading policy case study
arrays

one-dimensional arrays, 528–551
programming, 584–588

sorting and searching algorithms, 634–641
Graphics class, GUIs (graphical user interfaces),

490–494
drawing services, 503–504

greatest common divisor (gcd), static method,
324–328

GridLayout manager, GUIs (graphical user interfaces)
component placement, 448–450
content pane reference, 444–445

GUIs (graphical user interfaces)
application programs, 436–437
application window creation, 437–450

application class creation, 438–440
component creation, 445–448
component placement, 448–450
content pane reference, 444–445
exit features, 441–443
GUI component placement in content

pane, 445
JButton, 447–448
JFrame size defi nition, 440–441

JFrame visibility, 441
JLabel component, 445–446
JTextField, 446–447
subclass constructor invocation, 440

event-driven programming, 450–468
computation model, 451–452
listener interface implementation, 452–454
listener interface registration, 454–458

metric conversion helper, 458–504
applet applications, 483–490
applet component, 472–473
applet creation, 473–482
color, 494–499
drawing services, 503–504
event listener implementation, 466–467
font, 500–502
graphics, 490–494
option A, 466–467
option B, 467–469
option C, 470–471
option D, 471–472

overview, 435

H
handling design, exceptions, 663–668
hardware requirements, object-oriented analysis

and design, 5–6
hasNext() method, repetition structure, event-

controlled while statement, 224–227
hexadecimal notation, integer data type, 36
hidden data, object-oriented analysis

and design, 3–5
high-level programming languages, 7
HTML fi le, GUIs (graphical user interfaces), applet

creation, 482

I
identifi ers

defi nition and examples, 21–26
illegal identifi ers, 22–23

if...else control structure
decision making, 151–155
nested structures, 157–167
overriding pairing rule, 165–166
switch structures as, 173–176
ternary operators, 166–167

if statement
as block statement, 148–151
nested structures, 157–167

coding options, 161–163
one-way selection structure, 143–148

CRC_C6547_Index.indd 718CRC_C6547_Index.indd 718 10/1/2008 5:24:20 PM10/1/2008 5:24:20 PM

Apago PDF Enhancer

Index ■ 719

IllegalArgumentException, catch blocks, 659–665
implements (keyword), GUIs (graphical user

interfaces), listener interface
implementation, 452–454

implicit parameters
charAt method, 269
method invocation, 81–82

parameter passing, 286–297
self-referenced copy constructor, 308–309

import Statement
components of, 57–60
GUIs (graphical user interfaces), listener

interface registration, 455–458
Vector and ArrayList classes, 576–583

“incompatible types” error message, data values of
variables, 53–55

increment operators, explicit data-type conversion,
63–65

index data type
bubble sort algorithm, 627–633
insertion sort, 624–627
method invocation, parameter passing, 285–297
one-dimensional array

locations with diff erent values, 524
overview, 514–521
as parameter, 543–548
returning arrays in method invocation,

549–551
two-dimensional arrays, 554

row-by-row processing, 558–559
specifi c row processing, 556–558

indexOf method, 282–291
IndexOutofBounds exception

array index, 535–536
unchecked exceptions, 648–650

information hiding
class design, 77–78
object-oriented analysis and design, 3–5
object-oriented soft ware design, data-centric

perspective, 357
inheritance hierarchy

array elements, 539–542
checked exceptions, 648–650
GUIs (graphical user interfaces)

applet creation, 473–482
JFrame class, 443

object-oriented soft ware design, 361–363
application-specifi c services, 410–412
single vs. multiple inheritance, 363
small business payroll case study, 412–427
subclass creation, 363–365

initialization

one-dimensional array, user input, 525
one-dimensional arrays, 522–528

locations with diff erent values, 524
initialStmt

defi ned, 52–55
instance variable, 85
repetition structure, for statement, 230–238

init method, GUIs (graphical user interfaces)
applet applications, 483–490
applet creation, 474–482

inner class, GUIs (graphical user interfaces)
event listener program implementation, 467–472
listener interface implementation, 452–454

input data
components of, 55–57
decision making, logical expression and

operators, 119–120
one-dimensional array, initialization, 525
one-way selection structure, 144–148
repetition structure, 211–213

small business payroll case study, 252
small business payroll case study, 181

InputMismatch Exception, catch blocks, 659–665
insertion sort, applications, 623–627
insert method, insertion sort, 625–627
instanceof operator, object-oriented soft ware

design, 381
instance variables

accessor method, 86–88
class attributes, 78–79
class methods, 84
class testing, 95–98
constructor, 91
examples, 79
existence, 86
initialization, 85
mutator method, 88–89
operations interface with, 80
properties of, 48–55
syntax template, 78–79, 85

instantiating array
components, 515–518
multidimensional arrays, 572–573
two-dimensional arrays, 552–554

instruction sequences, machine language for, 6–8
int data type, 33

explicit data-type conversion, 61–65
GUIs (graphical user interfaces), listener

interface implementation, 452–454
method invocation, parameter passing, 285–297
object-oriented soft ware design, data-centric

perspective, 357

CRC_C6547_Index.indd 719CRC_C6547_Index.indd 719 10/1/2008 5:24:20 PM10/1/2008 5:24:20 PM

Apago PDF Enhancer

720 ■ Index

int data type (contd.)
one-dimensional arrays, smallest element

search, 527–528
two-dimensional arrays, 562–568
Vector and ArrayList classes, 574–583

integral/integer data type
defi ned, 32
GUIs (graphical user interfaces), listener

interface implementation, 452–454
instantiating array, 515–518
legal/illegal examples, 35
numeric operations, 37–46
properties of, 35–36
switch structures, 167–170
Vector and ArrayList classes, 575–583

integrated development environments (IDEs), 9
interactive mode, components of, 60–61
interface

GUIs (graphical user interfaces)
event-driven computation model, 451–452
event listener program implementation,

466–472
listener interface implementation, 452–454
listener interface registration, 454–458

object-oriented soft ware design, 412
interpreter, defi ned, 7
IOException

checked exception, 648–650
repetition structure, 212–213

isMoved method, insertion sort, 625–627
isTall service, object-oriented soft ware design,

406–412
item search, one-dimensional arrays, 527–528
iterations, binary search algorithm, 607–612

J
JApplet class, GUIs (graphical user interfaces),

472–473
applet creation, 473–482
applications, 483–490

Java API (Java application program interface),
predefi ned methods and, 269

Java application program
components, 20–26
creation of, 10–12
method invocation in, 80–82

java.awt.event package, GUIs (graphical user
interfaces)

color class, 494–499
font class, 500–502
graphics class, 491–494

listener interface registration, 455–458
JAVAC compiler, source code conversion to

bytecode, 8–9
Java development kit (JDK), 9
Javadoc utility program, class design and creation, 86
Java greetings program, components, 26–31
Java programming language

class design, implementation, and testing, 102–106
creation and execution, 8–10
evolution of, 1–2
execution of applications, 9
strict data types, 31
Unicode character set, 5
Vector and ArrayList classes, 575–583

Java soft ware, 9
Java source fi le, creation of, 8
java.util.Arrays, search and sorting, 597–598
javax.swing package, GUIs (graphical user

interfaces)
application window creation, 437–450
JApplet class, 472–473

jBCompute object, GUIs (graphical user
interfaces)

event-driven programming, 450–468
listener interface implementation, 452–454

jBExit object, GUIs (graphical user interfaces),
event-driven programming, 450–468

jBsetColor object, GUIs (graphical user interfaces),
color class, 497–499

JButton class, GUIs (graphical user interfaces), 435
application window creation, 436–437
color class, 497–499
component creation, 445–448
event-driven computation model, 451–452
event-driven programming, 450–468
graphics class, 491–494
metric conversion helper, 458–504

Jdeveloper IDE, 9
JDK 6710 (Java development kit 6 update 10), 9
JFrame class, GUIs (graphical user interfaces), 435

applet applications, 483–490
applet creation, 473–482
application window creation, 436–450
class creation, 438–440
content pane, 444–445
inheritance hierarchy, 443
size defi nition, 440–441
superclass constructor invocation, 440
visibility control, 441

JLabel class, GUIs (graphical user interfaces), 435
application window creation, 437
color class, 497–499

CRC_C6547_Index.indd 720CRC_C6547_Index.indd 720 10/1/2008 5:24:20 PM10/1/2008 5:24:20 PM

Apago PDF Enhancer

Index ■ 721

component creation, 445–448
metric conversion helper, 458–504

jLnoLabel object, GUIs (graphical user interfaces),
color class, 497–499

JTextComponent, GUIs (graphical user interfaces),
JTextField services inheritance, 447–448

JTextField class, GUIs (graphical user interfaces), 435
application window creation, 436–437
color class, 495–499
component creation, 445–448
event-driven programming, 450–468
inherited services from JTextComponent, 447–448
listener interface implementation, 452–454
metric conversion helper, 458–504

jTFBlue, GUIs (graphical user interfaces), color
class, 495–499

jTFGreen, GUIs (graphical user interfaces), color
class, 495–499

JTFRed, GUIs (graphical user interfaces), color
class, 495–499

JVM (Java virtual machine)
caught exceptions, 650
class accessibility, 21
evolution of, 8
GUIs (graphical user interfaces), event-driven

programming, 451

K
keywords, defi ned, 24–26

L
labels, switch structures, 167–170

code sharing, 170–172
late binding, object-oriented soft ware design,

polymorphic behavior, 378–381
length attribute, one-dimensional arrays, alternate

syntax, 520
lexicographical ordering

if...else control structure, 153–155
strings, decision making and, 127–132

libraries, programming using, 9
linear search algorithm

components, 600–605
empirical effi ciency analysis, 612–616
time complexity analysis, 616–617

linker, defi ned, 9
list collection, Vector and ArrayList classes, 584
listener interface, GUIs (graphical user interfaces)

implementation, 452–454
registration, 454–458

literals, decision making, logical expression and
operators, 118–123

loadData method, one-dimensional arrays,
programming options, 518–519

loader, defi ned, 9
local variables

method defi nition, 84
properties of, 48–55
testing, 96–98

logical errors, defi ned, 9
logical expression. See boolean data type

decision making and, 118–120
nested structures, 164–165
precedence rules, 134–142

logical operator
decision making, 118–123
precedence rules, 138–140

long data type, 33
long literal example, 35–36

M
machine language, computation using, 6–8
main method

GUIs (graphical user interfaces)
applet components, 472–473
class creation, 438–440

Java programming language, 23–26
Math class

counter-controlled while statement, 223–224
methods of, 270–271
pow method in, 268–269
two-dimensional arrays, 565–568
utility methods and, 321–328

memory, structure and function, 6
memory address, structure and function, 6
memory usage optimization, data types and, 33
memory words, structure and function, 6
message passing, object-oriented analysis and

design, 4–5
method invocation, 80–82, 274–281

arrays as parameters in
one dimensional arrays, 544–548
two-dimensional arrays, 568–571

object-oriented soft ware design
client–server perspective, 357–358
superclass constructor invocation, 367–376
superclass hierarchy, 365–366

returning arrays in, 549–551
methods

application-specifi c methods, 90–91
arrays as parameters

CRC_C6547_Index.indd 721CRC_C6547_Index.indd 721 10/1/2008 5:24:20 PM10/1/2008 5:24:20 PM

Apago PDF Enhancer

722 ■ Index

methods (contd.)
one-dimensional array, 543–548
two-dimensional array, 561–568

class design, implementation, and testing, 99–101
classifi cation, 267–273

Character class, 272
Math class, 270–271
String class, 272–273

class variable, 318–321
copy method, 309–313
equals method, 313–321
fi nalizer and garbage collection, 316–318
fraction calculator program, 331–343
GUIs (graphical user interfaces), color class,

494–499
Java programming language, 23–26
method defi nition, 23, 82–84
mutator method, 88–89
named constants, 47–55
object-oriented soft ware design, abstract classes

and methods, 387–412
selection, 100–102

small business payroll case study, 182–184
signature of, 282–291
static methods, 321–328
toString method, 90
user-defi ned, 281–297

package creation and use, 328–331
metric conversion helper, GUIs (graphical user

interfaces), 458–504
applet applications, 483–490
applet component, 472–473
applet creation, 473–482
color, 494–499
drawing services, 503–504
event listener implementation, 466–467
font, 500–502
graphics, 490–494
option A, 466–467
option B, 467–469
option C, 470–471
option D, 471–472

minimal handling design, catch blocks for
exceptions, 663–665

minIndex type, one-dimensional arrays, smallest
element search, 527–528

mixed expression evaluation rules
numerical data types, 42–46
String operations, 44–46

multidimensional arrays, 571–573
multiplicity, class testing, 98–99
multiway selection structure

coding options, 161–163
if...else control structure, overriding of, 165–166
logical expression order in, 164–165
switch structures, 167–180

code sharing, 170–172
enumerated types, 177–179
limitations, 173–176

mutator method
class design, 88–89
class implementation, 102–106
class testing, 96–98, 102–106
constructors, 91
object-oriented soft ware design

applications, 404–405
protected attributes, 381–385

small business payroll case study, 186–193

N
named constants

nested structures, 160–167
properties of, 46–55

nested structures
decision making, 157–167

coding options, 161–163
logical expression order, 164–165
overriding if...else pairing rule, 165–166
ternary operator, 166–167

multidimensional arrays, 572–573
repetition structure, 239–251

break and continue statements, 245–251
optional label, break and continue

statements, 249–251
nextBoolean method, decision making, logical

expression and operators, 119–120
nextValue variable, repetition while statement, 216–217

counter-controlled while statement, 218–222
not operator, decision making, 120–123
null (reserve word), fi nalizer and garbage

operations, 317–318
nullString

GUIs (graphical user interfaces), listener
interface implementation, 453–454

Java greetings program, 26–31
numeric data types

method invocation, parameter passing, 285–297
mixed expression evaluation, 42–46
one-dimensional array computations, 526–527
operations, 37–46
operator precedence rules, 40–42
relational operators and, 124–126
Vector and ArrayList classes, 576–583

CRC_C6547_Index.indd 722CRC_C6547_Index.indd 722 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

Index ■ 723

O
object classes

collaborating objects, 80–82
copy constructor creation of, 305–308
defi ned, 19
object-oriented soft ware design, 355–359

abstract classes and methods, 403–412
attributes, 356
client–server perspective, 357–358
data-centric perspective, 356–357
design perspective, 359
operation, 356–357

relational operators and, 127
throwable class, 648–650

object computation model
basic principles, 1–2
data representation, 5
examples and procedures, 2–5
hardware overview, 5–6
Java program creation and execution, 8–10
programming languages and computation

history, 6–8
soft ware engineering, 10–14

object-oriented analysis
class design, 77–78
examples and procedures, 2–5

object-oriented soft ware design
abstract classes and methods, 387–412

accessor and mutator methods, 404–405
application-specifi c services, 405–412
composition, 403–404
constructor, 405
object class, 403

interface, 412
object perception, 355–359

client–server perspective, 357–358
data-centric perspective, 356–357
design perspective, 359

overview, 355
small business payroll case study, 412–427
subclasses, 359–386

creation, 363–365
design options, 386
inheritance, 361–363
instanceof operator, 381
method invocation, 365–366
objects as superclass instance, 376–377
polymorphic behavior, 377–381
protected attributes applications, 381–385
superclass constructor invocation, 366–376
superclass private attributes, 366

one-dimensional array

alternate syntax, 519–520
array index, out of bounds exception, 535
assignment and relational operators, 536–539
components, 514–521
declaring array, 514–515
for statement enhancement, 522–523
inheritance hierarchies, 539–542
instantiating array, 515–518
item search, 527–528
location initialization, diff erent values, 524
method invocation and array return, 549–551
numeric computations, 526–527
out of bounds exception, 535–536
output array, 525–526
passing array parameters, 543–548
processing, 521–528
programming option, 518–519
user input array initialization, 525

one-way selection structure, decision making and,
142–148

operations
object-oriented soft ware design, data-centric

perspective, 356–357
properties and functions, 80

operator precedence rules, numeric data type
operations, 40–46

optimal sorting algorithms, defi ned, 618
optional label, break and continue statements,

repetition structure, 249–251
or operator, decision making, 120–123
out of bounds exception, array index, 535–536
output buff er, interactive mode, 61
output statement

method invocation, 81–82
one-dimensional array, 525–526
repetition structure, 213–215

small business payroll case study, 252
small business payroll case study, 181
two-dimensional array, 562–568

overloaded methods, 283–291
constructors, 297–305
object-oriented soft ware design, superclasses,

365–366
searching and sorting, 598–600

P
packages

creation and utilization, 328–331
GUIs (graphical user interfaces), 435
import statement and, 57–60
object-oriented soft ware design, access, 386
programming using, 9

CRC_C6547_Index.indd 723CRC_C6547_Index.indd 723 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

724 ■ Index

paint method
graphics programming, 490–494
GUIs (graphical user interfaces), font class,

501–502
pairing rule, if...else control structure, overriding

of, 165–166
parameters

arrays passed as, in methods
one-dimensional arrays, 543–548
two-dimensional arrays, 561–568

formal parameters
instance variable

existence, 86
initialization, 85

Javadoc convention, 86
method defi nition, 82–84
mutator method, 88–89

methods classifi cation and, 268–269
passing mechanism, 284–297
print1n operation, 29
properties of, 48–55
static methods, 274–281
String methods, 278–281

partial handling design, catch blocks for
exceptions, 663–665

pixels, GUIs (graphical user interfaces), JFrame
size defi nition, 440–441

placeMax method, bubble sort algorithm, 631–633
platform independence, evolution of, 8
polymorphism, object-oriented soft ware design

abstract classes and methods, 396–412
inheritance hierarchy, 362
subclass creation, 364–365
subclass/superclass relationships, 377–381

positional value of character, in String, 30–31
positive logice, precedence rules, 140–142
“possible loss of precision” error message, data

values of variables, 53–55
postconditions, method selection, 100–101
pow method

parameters, 268
utility methods and, 321–328

precedence rules, decision making, 132–142
additional logical operators, 138–140
positive logic, 140–142
short-circuit evaluation, 137–138
syntax error, 137

preconditions, method selection, 100–101
predefi ned methods

classifi cation, 269
invocation of, 274–281

primitive data types, 32–37

decision making
boolean data type, 156–157
logical expression and operators, 118–123

equals method, 315–321
instantiating array, 516–518
primitive data types

local variables and, 48–55
method invocation, parameter passing, 286–297
overview of, 513–514
Vector and ArrayList classes, 574–583

printArray method, searching and sorting, 598–600
print1n method

constructor overloading, 299–305
Java greetings program, 29
object-oriented soft ware design, superclass

constructor invocation, 373–376
as void method, 268

PrintStream class
interactive mode, 61
print1n operation, 29

PrintWriter object, repetition structure output
statement, 213–215

private classes
GUIs (graphical user interfaces)

event listener program implementation,
467–472

listener interface implementation, 452–454
object-oriented soft ware design

data-centric perspective, 356–357
subclass creation, 364–365
superclass private attribute access, 366

user-defi ned methods, 281–297
programming languages

history of, 6–8
soft ware creation, 1–2

programming options, one-dimensional arrays,
518–519

prompt lines, guidelines for, 60–61
propositions, control structures and, 117–118
protected access, object-oriented soft ware design,

subclass creation, 364–365
protected attributes, object-oriented soft ware

design, 381–385
protected operations, object-oriented soft ware

design, 386
pseudo code, equals method, 313–321
public (reserved word)

access modifi er, 21
application-specifi c method, 91
classes, 78

implementation, 102–103
testing, 95–96, 105–106

CRC_C6547_Index.indd 724CRC_C6547_Index.indd 724 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

Index ■ 725

constructor, 91–93
method defi nition, 82–86
method testing, 101
mutator method, 88–89
object-oriented soft ware design

accessor and mutator methods, 404–405
client–server perspective, 357–358
data-centric perspective, 356–357
protected attributes, 381–385
subclass creation, 364–365

operations, 80
toString method, 90
UML 2 class representation, 94–95
user-defi ned methods, 281–297

R
ragged two-dimensional array, 555–556

processing of, 560–561
random method, invocation, 274–275
recording and continuation, exceptions handling, 668
rectifi cation and continuation, exceptions

handling, 668
reference variables

copy constructor, 305–308
copy method, 309–313
equals method, 314–321
GUIs (graphical user interfaces)

color class, 497–499
component creation, 445–448
content pane, 444–445

instantiating array, 516–518
lexicographical ordering, 128–132
method invocation, 80–82
object-oriented soft ware design

application-specifi c services, 409–412
polymorphic behavior, 377–381
subclass/superclass relationships, 376–377
superclass constructor invocation, 372–376

repetition while statement, 216–217
self-reference, 308–309
testing, 96–98
two-dimensional arrays, declaring and

instantiating array, 552–554
relational operators

arrays, 536–539
character data types and, 126–127
complement of, 140–142
decision making, 123–124
numerical data types, 124–126
precedence rules, 133–142

repetition structure

data-controlled while statement, do...while
statement, 235–238

defi ned, 116–118
do...while statement, 235–238
fl oating-point numbers, 215–216
for statement, 229–238

counter inside, 234–235
input statement, 211–213

exceptions declaration, 211–212
nesting of, 239–251

break and continue statements, 245–251
optional label, break and continue

statements, 249–251
one-dimensional array processing, 521–528
output statement, 213–215
overview, 209–210
selection guidelines, 238
small business payroll case study, 252–256
while statement, 215–229

counter-controlled while statement, 218–222
counter inside counter-controlled while

statement, 222–224
data-controlled while statement, 227–229
event-controlled while statement, 224–227

reserved word class
Java application program, 21–26
switch structures, 167–170

resize method, GUIs (graphical user interfaces),
applet creation, 474–482

returning array, method invocation
one-dimensional array, 549–551
two-dimensional array, 568–571

return statement, constructor invocation, 304–305
value returning methods, 86

RGB component, GUIs (graphical user interfaces),
color class, 491–499

row-by-row processing, two-dimensional arrays,
558–559

RuntimeException class, unchecked exceptions,
648–650

S
scannedInfo variable, repetition while statement,

216–217
Scanner class

input statement, 55–57
one-dimensional array, input initialization, 525
package java.util importatin, 57–60
repetition structure

event-controlled while statement, 224–227
inputs, 211–213

CRC_C6547_Index.indd 725CRC_C6547_Index.indd 725 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

726 ■ Index

search algorithms, 600–612
binary search, 605–612
effi ciency, 612–618

analysis approach, 616–617
emperical approach, 612–616

linear search algorithms, 600–605
searching and sorting

array structures
algorithm effi ciency, 612–618
analysis approach, 616–617
binary search, 605–612
bubble sort, 627–633
complexity levels, 617–618
empirical approach, 612–616
insertion sort, 623–627
linear search, 600–605
overview, 597–600
search algorithms, 600–612
selection sort, 618–623
sort algorithms, 618–633
sorted grade sheet case study, 634–641

overview, 597–600
search item

binary search algorithm, 606–612
defi ned, 600
linear search algorithm, 600–605

search space, binary search algorithm, 606–612
selection sort algorithm, applications, 618–623
selection structure

decision making
one-way structure, 142–148
two-way selection structure, 150–155

defi ned, 115–116
self-reference, copy constructor, 308–309
sentinel data, repetition structure

data-controlled while statement, 227–229
do...while statement, 237–238

sequence structure, defi ned, 116–118
servers

GUIs (graphical user interfaces), JTextField
inheritance from JText Component,
447

object-oriented analysis and design, 4–5
services

GUIs (graphical user interfaces), Component,
Container, and JFrame classes,
442–443

object-oriented analysis and design, small
business payroll case study, 413–427

object-oriented soft ware design, 357–358
application-specifi c services, 406–412
inheritance hierarchy, 361–363

object class, 403–412
subclass creation, 364–365

setBackground, GUIs (graphical user interfaces),
color class, 494–499

setForeground, GUIs (graphical user interfaces),
color class, 494–499

setSize method, GUIs (graphical user interfaces)
applet applications, 483–490
JFrame size defi nition, 441

setText service, GUIs (graphical user interfaces),
listener interface implementation,
453–454

setTitle method, GUIs (graphical user interfaces),
applet creation, 474–482

setVisible method, GUIs (graphical user interfaces)
applet applications, 483–490
applet creation, 474–482
JFrame visibility, 441

seven-way selection structure, coding options,
162–163

shallow copying, 309–313
arrays, assignment and relational operators,

537–539
short-circuit evaluation, precedence rules, 137–142
side eff ects, logical operators, 138–140
signature of a method, user-defi ned methods,

282–291
single character input, 58–60
size defi nition, GUIs (graphical user interfaces),

JFrame class, 440–441
small business payroll case study

application program, testing, 196–197
object-oriented soft ware design, 412–427
repetition structure, 252–256

smallest element search
one-dimensional arrays, 527–528
selection sort algorithm, 619–623
two-dimensional arrays, 563–568

soft ware
applications, 1–2
class design, implementation, and testing,

99–106
soft ware development kit (SDK), 9
soft ware engineering

analysis and use case diagram, 12–14
object-oriented design

abstract classes and methods, 387–412
accessor and mutator methods, 404–405
application-specifi c services, 405–412
composition, 403–404
constructor, 405
object class, 403

CRC_C6547_Index.indd 726CRC_C6547_Index.indd 726 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

Index ■ 727

interface, 412
object perception, 355–359

attributes, 356
client–server perspective, 357–358
data-centric perspective, 356–357
design perspective, 359
operation, 356–357

overview, 355
small business payroll case study, 412–427
subclasses, 359–386

creation, 363–365
design options, 386
inheritance, 361–363
instanceof operator, 381
method invocation, 365–366
objects as superclass instance, 376–377
polymorphic behavior, 377–381
protected attributes applications, 381–385
superclass constructor invocation,

366–376
superclass private attributes, 366

phases of, 10–12
sort algorithms

bubble sort, 627–633
insertion sort, 623–627
overview, 618
selection sort, 618–623

sorted arrays
binary search algorithm, 605–612
linear search algorithm, 600–605

sorting, overview, 597–600
source fi le

defi ned, 7
Java source fi le, 8

source program/source code
conversion to bytecode, 8
defi ned, 7

specifi cation, small business payroll case study,
180–181

specifi c column processing, two-dimensional
arrays, 559

specifi c row processing, two-dimensional arrays,
556–558

stacktrace, throwing exceptions, 650–654
start method, GUIs (graphical user interfaces)

applet applications, 483–490
applet creation, 474–482

start value, arrays as parameters, 543–548
statements, Java programming language, 23–26
static method

categories of, 321–328
defi ned, 268–269

GUIs (graphical user interfaces), listener
interface implementation, 452–454

invocation, 274–281
no parameter, 274–275
object-oriented soft ware design

subclass creation, 364–365
superclass invocation, 365–366

parameters, 276–278
two-dimensional arrays, 565–568

static (reserved word)
named constants and variables, 46–55
relational operators and, 125–126

static variables
examples of, 321–328
properties of, 48–55

Stock class, copy constructor, 305–308
stop method, GUIs (graphical user interfaces),

applet creation, 474–482
String class, methods of, 272–273

invocation of, 278–281
String (String literal)

concatenation and, 29–30
data types and, 31–37
decision making

equality operators and, 130–132
lexicographical ordering, 127–132, 128–132
logical expression and operators, 119–120

GUIs (graphical user interfaces)
JTextField creation, 446–448
listener interface implementation, 452–454

input statement, 56–57
Java greetings program, 26–31
local variables and, 49–55
mixed expression evaluation rules, 44–46
positional value of character in, 30–31
single character input, 58–60
switch structures, 167–170

subclasses
array elements, 539–540
error, 648–650
exception, 648–650
object-oriented soft ware design, 359–386

abstract classes and methods, 387–412
composition, 403–412
creation, 363–365
design options, 386
inheritance, 361–363
instanceof operator, 381
method invocation, 365–366
objects as superclass instance, 376–377, 539
polymorphic behavior, 377–381
protected attributes, 381–385

CRC_C6547_Index.indd 727CRC_C6547_Index.indd 727 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

728 ■ Index

subclasses (contd.)
protected attributes applications, 381–385
small business payroll case study, 414–427
superclass constructor invocation, 366–376
superclass private attributes, 366

superclasses
array elements, 539–540
GUIs (graphical user interfaces), constructor

invocation, 440
object-oriented soft ware design

composition, 403–412
constructor invocation, 366–376
method invocation, 365–366
private attribute access, 366
protected attributes, 385
subclass/superclass relationships, 360–361,

376–377, 539
super reference variable, object-oriented soft ware

design
superclass constructor invocation, 367–376
superclass method invocation, 365–366
superclass private attribute access, 366

swap method
bubble sort algorithm, 631–633
selection sort algorithm, 620–623

switch structures, 167–180
break statement, repetition structure, 245–251
code sharing, 170–172
enumerated types, 177–179
limitations, 173–176

symbolic language, history of, 6–8
symbols in Java, special symbols, 34
syntax

block statement, 148–151
coloring, 24–26
copy constructor vs. copy method, 310–313
if...else control structure, 151–155
lexicographical ordering, 128–132
multidimensional arrays, 571–573
nested structures, 157–167
one-dimensional arrays

alternate syntax, 519–520
enhanced for statement, 522–523

package creation and utilization, 329–331
static method, 269
switch structures, 167–170
two-dimensional arrays, 554–555

syntax errors
defi ned, 7
precedence rules, 137

syntax template
accessor method, 86–88

classes, 21–26, 78
constructors, 298
copy constructor, 305–308
instance variable, 78–79, 85
method defi nition, 82–84
method invocation, 81–82
mutator method, 88–89
object-oriented soft ware design, subclass

creation, 363–365
one-way selection structure, 143–148
repetition structure, for statement, 233–238
throw statement, 652–654
two-dimensional array, 552–554
user-defi ned methods, 281–297

System class, GUIs (graphical user interfaces),
listener interface implementation, 454

T
template

defi ned, 19
object-oriented analysis and design, 2–5

termination, exceptions handling, 668
ternary operator, nested structures, 166–167
testing

classes, 95–98
equals method and copy constructor, 315–321
small business payroll case study, 196–197

three-way selection structure, coding options, 163
throwing of unchecked exceptions, 650–654
throw statement, 652–654
time complexity

search algorithm effi ciency, 616–617
sort algorithm effi ciency, 618

tokens (data units), input statement, 55–57
repetition structure, 211–213

token symbols, 34
toString method

class design, implementation, and testing, 100–107
class design and creation, 90
class testing, 95–98
object-oriented soft ware design

abstract classes and methods, 403
application-specifi c services, 406–412
superclass constructor invocation, 373–376

truth tables, decision making, logical operators
and, 120–123

try/catch/fi nally structure, catching of exceptions,
654–665

two-dimensional array, 551–573
alternate syntax, 554–555
declaring and instantiation array, 552–554

CRC_C6547_Index.indd 728CRC_C6547_Index.indd 728 10/1/2008 5:24:21 PM10/1/2008 5:24:21 PM

Apago PDF Enhancer

Index ■ 729

as method parameter, 561–568
multidimensional arrays, 571–573
processing, 556–561
ragged array, 555–556
returning arrays, method invocation, 568–571

two-way selection structure, 151–155

U
UML (unifi ed modeling language), 5

object-oriented soft ware design, subclass/
superclass relationships, 360

UML 2 (unifi ed modeling language version 2)
class creation, 94–95
class diagram, 98–99, 104–106
object-oriented soft ware design

application-specifi c services, 409–412
superclass constructor invocation, 372–376

unchecked exceptions, 648–650
throwing of, 650–654

Unicode character set
character specifi cation, 35
char data and, 34
data representation, 5
lexicographical ordering, 127–132

unsorted arrays, linear search algorithm, 600–605
use case diagram

class design, implementation, and testing, 99–100
small business payroll case study, 181–182

soft ware engineering, 12–14
user-defi ned exception class, 666–668
user-defi ned methods

classes and packages, 328–331
classifi cation, 269
defi ned, 78
formal parameter list, 282
parameter passing, 284–297
signature of method, 282–284
value-returning methods, 281–297
void methods, 281–297

user interface, application window creation, 436
utility methods, classifi cation of, 321–328

V
value returning method

accessor method, 86–88
classifi cation, 268–269

invocation, 81–82, 274–281
return statement, 86

variables
categories of, 48–55, 84–86
data value changes, 51–55

Vector class
abstract data types, 583–584
applications of, 573–584
method invocation, 544–548
wrapper classes, 574–583

virtual machine, evolution of, 8
visualization techniques, object-oriented soft ware

design, superclass constructor
invocation, 372–376

void methods
arguments, 84
class design, implementation, and testing,

102–106
classifi cation, 268–269
defi nition, 82–84
fi nalizer, 317–319
implementation, 186–193
invocation, 81–82
mutator method, 88–89
return statement, 86

volume service, object-oriented soft ware design,
406–412

W
while statement, repetition structure, 215–229

continue statement in, 246–251
counter-controlled while statement, 218–222
counter inside counter-controlled while

statement, 222–224
data-controlled while statement, 227–229
event-controlled while statement, 224–227
selection criteria, 238

whitespace characters, input statement, 56–57
Wrapper classes, applications, 574–583

X
xor operator, decision making, 120–123

CRC_C6547_Index.indd 729CRC_C6547_Index.indd 729 10/1/2008 5:24:22 PM10/1/2008 5:24:22 PM

	Cover
	Title Page
	Copyright
	Contents
	Preface
	Acknowledgments
	Author
	Chapter 1 Object Model of Computation
	INTRODUCTION
	OBJECT MODEL OF COMPUTATION
	DATA REPRESENTATION
	HARDWARE OVERVIEW
	BRIEF HISTORY OF PROGRAMMING LANGUAGES AND MODELS OF COMPUTATION
	CREATING AND EXECUTING JAVA PROGRAM
	Step 1. Create Java Source File
	Step 2. Compile Source Code into Bytecode
	Step 3. Execute Java Program

	INTRODUCTION TO SOFTWARE ENGINEERING
	Analysis and Use Case Diagram

	REVIEW
	EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 2 Class and Java Fundamentals
	JAVA APPLICATION PROGRAM
	Identifier
	Reserved Word
	Comment Lines

	JAVA GREETINGS PROGRAM
	Advanced Topic 2.1: Frequently Used Escape Sequences
	Advanced Topic 2.2: Details on println Method
	Concatenation and the length of Strings
	Positional Value of a Character in Strings

	DATA TYPES
	Primitive Data Types
	boolean Data Type
	char Data Type
	Advanced Topic 2.3: Unicode Character Specification
	Integer Data Type
	Advanced Topic 2.4: Various Integer Representations
	Floating Point Data Type
	Advanced Topic 2.5: Floating Point Notation

	OPERATIONS ON NUMERIC DATA TYPES
	Operator Precedence Rules
	Rules for Evaluating Mixed Expressions
	Advanced Topic 2.6: Mixed Expressions Involving String

	NAMED CONSTANTS AND VARIABLES
	Changing Data Values of Variable
	Assignment Statement

	INPUT STATEMENT
	PACKAGES AND import STATEMENT
	Single Character Input

	INTERACTIVE MODE AND PROMPT LINES
	EXPLICIT DATA–TYPE CONVERSION
	Advanced Topic 2.7: Increment and Decrement Operators
	Advanced Topic 2.8: Compound Assignment Operators

	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 3 Class Design
	CLASS
	Attributes
	Operations

	METHOD INVOCATION
	METHOD DEFINITION
	CATEGORIES OF VARIABLES
	Syntax Template
	Initialization
	Scope
	Existence
	return STATEMENT

	JAVADOC CONVENTION
	ACCESSOR METHOD
	MUTATOR METHOD
	toString METHOD

	APPLICATION-SPECIFIC METHODS
	CONSTRUCTOR
	PUTTING ALL PIECES TOGETHER
	Advanced Topic 3.1: Representing Class in UML 2

	TESTING
	Advanced Topic 3.2: Representing Relationship in UML 2
	Advanced Topic 3.3: Class Design, Implementation, and Testing
	Design
	Decide on Attributes
	Decide on Methods
	Implementation
	Testing

	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 4 Decision Making
	CONTROL STRUCTURES
	LOGICAL EXPRESSION AND OPERATORS
	LOGICAL OPERATORS
	RELATIONAL OPERATORS
	RELATIONAL OPERATORS AND NUMERICAL DATA TYPES
	RELATIONAL OPERATORS AND CHARACTER DATA TYPES
	Advanced Topic 4.1: Relational Operators and Objects

	LEXICOGRAPHICAL ORDERING OF STRINGS
	Advanced Topic 4.2: Equality Operators and String Class

	PRECEDENCE RULES
	Advanced Topic 4.3: Syntax Error Explained
	Advanced Topic 4.4: Short-Circuit Evaluation
	Advanced Topic 4.5: Additional Logical Operators
	Advanced Topic 4.6: Positive Logic

	SELECTION STRUCTURES
	ONE-WAY SELECTION STRUCTURE
	BLOCK STATEMENT
	TWO-WAY SELECTION STRUCTURE
	PRIMITIVE DATA TYPE boolean
	NESTED STRUCTURES
	Advanced Topic 4.7: Better Coding Options
	Advanced Topic 4.8: Order of Logical Expressions
	Advanced Topic 4.9: Overriding if ... else Pairing Rule
	Advanced Topic 4.10: Ternary Operator

	MULTIWAY STRUCTURE switch
	Advanced Topic 4.11: Sharing Code in a switch Statement
	Advanced Topic 4.12: Limitations of a switch Statement
	Advanced Topic 4.13: Enumerated Types

	CASE STUDY 4.1: PAYROLL FOR A SMALL BUSINESS
	Specification
	Input
	Output
	Decide on Classes
	Decide on Attributes
	Decide on Methods
	Implementation
	Application Program
	Testing

	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 5 The Power of Repetition
	CONTROL STRUCTURES
	USING TEXT FILE FOR INPUT
	Declaring Exceptions

	USING FILE FOR OUTPUT
	Method close

	REPETITION STRUCTURE:while
	Counter-Controlled while Statement
	Advanced Topic 5.1: Use of Counter inside Counter-Controlled while Statement
	Advanced Topic 5.2: Event-Controlled while Statement
	Advanced Topic 5.3: Data-Controlled while Statement
	Data Validation
	Sentinel Data

	REPETITION STRUCTURE: for
	Advanced Topic 5.4: Use of Counter inside for Statement
	Advanced Topic 5.5: Repetition Statement : do … while
	Advanced Topic 5.6: Guidelines for Choosing Repetition Structure

	NESTING OF CONTROL STRUCTURES
	Advanced Topic 5.7: Statements break and continue
	Statements break and continue with Optional Label

	CASE STUDY 5.1: PAYROLL FOR SMALL BUSINESS: REVISITED
	Specification
	Input
	Output
	Application Program
	Testing

	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 6 Methods and Constructors
	CLASSIFICATION OF METHODS
	Math Class
	Character Class
	String Class

	METHOD INVOCATION
	USER-DEFINED METHODS
	Formal Parameter List
	Signature of a Method
	Parameter Passing

	CONSTRUCTORS
	Copy Constructor
	Self-Reference
	Advanced Topic 6.1: Common Methods
	copy Method
	equals Method
	Advanced Topic 6.2: Finalizer and Garbage Collection
	Advanced Topic 6.3: Class Variable
	static Methods
	Advanced Topic 6.4: Creating and Using Packages
	Option 1
	Option 2
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	CASE STUDY 6.1: FRACTION CALCULATOR
	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 7 Object-Oriented Software Design
	OBJECTS
	Data-Centric View
	Attribute
	Operation
	Client–Server View
	Soft ware Design View

	SUBCLASS
	Inheritance
	Creating Subclass
	Invoking Method of Superclass
	Accessing Private Attribute of Superclass
	Invoking Constructor of Superclass
	Subclass Objects as Superclass Instance
	Polymorphic Behavior
	Advanced Topic 7.1: instanceof Operator
	Advanced Topic 7.2: Use of protected Attributes
	Advanced Topic 7.3: Design Options
	protected Operations
	package Access
	Modifier final

	ABSTRACT CLASSES AND METHODS
	Advanced Topic 7.4: Object Class
	Advanced Topic 7.5: Composition
	Accessor and Mutator Methods
	Constructor
	Application-Specific Services

	INTERFACE
	CASE STUDY 7.1: PAYROLL FOR SMALL BUSINESS: REDESIGNED
	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 8 GUI Applications, Applets, and Graphics
	COMMON THEME BEHIND ALL GUI APPLICATION PROGRAMS
	CREATING APPLICATION WINDOW
	Creating New Application Class
	Invoking Constructor of Superclass
	Define Size of JFrame
	Make JFrame Visible
	Provide Graceful Way to Exit Application
	Get Reference of Content Pane
	Create and Place GUI Components in Content Pane
	Component creation
	Component placement

	EVENT-DRIVEN PROGRAMMING
	Event-Driven Model of Computation
	Implementing Listener interface
	Registering Listener interface

	METRIC CONVERSION HELPER
	Advanced Topic 8.1: Programming Options for Implementing Event Listeners
	Option B
	Option C
	Option D
	Advanced Topic 8.2: Applets
	Creating Applet from GUI Application
	Advanced Topic 8.3: Applet and GUI Application
	Advanced Topic 8.4: Graphics
	Advanced Topic 8.5: Color
	Advanced Topic 8.6: Font
	Advanced Topic 8.7: Drawing Services

	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 9 Simple Data Structures
	ONE-DIMENSIONAL ARRAY
	Declaring Array
	Instantiating Array
	Advanced Topic 9.1: Programming Option
	Advanced Topic 9.2: Alternate Syntax
	Attribute length

	PROCESSING ONE-DIMENSIONAL ARRAYS
	Initialize Array with Certain Specific Values
	Enhanced for Statement
	Initialize Array Locations with Different Values
	Initialize Array Using User Input
	Output Array
	Perform Various Numeric Computations
	Search for Item

	CASE STUDY 9.1: MR. GRACE’S LATEST GRADING POLICY
	Advanced Topic 9.3: Array Index Out of Bounds Exception
	Advanced Topic 9.4: Assignment and Relational Operators
	Advanced Topic 9.5: Role of Inheritance
	Advanced Topic 9.6: Passing Arrays as Parameters in Methods
	Advanced Topic 9.7: Returning Arrays in Method Invocation

	TWO-DIMENSIONAL ARRAY
	Declaring and Instantiating Array
	Advanced Topic 9.8: Alternate Syntax
	Advanced Topic 9.9: Ragged Array
	Advanced Topic 9.10: Processing Two-Dimensional Arrays
	Processing Specific Row
	Processing Entire Array Row by Row
	Processing Specific Column
	Processing Entire Array Column by Column
	Advanced Topic 9.11: Passing Arrays as Parameter in Methods
	Advanced Topic 9.12: Returning Arrays in Method Invocation
	Advanced Topic 9.13: Multidimensional Array
	Vector AND ArrayList CLASSES
	Wrapper Classes
	Advanced Topic 9.14: Abstract Data Types

	CASE STUDY 9.2: MR. GRACE’S GRADE SHEET
	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 10 Search and Sort
	SEARCH ALGORITHMS
	Linear Search
	Binary Search

	EFFICIENCY OF ALGORITHMS
	Empirical Approach
	Analysis Approach
	Advanced Topic 10.1: Levels of Complexity

	SORT ALGORITHMS
	Selection Sort
	Insertion Sort
	Bubble Sort

	CASE STUDY 10.1: MR. GRACE’S SORTED GRADE SHEET
	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Chapter 11 Defensive Programming
	INTRODUCTION
	EXCEPTION AND ERROR
	Unchecked and Checked Exceptions

	THROWING AND CATCHING OF EXCEPTIONS
	Throwing Exception
	Catching Exception
	Advanced Topic 11.1: Design Options for catch Block
	Advanced Topic 11.2: User-Defined Exception Class
	Advanced Topic 11.3: Design Options for Exception Handling

	REVIEW
	EXERCISES
	PROGRAMMING EXERCISES
	ANSWERS TO SELF-CHECK

	Appendix A: Operator Precedence
	Appendix B: ASCII Character Set
	Appendix C: Keywords
	Appendix D: Coding Conventions
	Appendix E: JDK and Documentation
	Appendix F: Solution to Odd-Labeled Exercises
	Index

