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Abstract 

 

Pleural effusion is an abnormal lung condition characterized by a buildup of fluid between 

the two layers of the pleura, which causes specific symptoms such as chest pain and 

shortness of breath. In Indonesia, pleural effusion cases alone account for 2.7% of other 

respiratory diseases, with an estimated number of sufferers in general at more than 3000 

people per 1 million population annually. Pleural effusion is a severe case and can cause 

death if not treated immediately. Based on a study, as many as 15% of 104 patients 

diagnosed with pleural effusion died within 30 days. This paper proposes a model that 

automatically detects pleural effusion based on chest x-ray images using a Machine 

Learning algorithm. The machine learning algorithm used is Convolutional Neural Network 

(CNN), with the dataset used from ChestX-ray14. The number of data used was 2500 in x-

ray images, based on two different classes, x-ray with pleural effusion and x-ray with 

normal condition. The evaluation result shows that the CNN model can classify data with 

an accuracy of 95% of the test set data; thus, we hope it can be an alternative to assist 

medical diagnosis in pleural effusion detection. 
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1. Introduction 

 

The lungs are a vital organ of the respiratory 

system that functions as an oxygen-exchanging 

organ from the air and carbon dioxide from the 

blood. Therefore, they are an essential organ for 

the human respiratory system. If the lungs are 

impaired, it will directly affect the respiratory 

system, which can be life-threatening. 

A pleural membrane covers the lungs, and between 

the membrane and the lungs, there is a pleural cavity 

that usually contains about 10-20 ml of fluid that 

serves as a lubricant so that the lungs can move freely 

while breathing [1]. However, if the fluid is excess and 

accumulates, it can pressure the lungs, causing chest 

pain and difficulty breathing; this condition is called 

Pleural Effusion.  

Pleural effusion is an abnormal lung condition 

characterized by a buildup of fluid between the 

two layers of the pleura, which is generally caused 

by the formation of pleural fluid faster than the 

resorption process. With normal resorption, 

pleural effusion can occur if pleural fluid 

formation continues to increase to 30 times. On 

the other hand, decreased resorption of pleural 

fluid alone will not produce a significant buildup 

of fluid in the pleural cavity, given the normal rate 

of pleural fluid formation is very slow. Other 

diseases can cause pleural effusion, either 

originating from the lungs (such as tuberculosis, 

pneumonia), the pleural membrane, or 

extrapulmonary (such as congestive heart failure) 

[1]. 

Pleural effusion is a common health condition. 

In Indonesia, pleural effusion cases alone account 

for 2.7% of other respiratory diseases, and with an 

estimated number of sufferers in general 

(international) at more than 3000 people per 1 

million population annually. Sufferers also come 

from any age group, although it generally occurs 
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Figure 1. Chest x-ray samples (a) normal (b) pleural effusion 

 

in women than men [2]. Pleural effusion is a 

severe case and can cause death if not treated 

immediately. According to a study [3], as many as 

15% of 104 patients diagnosed with pleural 

effusion died within 30 days.  

This study was made to detect pleural effusion 

based on chest x-ray images, which is one of the 

most common media for detecting abnormalities 

in the lungs [4], such as pleural effusion, which 

usually appears as a whitish area at the lung base. 

They may occur on only one side of the lung 

(unilateral) or both sides (bilateral) [5]. The 

primary purpose is to help improve medical 

diagnosis performance in identifying x-ray images 

with pleural effusion. Figure 1 (b) shows a chest 

x-ray sample with pleural effusion, and for 

comparison, Figure 1 (a) shows a chest x-ray with 

a normal lung condition. 

The algorithm used in this study is 

Convolutional Neural Network (CNN), by 

creating a model to classify an x-ray image into 

one of two classes, pleural effusion or normal 

condition. 

The rest of the paper presented in the following 

order, section 2 is an overview of some previous 

similar studies, followed by a brief review about CNN, 

section 3 describes the research methods, section 4 

presents the results and discussion, and section 5 is the 

conclusion of the study and suggestions for further 

research. 

  

2. Related Work 

 

This section is an overview of some previous 

similar studies in completing the task in the form 

of classification of chest x-ray images using a 

similar algorithm and a brief review of the 

algorithm used in this study, CNN, and its 

components. 

 

CNN in Classifying Chest X-ray Images 

The ability of machine learning algorithms, 

especially deep learning in the medical field, 

particularly in detecting abnormalities based on x-

ray images, has become popular in recent years. 

One of the studies is the diagnosis of 14 diseases 

based on chest x-ray images using CNN 

conducted by [6], which obtained accuracy in 10 

conditions (including edema, pleural effusion, 

pneumonia, and others), which claimed to be 

equivalent to the radiological level (after 

specialized testing). Similar studies were also 

conducted by [7] and [8], which also obtained 

reliable accuracy on the 14 diseases. 

 

Convolutional Neural Network 

CNN is a type of Artificial Neural Network 

(ANN) or commonly called Neural Network 

(NN). It is a machine learning algorithm (also 

called deep learning because it generally has more 

than one layer) inspired by the human brain’s 

neural network. CNN is not much different from 

ordinary NN. The thing that distinguishes CNN 

from ordinary NN at the initial layer of CNN is a 

special layer called the Convolution Layer, which 

functions to extract features in data, especially 

images. That is why CNN is commonly used to 

complete tasks such as image classification, object 

detection, image segmentation, and other 

computer vision tasks. This algorithm is designed 

to work well on unstructured data such as images 

[9]. CNN is generally divided into the convolution 

layer, Pooling Layer, and Fully Connected Layer 

[10]. 

 

Convolution Layer 

The convolution layer is the main part of CNN. 

This layer has a component called kernel (also called 

filter) that functions as a feature detector to detect 

specific features in all parts of the image by doing an 

elementwise-product of every value in the kernel with 

every pixel value in the image, followed by summing 

the results into one value. This value will then be 

stored in the matrix called feature map [11]. 

Hyperparameter stride determines how far the kernel 

will move; if the stride used is 1, it means the kernel 

will move one pixel to the right until the end of the 

image, then move 1 pixel down and back to the 

beginning of the line. This process is repeated until the 

kernel reaches the lower right part of the image, as the 

illustration shown in Figure 2. 

 

 
 

Figure 2. Illustration of the convolution process 

Image Kernel Feature Map 
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A non-linear activation function can be applied in 

this layer for the non-linear transformation of the 

feature map [12]. The non-linear activation function 

commonly used is ReLU (Rectified Linear Unit), 

shown in equation (1). 

 

 𝒇(𝒙)  =  𝒎𝒂𝒙(𝟎, 𝒙) (1) 

 

Where 𝑥 is the output of a neuron (or value in 

feature map), if 𝑥 ≤ 0, then 𝑥 = 0  and if 𝑥 > 0, 

then 𝑥 = 𝑥. 

 

Pooling Layer 

The pooling layer (or subsampling layer) is a 

component of the CNN, which functions to reduce the 

dimensions of the feature map by selecting pixel 

values based on specific rules. Pooling layer operations 

that are commonly used include max pooling and 

average pooling [13]. Max pooling works by 

maintaining the highest value of a feature map (as 

Illustrated in Figure 3). In contrast, average pooling 

looks for the average value of a feature map (if only 

return one value per feature map is called global 

pooling or can also return multiple values using 

configured kernel). 

 

 

 

     
Figure 3. Illustration of the pooling process (max-pool) 

 

Fully Connected Layer 

The image through the convolution and pooling 

layers for feature extraction, then each feature map, 

needs to be transformed into a one-dimensional vector 

(called the flattening process) before entering the fully 

connected layer (FC) [14]. FC layer is the part of the 

CNN that functions like ordinary NN, which is to 

perform non-linear transformations of the data 

(extracted image features) to obtain the output value 

[15]. 

The output is then converted into a probability (that 

sum to one) by applying the Softmax function [16] as a 

classification method based on the existing class. The 

softmax function is shown in equation (2). 

 

 
𝑦𝑗 =

𝑒𝑦(𝑗)

∑  𝑛
𝑖=1 𝑒

𝑦(𝑖)
 (2) 

 

Where 𝑦 is the output of neuron 𝑗, divided by the 

summation of outputs of all neurons (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑒 =
2.71828). 

In this study, we built a CNN model to detect 

pleural effusion by receiving an input of chest x-ray 

image (frontal-view) and produced a predicted label as 

an output. To interpret the model's result, the model 

also generates a heatmap to visualize the area that the 

model mostly focuses on when making the prediction; 

the goal is to build appropriate trust in users who use 

the model. 

 

3. Methods  

 

There are several stages carried out in this section. 

First, we describe the data used in this study with some 

preprocessing techniques, followed by the proposed 

CNN architecture and the hyperparameter. We also 

describe the performance metrics, model interpretation 

technique, and how we implement the model to an 

application at the end of this section. 

 

Dataset 

The data used in this study came from the 

ChestX-ray14 dataset [7], one of the most massive 

frontal-view chest x-ray image datasets with a 

total of 112,120 images acquired from 30,805 

patients with many advanced lung diseases. This 

dataset is divided into 14 classes on disease type 

and normal condition. The images were saved in 

PNG format and rescaled to a size of 1024 x 1024 

pixels, with one or multiple labels (overlap with 

other diagnoses). They were acquired from the 

radiologist report using a natural language 

processing technique. 

This study used 2500 data samples of x-ray 

images, consisting of two different classes, x-ray 

images with pleural effusion and normal 

condition, with each data per class containing 

1250 images.   

The data then goes through several preprocessing 

stages. First, we divide the data into three parts, 

including the training set used to train the CNN model, 

the validation set used to estimate the model’s 

performance of given hyperparameters, which then 

used to determine the best combination of 

hyperparameters, and the test set used to test/evaluate 

the performance of the CNN model in classifying new 

data. The comparison of the training set, validation set, 

and test set are 80:10:10, as shown in Table 1. 

 
Table 1. Data splitting 

 Pleural Effusion Normal 

Training Set 1000 1000 

Validation set 125 125 

Tes set 125 125 

2 x 2 Kernel 

Max-Pool 

Feature Map 
Pooled  

Feature Map 
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Figure 4. CNN architecture, VGG19 with modifications on the top layer 

      

We also downscale the images' resolution to 224 x 

224 pixels (adjusted to the VGG19 architecture) and 

rescale the pixel value to between 0-1 (by dividing 

every pixel with 255) as a normalization method. We 

also applied data augmentation techniques to reduce 

the possibility of model overfitting; the data 

augmentation used includes width shift range and 

height shift range. 

The amount of data used in this study (2500 

images) is adjusted to the system's specifications to 

avoid too long training time. 

 

Proposed CNN Architecture 

The CNN model used in this study is VGG19 from 

the Visual Geometry Group [17]. VGG19 is a deep 

CNN model with 19 layers (16 convolution layers and 

3 FC layers), a kernel size of 3x3 with a stride of 1 on 

all convolution layers, along with a 2x2 kernel and a 

stride of 2 on all max-pooling layers. The number of 

feature maps in this model starts at 64 in the first block 

of the convolution layer, doubling after every max-

pooling layer until it reaches 512 at the last 

convolution layer. The number of neurons in the FC 

layers are 4096, 4096, 1000, respectively. 

The VGG19 model used in this study is a model 

with parameters that have been initialized to the 

ImageNet dataset (also called pre-trained model) in the 

convolution layers, with modification at the top layer 

of the model architecture (fully connected layer), to 

match the used dataset. 

We also add the Global Average Pooling (GAP) 

layer before the FC layer to reduce the model's 

parameters. The number of neurons used in the first 

two FC layers is 1024 (equipped with ReLU for non-

linearity), and the last FC layer is 2 (based on the 

existing class), as illustrated in Figure 4. Then the 

softmax function is applied to convert the output into 

probability. 

A CNN model that built to do a classification task 

behaves as object detectors despite without any 

supervision on the object's location was provided; 

however, this ability is lost when the features are 

flattened for the classification stage. Therefore, the 

GAP layer acts as a regularizer (reducing the model's 

parameter to help prevent overfitting) also improves 

the model's localization ability since the GAP 

encourages the model to identify the extent of the 

object [18]. 

 

With our model, we can visualize an image's 

important features using the Grad-CAM technique 

(discussed in the model interpretation section) by 

generating a heatmap to highlight the most indicative 

area of effusion or highlight the most contributed area 

of chest x-ray for normal condition. 

The model has 11,016,194 learnable parameters 

with the total number of parameters of 21,601,346, 

built using Keras framework that runs on Tensorflow 

and trained using a system with 8 GB of RAM and an 

NVIDIA GeForce GTX 960M 4GB GPU. 

The reason for choosing the pre-trained VGG19 is 

because this model has been trained on the ImageNet 

dataset, which has more than 1 million images. 

Therefore, this model's convolution layers have good 

enough at detecting features in images, ranging from 

low-level features to high-level features. So it can have 

higher accuracy with shorter training time (compared 

to training a custom deep CNN from scratch). 

 

Learning Algorithm and Other Hyperparameters 

Gradient Descent (GD) is generally used as an 

algorithm to update parameters (such as weight and 

bias) based on the loss value [16]. The parameters 

update is done to minimize the loss value to a 

minimum. A special function is needed to obtain the 

value of the loss, such as Cross-Entropy, shown in 

equation (3). 

 

 𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(ŷ, 𝑦) = −∑𝑦𝑖log(ŷ𝑖)

𝑖

 
(3) 

 

Where 𝑦𝑖  is the desired output (actual value), and ŷ𝑖 is 
the output produced by the model (predicted value). 

There are several types of gradient descent, one of 

which is Stochastic Gradient Descent (SGD), which is 

the type of GD that works by calculating the value of 

the gradient (the value that will be used for updating 

the parameter) by one training sample determined 

randomly [16]. In this study, instead of using one 

training sample, a set sample (or mini-batch) is used. 

Therefore, fewer parameters update will be performed, 

reducing training time. 

There are several learning algorithms are based on 

GD (with specific optimizations), Adaptive Moment 

Estimation (Adam) is one of them. In this study, adam 

is used as a learning algorithm (also called an 
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optimizer) with learning rate initialization of 0.0001 

and default parameters (beta1 = 0.9, beta2 = 0.999). 

Other hyperparameters used are shown in Table 2.  

    
Table 2. Learning algorithm and other hyperparameters 

Optimizer Learning rate Mini-batch Epoch 

Adam 0.0001 16 100 

  

The hyperparameters used include a mini-batch of 

16, which shows the number of samples used to 

calculate the value of the gradient (in one time), which 

means that in one epoch, the parameters will be 

updated 125 times (number of data in training set 

divided by the number of mini-batch). Lastly, we 

trained the model for 100 epochs. 

 

Performance Metrics for Evaluation 

Confusion Matrix is used as a tool to measure the 

model’s performance on the test set, with several 

metrics including accuracy, sensitivity, and specificity. 

The illustration of the confusion matrix is shown in 

Figure 5. 

 

  Predicted Label 

  Negative Positive 

Actual 

Label 

Negative 
True 

Negative 

False 

Positive 

Positive 
False 

Negative 

True 

Positive 

 
Figure 5. Illustration of the confusion matrix 

 

Where True Negative (𝑇𝑁) shows the amount of 

negative data that is predicted correctly, False Positive 

(𝐹𝑃) shows negative data that is predicted as positive, 

True Positive (𝑇𝑃) shows positive data that is 

predicted correctly, and False Negative (𝐹𝑁) shows 

positive data that is predicted as negative. 

 

Accuracy 

Accuracy is used to measure the model's ability to 

classify samples (positive and negative) correctly of all 

test data [19]. The equation to calculate accuracy is 

shown in equation (4). 

 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 (4) 

 

 

Sensitivity 

Sensitivity (or true positive rate) is used to measure 

the model's ability to classify positive samples 

correctly [19]. The equation for calculating sensitivity 

is shown in equation (5). 

 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (5) 

  

Specificity 

Specificity (or true negative rate) is used to 

measure the model's ability to classify negative 

samples correctly [19]. The equation for calculating 

specificity is shown in equation (6). 

   

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6) 

 

Model Interpretation 

Gradient-weighted Class Activation Mapping 

(Grad-CAM) [20] is used to interpret the model's 

prediction by generating a heatmap that shows the 

area/region on a chest x-ray image that contributes the 

most to the model's prediction.  

Grad-CAM works by computing the weight for 

each final convolution layer's feature maps and then 

using it to weight the associated feature map then 

summing all the weighted feature maps to create a 

coarse heatmap. Formula to compute the weight 

shown in equation 7, and equation 8 is the formula to 

generate a heatmap using weight obtained from 

equation 7. 

 

 

𝑎𝑘 =
1

𝑍
∑ ∑  

𝑗𝑖

⏞      

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝐺𝐴𝑃
𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

𝜕𝑦

𝜕𝐴𝑖,𝑗
𝑘

⏟
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ

𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝐴𝑘

 (7) 

 

Where 𝑎𝑘 represents the weight for 𝑘 feature map 

(with 𝑘 represent the 𝑘𝑡ℎ feature map) of the final 

convolutional layer. y represents the score of the 

predicted class (before softmax), 𝐴𝑖,𝑗
𝑘  represents each 

value of 𝑘 feature map of the final convolution layer, 

and 𝑍 represents the number of values in 𝑘 feature 

map. GAP: Global Average Pooling. 

 

 𝐿 = 𝑅𝑒𝐿𝑈 (∑ 𝑎𝑘𝐴
𝑘

𝑘
) (8) 

    

ReLU is applied to the coarse heatmap 

(indexed by 𝐿) to maintain only the features that 

positively influence the predicted class. This coarse 

heatmap has the same dimensions as the final 
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convolution layer’s feature maps; therefore, it needs to 

be upscaled based on the input dimensions to overlay 

the given input. 

This technique is used to provide more explainable 

results and to ensure the model sees the correct part of 

the image when making its prediction. 

 

Application Implementation 

The model that has been designed, trained, and 

evaluated will then be implemented into a web-based 

application. The implementation carried out using 

Flask Framework (Python) as a back-end 

programming language with Javascript, HTML, and 

CSS as front-end. 

 

4. Results and Discussion 

 

This section discusses several things, including the 

model's performances in the training and validation 

process, the evaluation of the model's performance in 

conducting classification on the test set, briefly discuss 

the interpretation of the model's prediction, and the 

interface of the application implementation. Note, 

because this study was made to detect single pathology 

(pleural effusion), with a portion of data (1250 images 

of each class) of the entire dataset, the results presented 

below cannot be compared directly to the previous 

studies [6]-[8]. 

 

Training and Validation 

The accuracy and loss graphs of the training and 

the validation are shown in Figure 6. 

 

 

 
 

Figure 6. The graphs of the model’s accuracy and loss 

Based on the graphs above, the model gets good 

accuracy in the training process. It is showed by the 

loss value of the training set that continues to decreases 

(as the accuracy increases) with the increasing epoch; 

this implies that the model fits the training data well. 

On the other hand, the validation loss indicates that the 

model suffered from overfitting with the loss on the 

validation set that continuously increases (as the 

accuracy decreases)  after the 16th epoch. Thus, the 

checkpoint technique is used by saving the model with 

the lowest loss on the validation set and then using it 

for the evaluation phase. With the pre-determined 

hyperparameter (Table 2), the training process takes 

141 minutes. The lowest loss achieved by the model 

(on the 16th epoch) is 0.1730, with an accuracy of 

93% in the validation set. This model will be used for 

the evaluation phase. 

 

Model Evaluation 

As discussed earlier, the tool used in evaluating the 
model’s performance on the test set is the confusion 
matrix. The confusion matrix of the test set is shown in 
Figure 7.  

 

 
 

Figure 7. Confusion matrix of the test set 

 
Based on the confusion matrix above, the accuracy, 

sensitivity, and specificity can be calculated using 
equations (4), (5), and (6). The results are shown in 
Table 3. 

Table 3. Accuracy, sensitivity, and specificity (%) 

Accuracy Sensitivity Specificity 

95 91 98 

 
The model obtained a result of 95% on the 

accuracy metric, which indicates the model’s ability to 
classify data (positive and negative) correctly from all 
test data (test set). On the sensitivity metric, the model 
obtained 91%, which indicates the model’s ability to 
classify positive data (pleural effusion) as positive. The 
last metric, specificity, achieved 98% results, which 
indicates the model’s ability to classify negative data 
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(normal condition) as negative. 

 
 

Figure 8. ROC curve with AUROC = 0.99 

 

The graph above is the ROC (Receiver Operating 
Characteristics) curve, which summarizes the trade-off 
between sensitivity and specificity (at all possible 
classification thresholds) with an AUROC (Area 
Under ROC) of 0.99, which indicates the model's 
ability to classify positive and negative data correctly. 
 

Model Interpretation 

 
(a) 

 
(b) 

 
Figure 9. heatmap's samples for pleural effusion 

 
Figure 9 shows samples of two chest x-ray images 

with effusion on the left lung (a) and right lung (b). 

Based on the model’s prediction, the model 

successfully classified the images correctly with a high 

confidence level (99% and 95% on the image a and b). 

The model also produced heatmaps that focused on the 

lower left lungs (a) and lower right lungs (b), which 

indicate the model sees at the correct part of the image 

when predicting pleural effusion. We also generated a 

bounding box for localization purposes using a simple 

thresholding technique based on the generated 

heatmap. 

 
 

Figure 10. heatmap's sample for normal condition 

 

In contrast, figure 10 shows that the model 

predicted an x-ray correctly as a normal lung also with 

high confidence, with a heatmap that focuses mostly 

on the black region of both sides of the lungs, which 

can be interpreted as the most contributing features for 

the normal condition class.  

From the heatmaps produced by the model, it can 

be concluded that the result predicted by the model can 

be interpreted by visualizing the heatmap of the 

predicted class. 

 

Application Implementation 

 
(a) 

 
(b) 

 
Figure 11. The interface of pleural effusion classifier 

application 

 

Figure 11 (a) shows the application interface 

showing the prediction result of an x-ray image with 

the confidence level in the form of a percentage. The 

application also provides a button (provided on the 

label of the classification result) to display a heatmap 

that shows the area that the model focuses on in its 

prediction, as shown in Figure 11 (b). 
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5. Conclusion  

 
The results of the evaluation and analysis show 

that the model built to perform a task in the form of 
pleural effusion classification based on x-ray images 
(frontal-view) shows promising results on the tested 
metrics, with 95%, 91%, and 98% on the accuracy, 
sensitivity, and specificity respectively. To provide a 
more explainable result, the model also produces a 
heatmap to show the area it focuses on when making 
its prediction. This heatmap can also be used to locate 
the area most indicative of pleural effusion; thus, we 
hope it can be an alternative to improve the medical 
diagnosis performance in identifying the presence of 
pleural effusion. 

CNN algorithm will have better performance using 

large amounts of data for the model training. 

Therefore, further study is expected to use a more 

significant amount of image data to produce a better 

performance model in image classification and object 

localization. Furthermore, further study will also be 

expected to use x-ray image data with more classes of 

various diseases to be more helpful and applicable.   
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